Mathletics

(D) Student

Multiplication and Division

Copyright © 2009 3P Learning. All rights reserved.
First edition printed 2009 in Australia.
A catalogue record for this book is available from 3P Learning Ltd.

ISBN 978-1-921860-40-9

Ownership of content The materials in this resource, including without limitation all information, text, graphics, advertisements, names, logos and trade marks (Content) are protected by copyright, trade mark and other intellectual property laws unless expressly indicated otherwise.
You must not modify, copy, reproduce, republish or distribute this Content in any way except as expressly provided for in these General Conditions or with our express prior written consent.

Copyright Copyright in this resource is owned or licensed by us. Other than for the purposes of, and subject to the conditions prescribed under, the Copyright Act 1968 (Cth) and similar legislation which applies in your location, and except as expressly authorised by these General Conditions, you may not in any form or by any means: adapt, reproduce, store, distribute, print, display, perform, publish or create derivative works from any part of this resource; or commercialise any information, products or services obtained from any part of this resource.

Where copyright legislation in a location includes a remunerated scheme to permit educational institutions to copy or print any part of the resource, we will claim for remuneration under that scheme where worksheets are printed or photocopied by teachers for use by students, and where teachers direct students to print or photocopy worksheets for use by students at school. A worksheet is a page of learning, designed for a student to write on using an ink pen or pencil. This may lead to an increase in the fees for educational institutions to participate in the relevant scheme.

Published 3P Learning Ltd
For more copies of this book, contact us at: www.3plearning.com/contact
Designed 3P Learning Ltd
Although every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of this information contained herein.

Series D - Multiplication and Division

Contents

Topic 1 - Multiplication revision (pp. 1-10)

- 2 times table \qquad

- 5 times table \qquad

- 10 times table \qquad / 1

Topic 2 - Multiplication facts (pp. 11-21)

- multiplying any number by 10 \qquad

- multiplying numbers by 0 and 1 \qquad

- 4 times table \qquad

- 8 times table \qquad

- 3 times table \qquad

- multiples \qquad 1 /

Topic 3 - Mental multiplication strategies (pp. 22-28)

- doubling strategy \qquad

- split strategy \qquad

- compensation strategy

- word and missing number problems \qquad

Topic 4 - Division (pp. 29-34)

- sharing

- grouping

- linking multiplication and division facts \qquad

- word and missing number problems \qquad $1 /$

Series D - Multiplication and Division

Contents

Topic 5 - Patterns and functions (pp. 35-40)
Date completed

- counting
- function machines \qquad
- number patterns in tables \qquad

\square

- growing shape patterns \qquad
\square
/ /

- matchstick patterns \qquad
\square
1 /

Topic 6 - Equations and equivalence (pp. 41-42)

- balanced equations using + and \times \qquad
\square

Topic 7 - Games and investigations (pp. 43-49)

- highest product - apply \square
- mystery numbers - solve \qquad
- mystery numbers - solve

- multiplication concentration - apply \qquad

- product bingo - apply \qquad
\square
- Harry and Tortista - solve \square
- rows and columns - apply \square

Series Author:

Nicola Herringer

Multiplication revision - 2 times table

Here is the fact family for the 2 times table.
$0 \times 2=0$

$6 \times 2=12$ \& \& \& fo bo bo
$7 \times 2=14$ \&时 \&o bo bo bo

$9 \times 2=18$ \& \& \& \& \& \& \& \& \& \& \&
$10 \times 2=20$ \&o \& \& \& \& \& \& \& \& \& \& \&

Multiplication revision - 2 times table

Counting in 2 s will help you know many times table facts.

1 Complete each pattern by counting in 2 s :
a

b

c

2 Show how many dots there are in each array by counting in 2 s . Then write the times table fact below:

a 6 twos

d 5 twos

b 8 twos

e 4 twos

c 3 twos

f 9 twos

TOPIC

Multiplication revision - 2 times table

(3) How many straws are in:
a 3 drinks?
b 10 drinks?
c 5 drinks?

$$
\square \times 2=\square
$$

d 2 drinks?

$$
\square \times 2=\square
$$

4 How many wheels have:
a 4 bikes?

b 9 bikes?

c 7 bikes?

d 3 bikes?

5 Double each number:
a $6 \times 2=\square$
b $9 \times 2=\square$
c $8 \times 2=\square$
d $7 \times 2=\square$

6 Complete this doubling wheel. These facts are not in the 2 times table, but they are facts that are useful to know.

Multiplying by 2 is the same as doubling.

Multiplication revision - 5 times table

Use repeated addition to find the total number of fingers.

$$
\text { Mon } \begin{aligned}
& 5+5+5=15 \\
& 3 \text { groups of } 5 \text { is equal to } 15 .
\end{aligned}
$$

1 Find the total of each group by using repeated addition.
a How many pencils?

b How many eggs?

c How many beads?

Multiplication and Division

Multiplication revision - 5 times table

This is a multiplication symbol \times and it means 'groups of' or 'rows of'.
So instead of repeated addition, we can use a multiplication symbol.

$$
5+5+5+5+5=25 \quad 5 \times 5=25
$$

5 groups of 5 is equal to 25

2 Find the total of each group by using repeated addition:
a

 is equal to \square
\square
b

\square rows of \square is equal to \square
\square

3 Ring the shapes in groups of 5. One group is ringed for you. Then complete the multiplication fact.
a
 is equal to \square
\square
b

\square groups of \square is equal to \square
\square

5

Multiplication revision - 5 times table

Times tables are families of multiplication facts for particular numbers.
The 5 times table is all the multiplication facts for 5 .

$$
0 \times 5=0
$$

$$
1 \times 5=5 \text { 禺 }
$$

$$
\begin{aligned}
& 2 \times 5=10 \text { eg tod } \\
& 3 \times 5=15 \text { sig sod sid }
\end{aligned}
$$

$$
5 \times 5=25
$$

$$
6 \times 5=30
$$

$9 \times 5=45$

$10 \times 5=50$

Multiplication and Division

SERIES

Multiplication revision - 5 times table

Here is a counting pattern on a hundred square. It shows a counting pattern of 5 .

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1 Finish each pattern by counting in 5s:

b

2. Show $\times 5$ multiplication facts on each number line.
a Finish labelling this number line and then show 5 jumps starting from 0 :

This is the same as $\square \times 5=\square$
b Finish labelling this number line and then show 7 jumps starting from 0 :

This is the same as $\square \times 5=\square$

Multiplication revision - 5 times table

3 Write a 5 times table fact for each set of 5 pence coins. The first one has been done for you.
a

$$
4 \times 5 p=20 p
$$

b

\square

4 Times tables are a set of multiplication facts from 1 to 10 based on multiplying by the same number each time.
Write the answers for the 5 times table.

$1 \times 5=$
$2 \times 5=$
$3 \times 5=$
$4 \times 5=$
$5 \times 5=$
$6 \times 5=$
$7 \times 5=$
$8 \times 5=$
$9 \times 5=$
$10 \times 5=$
$11 \times 5=$
$12 \times 5=$

5 Now answer the mixed up 5 times table.
a $2 \times 5=\square$
b $8 \times 5=\square$
c $9 \times 5=\square$
d $10 \times 5=\square$
e $3 \times 5=\square$
f $6 \times 5=\square$
g $7 \times 5=\square$
h $5 \times 5=\square$
i $1 \times 5=\square$
j $4 \times 5=\square$

6 Write the missing number in each 5 times table fact.
a

b
 $\times 5=20$
c

d

e \square
$\times 5=40$
f

g

$$
\square \times 5=30
$$

h

Multiplication revision - 10 times table

Here is the fact family for the 10 times table.

Multiplication revision - 10 times table

If you can count in 10s from zero, you know your 10 times table.

1 Complete this sequence by counting in 10s:

2 Count the bars of $\mathbf{1 0}$ and then complete the multiplication fact:
a

b

$\square \times 10=\square$
.

c

$\square \times 10=\square$
\square
$3 \times 10=\square$
$9 \times 10=\square$
$4 \times 10=\square$
$10 \times 10=\square$
$5 \times 10=\square$
$11 \times 10=\square$
$6 \times 10=\square$

4 Write the missing number in each 10 times table fact:
a $\square \times 10=50$
b $\square \times 10=80$
c $\square \times 10=70$

5 Complete this $\times 10$ wheel:

Multiplication facts - multiplying any number by 10

When we multiply a number by 10 , the number gets 10 times bigger. This means that each digit moves one place value column to the left and we need to use 0 as a placeholder in the
 ones column.

1 Show how the digits all move along when they are multiplied by 10 and write the answers below:

a | Hundreds | Tens | Ones |
| :--- | :---: | :---: |
| | | 7 |
| | 7 | 0 |

$7 \times 10=\square$
C

$15 \times 10=\square$
b

Hundreds	Tens	Ones
		3

$$
3 \times 10=\square
$$

d

Hundreds	Tens	Ones
	2	2

$22 \times 10=\square$
2. Connect these $\times 10$ facts to the answers:

Multiplication facts - multiplying numbers by 0 and 1

Any number multiplied by 1 always equals the same number.
Any number multiplied by 0 always equals zero.

1 Practise multiplying by 1:
a

b

6 groups of 1 are equal to \square
\square

5 groups of 1 are equal to \square

$$
\square \times 1=\square
$$

d

$$
\square \times 1=\square
$$

4 groups of 1 are equal to \square

$$
\square \times 1=\square
$$

2 Practise multiplying by 1 and 0:
a $12 \times 0=\square$
b $6 \times 1=\square$
c $3 \times 0=\square$
d $2 \times 1=\square$
e $8 \times 0=\square$
f $20 \times 1=\square$

3 Complete this table:

\times	9	10	6	1	5	12	4	7	3	11	8	2
0												
1												

Multiplication facts - 4 times table

Here is the fact family for the 4 times table.
Compare it with the 2 times table. The answers are doubles of the equivalent multiples in the 2 times table.

Multiplication facts - 4 times table

Practise your 4 times table.

1 Write the multiplication fact for each array:

a 3 fours
$\square \times 4=\square$

d 6 fours

b 4 fours

c 5 fours

f 9 fours

2 How many cupcakes are there on:
a 4 plates?

c 7 plates?
\square
b 3 plates?

d 9 plates?

e 2 plates?

Multiplication facts - 4 times table

(3) Here is a half of a $\mathbf{1 0 0}$ square:
a Circle the counting pattern of 2 s . Cross the counting pattern of 4 s .
b What do you notice?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

\qquad
\qquad

4 Complete the matching $\times 2$ and $\times 4$ facts:
a $6 \times 2=12$ and $3 \times 4=12$

Can you see that the $\times 4$ arrays have half the rows and double the columns of the $\times 2$? This means there is the same total, but the array is arranged differently.

So, $\square \times 2=\square \times 4$

b

So, $\square \times 2=\square \times 4$
c $8 \times 2=\square \times 4$
d $10 \times 2=\square \times 4$

Multiplication facts - 8 times table

Here is the fact family for the 8 times table.
Compare it with the 4 and 2 times tables. Can you see how they are related?
Multiples of 8 are doubles of equivalent multiples of 4 .

$1 \times 8=8$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$											
$2 \times 8=16$	$\begin{aligned} & \text { is } \\ & \text { \&is } \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$										
$3 \times 8=24$	$\begin{aligned} & \text { it } \\ & \text { of } \end{aligned}$	$\begin{aligned} & 008 \\ & 000 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \\ & 0, \end{aligned}$									
$4 \times 8=32$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	$\begin{gathered} 008 \\ 00 \\ 0 \end{gathered}$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$								
$5 \times 8=40$	$\begin{gathered} 100 \\ 00 \\ 00 \end{gathered}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$	$\begin{gathered} 0,0 \\ 00 \\ 0, \end{gathered}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$							
$6 \times 8=48$	$\begin{aligned} & 0,0 \\ & 00 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	$\begin{gathered} 000 \\ 000 \\ 0, \end{gathered}$	$\begin{gathered} 100 \\ 0, \\ 0, \end{gathered}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	$\begin{gathered} 0,0 \\ 0 \end{gathered}$						
$7 \times 8=56$	$\begin{gathered} 000 \\ 00 \\ 0, \end{gathered}$	$\begin{aligned} & 008 \\ & 000 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \\ & 0, \end{aligned}$	$\begin{aligned} & 0,0 \\ & 00 \\ & 0, \end{aligned}$	$\begin{aligned} & 008 \\ & 000 \end{aligned}$	$\begin{aligned} & 08 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 00 \\ & 0 \end{aligned}$					
$8 \times 8=64$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 000 \\ & 00 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 100 \\ & 00 \\ & 0, \end{aligned}$	$\begin{aligned} & 000 \\ & 00 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$	$\begin{gathered} 000 \\ 000 \\ 0, \end{gathered}$	$\begin{aligned} & 000 \\ & 0,0 \end{aligned}$				
$9 \times 8=72$	$\begin{aligned} & 00 \\ & 00 \\ & 0,0 \end{aligned}$	$\begin{gathered} 0,8 \\ 00 \\ 0 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \\ & 0, \end{aligned}$	$\begin{aligned} & 00 \\ & 0,0 \\ & 0, \end{aligned}$	$\begin{gathered} 0,8 \\ 00 \\ 0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 00 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 00 \\ & 0, \end{aligned}$	$\begin{aligned} & 0,0 \\ & 000 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 00 \\ & 0 \end{aligned}$			
$10 \times 8=80$	$\begin{gathered} 0,0 \\ i+0 \\ 0 \end{gathered}$	$\begin{aligned} & 000 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 008 \\ & 000 \\ & 0, \end{aligned}$	$\begin{gathered} 0,0 \\ i 0 \\ 0, \end{gathered}$	$\begin{aligned} & 00 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 008 \\ & 00 \end{aligned}$	$\begin{aligned} & 00 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$	$\begin{gathered} 100 \\ 00 \\ 00 \end{gathered}$		
$11 \times 8=88$	$\begin{aligned} & 10,0 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 008 \\ & 00 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \\ & 0, \end{aligned}$	$\begin{gathered} 0,0 \\ 00 \\ 0, \end{gathered}$	$\begin{aligned} & 0.0 \\ & 00 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \\ & 0, \end{aligned}$	$\begin{aligned} & 0.4 \\ & 00 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 000 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	
$12 \times 8=96$	$\begin{aligned} & \text { if } \\ & \text { of } \end{aligned}$	$\begin{aligned} & 000 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { if } \\ & \text { of } \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 0,0 \\ & i 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 00 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 004 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & i 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0.0 \\ 000 \\ 0,0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 0,0 \end{aligned}$	$\begin{gathered} 0,0 \\ 0, \end{gathered}$

TOPIC

Multiplication facts - 8 times table

1 Write the multiplication fact for each array.

2 Fill the gaps in the number line so it goes up in 8 s .

3 Complete this table by recalling the 8, 4 and 2 times tables.

	10	3	7	8	1	11	4	0	9	2	12	6	5
$\times 2$													
$\times 4$													
$\times 8$													

4 Solve these problems:
a I save $£ 4$ each week for 8 weeks.
How much money do I have in total after 8 weeks? \square
b Fred runs 8 km every day for a week.
How far has he run in total by the end of the week? \square
c Choco treats come in packets of 8.
How many packets do I have if I have 64 Choco treats altogether? \square

Multiplication facts - 3 times table

Here is the fact family for the 3 times table.
$0 \times 3=0$
$1 \times 3=3$
$2 \times 3=6 \theta$
$3 \times 3=9 \quad \theta B$

$9 \times 3=27$ B B B B B B B B B A

18

Multiplication facts - 3 times table

Practise your 3 times table.

1 Use this array to complete the 3 times table:
$1 \times 3=\square$

2 Now try them mixed up:
a $3 \times 3=\square$
b $12 \times 3=\square$
c $7 \times 3=\square$
d $10 \times 3=\square$
e $2 \times 3=\square$
f $4 \times 3=\square$
g $5 \times 3=\square$
h $6 \times 3=\square$
i $9 \times 3=\square$
j $1 \times 3=\square$
| $11 \times 3=\square$
$7 \times 3=\square$
$10 \times 3=\square$
$8 \times 3=$
$11 \times 3=$ \square
$9 \times 3=$ \square $12 \times 3=$ \square

3 Alfred is an alien from the Planet Trampolon. The surface of Planet Trampolon is like walking on a trampoline. That's why Alfred and all his race of aliens need 3 legs for extra balance. They also have 3 fingers on each hand and 3 eyes.
a How many legs for:

6 aliens?
$6 \times \square=\square$
b How many eyes for: 3 aliens?
$\square \times \square=\square$

4 aliens?
$4 \times \square=\square$
c How many fingers on one hand for:

9 aliens?

5 aliens?

19

Multiplication facts - 3 times table
4 Label the number line so it goes up in 3s:

5 Write two turnaround facts for each array. The first one has been done for you.

b

C

\square

d

e

\square
\square
\square

\square
\square
\square

SERIES

Multiplication facts - multiples

When two numbers are multiplied together, the answer is called a multiple.
For example, the first 3 multiples of 5 are 5, 10, 15.
$1 \times 5=5$
$2 \times 5=10$
$3 \times 5=15$

1. Complete the list of multiples for each number in the circle:
a

2	4										

b

4	8										

c

8	16										

d

3	6		

1
I

2 In each group of multiples, cross out the number that does not belong. You will need to look carefully, because they are not in order.
a Multiples of 5
10
20
35
40
12
b Multiples of 4
16
$8 \quad 22$
24
12
c Multiples of 8
25
16
32
40
8
(3) Use the clues to work out the multiples:
a This number is a multiple of 3 and 4 and is greater than 10 but less than 20. \square
b This number is a multiple of 5 . It is greater than 15 but less than 25 . \square
c This number is a multiple of both 4 and 8 and is a 2 -digit number less than 18. \square

Mental multiplication strategies - doubling strategy

There are many doubling number facts that make mental calculations easier if you know them by heart.

This includes numbers outside the times tables that we have been working on.
Here are 2 double facts that are handy to know:
double 20 is 40 double 15 is 30 Can you think of more?

1. List all the double facts outside of the 2 times table that you know in the space below. Here are two to start you off:
```
double 12 is 24 double 50 is 100
```

2 Complete these doubling wheels:

3 Doubling 2-digit numbers is easy if you split the digits and double each part. Complete this doubling table. The first one has been done for you.

a Double 36 $\begin{aligned} & =30 \times 2+6 \times 2 \\ & =60+12 \\ & =72 \end{aligned}$	b Double 23
c Double 19	d Double 41

Mental multiplication strategies - doubling strategy

4 The double-double strategy is when you multiply by 4. Look at double-double 2: double 2 once is 4 and double 2 twice is 8.
Practise using the double-double strategy with these tables. The first one is done for you.
a

$7 \times 4=$	
Double 7 once	14
Double 7 twice	28

b

$15 \times 4=$	
Double 15 once	
Double 15 twice	

c

$21 \times 4=\square$	
Double 21 once	
Double 21 twice	

d

$12 \times 4=\square$	
Double 12 once	
Double 12 twice	

e

$11 \times 4=$	
Double 11 once	
Double 11 twice	

f

$14 \times 4=\square$	
Double 14 once	
Double 14 twice	

5 Play this game with a partner. You will need this page each and a die to share. The aim is to be the first to place a tick above all the numbers. Double or doubledouble the number rolled on the die, then tick the answer in the table.
For example, Player 1 rolls a 4. They can either double it in order to tick 8 OR double-double it to tick 16. You must apply one of the strategies to the number rolled. If you can't tick a box, you miss a turn!

2	4	6	8	10	12	16	20	24

Mental multiplication strategies - split strategy

The split strategy is when we multiply numbers in 2 parts.

Let's use the split strategy for 12×5.
Split 12 into 10 and 2. Next multiply each part by 5 , then add:

What is 12×5 ?

$10 \times 5=50$	$2 \times 5=10$
00000	00000
00000	00000
00000	$50+10=60$
0000	
0000	so, $12 \times 5=60$
0000	
000	
0000	
0000	
0000	

1 Try the split strategy with these. Use the arrays if you get stuck.
a What is 12×7 ?

0000000

0000000

0000000
0000000
0000000
0000000
0000000
0000000

0000000 0000000

So, $12 \times 7=\square$
b What is 12×9 ?

000000000 000000000 000000000 000000000 000000000 000000000

So, $12 \times 9=$ \square

Mental multiplication strategies - split strategy

2 Practise the split strategy again, this time without an array to look at.
a What is 12×3 ?

$2 \times \square=\square$
$\square+\square=\square$
So, $12 \times 3=\square$
b What is 12×6 ?
10

$2 \times \square=\square$
$\square+\square=\square$

So, $12 \times 6=\square$
c What is 12×8 ?

$\square+\square=\square$
So, $12 \times 8=\square$

3 Use the split strategy to multiply by 13.

13 is \qquad $+$
a $13 \times 8=\square$
b $13 \times 9=\square$
c $13 \times 7=\square$
d $13 \times 5=\square$

Mental multiplication strategies - compensation strategy

Compensation is when you get or give something back. If we need to solve a multiplication that is close to an easier calculation, we can work out the simplier one, and then adjust (by giving back a multiple) to find the answer. This is the compensation strategy.
Look at 3×19. 19 is close to 20 , so we can multiply by the next multiple of ten which is 20 . Then we build down because we have an extra group of 3 .

$$
\begin{aligned}
& 3 \times 19 \longrightarrow 3 \times 20=60-3 \\
& \text { So, } 3 \times 19=57
\end{aligned}
$$

1. When you are multiplying by a multiple of ten, look for a fact you know then put a zero on the end. These patterns show you how to do this:
a $3 \times 2=\square$
b $5 \times 3=\square$
$3 \times 20=\square$
$5 \times 30=\square$
c $7 \times 2=\square$
$7 \times 20=\square$
d $4 \times 4=\square$
$4 \times 40=\square$

2 The steps for the compensation strategy are set out for you here. Practise multiplying by the next multiple of ten and then build down.
a $5 \times 29 \longrightarrow 5 \times 30=\square-5$
So, $5 \times 29=\square$
b $3 \times 19 \longrightarrow 3 \times 20=\square-3$
So, $3 \times 19=$ \square
c $2 \times 39 \longrightarrow 2 \times 40=\square-2$
So, $2 \times 39=$ \square

Mental multiplication strategies - compensation strategy

3 Use the compensation strategy. This time you have to think of the next multiple of ten and what you have to build down by. The first one has been done for you.
a $3 \times 39 \longrightarrow 3 \times 40=120-3$

$$
\text { So, } 3 \times 39=117
$$

b $4 \times 29 \longrightarrow 4 \times \square=\square-\square$
So, $4 \times 29=\square$
c $6 \times 19 \longrightarrow 6 \times \square=\square-\square$
So, $6 \times 19=\square$
d $5 \times 59 \longrightarrow 5 \times \square$ \square
\square

So, $5 \times 59=\square$

4 Roll a die to make your own multiplication questions. Choose the compensation strategy for one column and the split strategy for the other.

a

b \square $\times 39=$ \square
c \square $\times 19=$ \square

Which strategy did you use and why?
a \square $\times 13=$ \square
b \square $\times 12=$ \square
C \square $\times 13=$ \square

Which strategy did you use and why?

Mental multiplication strategies - word and missing number problems

1. Can you find the missing numbers in these multiplications?
a $5 \times \square=40$
b $4 \times \square=28$
c
 $9=18$
$d \square \times 7=40$
e \square $\times \quad 11=22$
f $20 \times$ \square $=100$

2 Solve these multiplication problems. Think carefully about which strategy to use.

a Mike loves cycling. He cycles 3 km to work and back every day. How far does he cycle in 1 week? \square
b Ben is collecting badges, but he has only just started. He has 9 so far. His brother Tom has 8 times that number. How many does Tom have?

c Tamsin wants to buy doughnuts for her many friends at school. The doughnuts come in packs of 4 . If she
 buys 19 packets she will have exactly the right number. How many friends does she have?

d Sarah, Xavier and Selena are going on a picnic. They call take mini packets of chocolate biscuits. There are 3 biscuits in each packet. Sarah takes 1 packet, Xavier takes double that number, and Selena takes double the number that Xavier takes.
How many biscuits do they have altogether?

Division is when we share fairly. If we share these 6 cakes equally between 2 kids, they each get 3 cakes. We call these fair shares because each share is equal.

1) Share the items equally in each picture by drawing lines to connect them. Write how many are in each share.
a Share these 16 ice creams between 4 kids.
4 equal shares $=$ \qquad each

b Share these 18 pencils between 6 pots.
6 equal shares $=$ \qquad each

c Share these 9 eggs between 3 baskets.
3 equal shares $=$ \qquad each

29

Division - grouping

Division is also when we make equal groups.
Here are 10 toffee apples. How many bags do we need if we put 2 in each bag?

If we circle 2 toffee apples in each group, we can make 5 groups. So, we need 5 bags.

1 Circle equal groups in each picture and write how many are in each share:
a * W W W W W W W W

Out of 9 strawberries, how many groups are there if there are 3 in each group? \square

Out of 36 fish, how many groups are there if there are 6 in each group?
b

Out of 16 paper clips, how many groups are there if there are 4 in each group? \square

Out of 24 flowers, how many groups are there if there are 4 in each group? \square

2 Draw a picture to show 7 groups with 5 in each share.

How many in total?
\square

Division - the division symbol

This is the division symbol \div.
So instead of saying 'Share 12 tennis balls fairly between 2 tennis players. How many balls do they each get?'

We can write: $\quad 12 \div 2=6$
This says 12 divided by 2 is 6 .

It means that there are 2 groups of 6 .

1 Write the division facts using the division symbol for each picture:
a 10 divided by 5
\square

b 18 divided by 3

c 24 divided by 4

2 Solve each of these division problems:
a Share 15 lollies between 3 bowls. How many lollies are in each bowl?

b Share 20 oranges between 5 baskets. How many are in each basket?

c Out of a pile of 48 coloured pencils, 8 go into each pot. How many pots are needed? \square

Division - linking multiplication and division facts

Knowing multiplication facts will help with division facts as they are inverse operations.

$$
6 \times 4=24
$$

6 rows of 4 is 24 .
$24 \div 4=6$
24 divided into 4 shares is 6 .

1 Describe each of these arrays using one multiplication and one division fact:
a

\square $\times 4=$
12
12
b
30

100
1000
1000 \square $\times 4=$ 16
$16 \div 4=\square$

2 This time, you are given part of the array. Complete the array and then write one multiplication and one division fact that matches:
a

b

C

\square

Division - linking multiplication and division facts

3 Play this memory game with a partner. The aim of this game is to find pairs of matching multiplication and division facts. Each player needs a copy of this page and to cut out their cards. Players join their cards together, shuffle and lay them face down. Take turns in turning over a

$4>4$

$$
16 \div 4
$$ they must be placed back in the sa

with the most pairs.

Division - word and missing number problems

1. Can you find the missing numbers in these divisions?
a $16 \div \square=4$
b $18 \div \square=6$
c $\square \div 8=3$
$d \div 5=7$
$\mathbf{e} \square \div 2=9$
f $20 \div \square=5$

2 Solve these division problems.

a Joe does the same number of push-ups every day to stay fit. After 4 days he has done 36 push-ups.
How many push-ups does he do each day?

b I have some bikes in my garage. There are 12 wheels altogether. How many bikes do I have?

c

There is a tank of octopuses at the aquarium. In total there are 24 legs in the tank.

How many octopuses are there?

d Charlie has bought some sweets to share between his 3 friends. He has 27 sweets.

How many sweets does each friend get if they are shared fairly?

e Jon has 55 p in his pocket. All the coins are silver and they all have the same value. How many coins are there?

Patterns and functions - counting

Counting is a good skill to have because you can see number patterns more easily which makes you better at maths. You can also count things much faster!
This is a counting pattern of 2 on a hundred square.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1. Colour the counting pattern on each hundred square:
a Show the 5 s pattern.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

b Show the 10s pattern.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

c What do you notice?

2 Complete these counting patterns:

3 Count the ice creams. How many are there?

Patterns and functions - counting

4 Colour the counting pattern on each hundred square:
a Show the 3s pattern.
b Show the 4s pattern.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

5 Complete the missing numbers in these counting patterns:

a36 27 24 12 20 24 36 40
c50 46 44 38
d 27
d

6 How many objects altogether? Count in groups.
a How many candles?

b How many legs?

Multiplication and Division

Patterns and functions - function machines

This is a function machine.
Numbers go in, have the rule applied, and come out again.

1 What number will come out of these function machines?
a

b

2 Write the rule on these function machines:
a 27

b

3 What number will go in to these function machines?

b

4 Select a number to go in to these function machines. Then calculate a number that will come out.
a

b

\square

Patterns and functions - number patterns in tables

When we use number patterns in tables it can help us to predict what comes next. Look at the table below. Once we work out how the pattern works, we can predict the total number of feet for any amount of pupils.
This table shows us that when there is 1 child there are 2 feet.
When there are 2 children there are 4 feet and so on.
We can see that the rule for the pattern is to multiply the top row by 2 to get the bottom row each time.

Number of children	1	2	3	4	5	20
Number of feet	2	4	6	8	10	40

To find out how many feet 20 children would have, we don't need to extend the table, we can just apply the rule.

1) Try these number pattern tables.

At a party, one child receives 3 chocolates. Complete the table to show how many chocolates different numbers of students receive. Show how many 20 receive.

Number of children	1	2	3	4	5	20
Number of chocolates	3					

2 Alfred is a type of alien from the Planet Trampolon. The surface of Planet Trampolon is like walking on a trampoline. That is why Alfred and all his race of aliens need 3 legs - for extra balance. They also have 2 antennae and 4 fingers on each hand. Complete the number pattern tables to show the number of different body parts for different amounts of aliens.
a

Number of aliens	1	2	3	4	20
Number of antennae	2				

b

Number of aliens	1	2	3	4	20
Number of fingers on each hand	4				

c

Number of aliens	1	2	3	4	20
Number of legs	3				

Patterns and functions - growing shape patterns

Let's look at this growing pattern:

1 butterfly uses 2 hexagons.

2 butterflies use 4 hexagons.

3 butterflies use 6 hexagons.

How many hexagons would 10 butterflies use?
There is a way we can do this without using pattern blocks.
We just look for a pattern. The pattern is that you need to double the amount of hexagons for each butterfly. So for 10 butterflies, you would need 20 hexagons.

1 Here are some pictures made from shapes.
a Fill in the blanks for each part of the pattern and draw what comes next:

1 ant uses

2 ants use
\qquad circles.
\qquad

3 ants use 3 circles. \qquad circles. .
\qquad
\qquad ants use
 circles.
b How many circles would you use for 10 ants? \qquad
c The first fish is made up of 5 shapes. Fill in the boxes for 2 fish and 3 fish:

Patterns and functions - matchstick patterns

Number patterns in tables can help us with problems like this. Mia is making this sequence of shapes with matchsticks. How can she find out how many she needs for 10 shapes?

Shape $1 \quad$ Shape 2

Shape 3

Shape number	1	2	3	4	5	10
Number of matchsticks	3	6	9	12	15	30

To find out how many matchsticks are needed for 10 triangles, we don't need to extend the table, we can just apply the function rule:

Number of matchsticks $=$ Shape number $\times 3$

1. Complete the table for each sequence of matchstick shapes and find the number of matchsticks needed for the 10th shape.
a \quad Shape 1
Shape 2
Shape 3

Shape number	1	2	3	4	5	10
Number of matchsticks	4					

b \quad Shape 1
Shape 2
Shape 3

Shape number	1	2	3	4	5	10
Number of matchsticks	5					

c Draw the fourth shape in the sequence above:

Equations and equivalence - balanced equations using + and \times

There are 2 different equations we could write for one set of balanced scales.

$$
\begin{gathered}
\boxed{4}+\boxed{4}+\boxed{4}=\boxed{12} \\
\boxed{3} \times \boxed{4}=12
\end{gathered}
$$

1 Work out the values of the symbols in each problem.
a

$$
\square+\square=20
$$

$$
2 \times \square=20
$$

b

\square $+$ \square

$$
=32
$$

$$
2 \times 32
$$

2 This time work out which number should go in the symbol.
a

$\square+\square+\square=15$
\square

Equations and equivalence - balanced equations using + and \times

How many dots are inside each box? On one side there are 12 dots and on the other side, there are 2 boxes. Because the equation is balanced, there must be 6 in each box.

There are 2 different equations we could write for one set of balanced scales.

$\boxed{6}+\boxed{6}=12$
2×6

3 How many dots are inside each box?

4 How many dots are inside each box?

5 If there are 16 dots in these 4 cylinders, how many dots are there in 6 cylinders? Show your working.

This is a game for two players. You will need a pack of playing cards but just the cards with numbers on them. You will also need a copy of this page so you can use the table to keep score.

copy

What to do

Shuffle the cards well and deal them evenly so you each get 18 cards. Player 1 turns over two cards and finds the product by multiplying these together. Player 2 does the same. The highest answer wins the round and scores a point. Use the table below to keep track of your scores.

Player 1 Player 2	

43

Read the clues to find out the mystery number:

Getting ready

This is a game for two players. Copy this page and page 46, and then cut out all the cards.

copy

What to do

Shuffle the cards well and lay them out face down in an array in two groups. The rectangles are the questions, the squares are the answers. Players take turns turning over one of each card. If they can make a multiplication fact, the player keeps the pair. Keep playing until there are no cards left. The winner is the player with the most matching pairs.

| 4×8 | 2×9 | 7×5 | 3×3 |
| :---: | :---: | :---: | :---: | :---: |
| 6×4 | 9×3 | 4×4 | 5×8 |
| 4×5 | 8×8 | 3×5 | 8×9 |
| 8×10 | 3×4 | 4×7 | 9×5 |
| 5×5 | 8×6 | 7×2 | 5×10 |

-2
 $3 \times 73 \times 10$

$4 \times 93 \times 118 \times 7$
$=32=18=35=24=27$
$=30=20=21=15=12$
$=80=28=25=48=14$
$=72=56=40=45=33$
$=9=50=16=36=64$

This is a game for four players. Each player needs a copy of this page and 5 counters. The group needs 2 dice. Make extra copies of this page so you can play again.

copy

What to do

Choose one player to be the caller. The other players fill their grid with numbers from this list: $1,2,3,4,5,6,8,9,10,12,15,16,18$, $20,24,25,30$ and 36.

The caller rolls the dice and calls out a times table fact based on the numbers rolled. For example, if they roll a 6 and a 5 , they would say 6×5. If a player has 30 in their grid, they place a counter on the number. The winner is the first player to get rid of all their counters.

Read the problem below and use your knowledge of number patterns to solve the problem.

What to do

Harry and Tortista constantly argued over who was the faster runner out of the pair. To settle the dispute once and for all, they decided to race each other. Harry was so confident that he could beat Tortista, he gave Tortista a head start of 3 km .

If Harry runs 1 km every 3 minutes and Tortista runs 1 km every
 4 minutes, who will win the 12 km race?

Complete the table for Harry and Tortista to find out:

Harry	
km	mins
0	0
1	3
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

Tortista	
km	mins
3	0
4	4
5	
6	
7	
8	
10	
11	
12	

Getting ready

This is a game for 2 players. You will need 3 dice, this page and 12 counters each in 2 different colours.

What to do

Player 1 rolls all 3 dice, adds them together and puts this value in the first function rule. For example, if they roll a 3, 5 and 2, they should add these and get 10. They put 10 into the first rule and get $10+5=15$. Player 1 places one of their counters on 15. Then Player 2 repeats these steps.

Keep taking turns using a different function rule each time. If the answer is already taken, you lose a turn.

The winner is the first person to get rid of all their counters.

| Function Rule 1
 $\diamond+5$ | Function Rule 2
 $2 \times \odot$ |
| :---: | :---: | | Function Rule 3 |
| :---: |
| $\square-2$ |

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	1	2	3	4
5	6	7	8	9	10	11	12	13	14
15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34
35	36	1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27	28

Change the object of the game. For example, the winner might be the person who has their counters on the most even numbers.

