

2019-2020 Progress

- Several (8) SAG meetings with CalParks OHMVR Division & APCD
- PMRP revised May 2019
- First Annual Report & Work Plan (ARWP) developed May-Oct 2019
- APCD Hearing Nov 2019 -> Update of SOA
- OHV Commission Meeting Dec 2019
- Develop 2020 ARWP
- Extensive mitigation efforts, >90 acres including 48-acre foredune
- Expand monitoring efforts
 - 21 meteorology/air quality stations within ODSVRA, SODAR upper air data
 - 2019 and 2020 updated PiSWERL dust emissions surveys
 - Sediment traps, seasonal drone-based land surveying
- Update DRI dust emissions modelling (2019 emissions, local SODAR data)
- March 2020 closure of ODSVRA due to covid-19 pandemic...

2019-20 Dust Mitigation Efforts

- 2020 dust control treatments:
 - 48-acre foredune (6 treatment areas, adaptive management)
 - 40 acres seasonal wind fence + 4.4 acres permanent treatment
 - installed 89,433 plants + 677 lbs native seed into treatment areas
- Increased monitoring within ODSVRA
 - installed network of 21 meteorological stations (6 in foredune + 15 in park)
 - installed BAM instrument within dune field to assess onsite dust measurements
 - Completing additional PISWERL tests with DRI
- Assessing other sources of PM dust (Scripps and DRI)
- Focused research to assess impacts on dust levels and emissivity since Covid-19 closure
- Updating DRI model and apply results to dust control planning and implementation

Seasonal UAS Surveys

- Mapping campaigns in Oct 2019, Feb 2020, will continue bi-annually
- Produce high-resolution aerial photos @ 1.45 cm (0.6") resolution
- Create three-dimensional digital elevation models (DEMs)
- Quantify erosion-deposition patterns and volume changes
- Identify reductions in sand transport, link to changes in dust emissions
- Inform adaptive management planning and implementation

Pre-restoration foredune zone dynamics (Oct. 2019 – Feb. 2020 baseline)

Dust emissions modelling update

- According to the Stipulated Order of Abatement (SOA):
 - Target:
 - Achieve ambient air quality standards for 24-hr average PM_{10} dust concentration measured at CDF (150 μ g/m³ and 50 μ g/m³ for federal and CA, respectively)
 - Initial Target:
 - 50% reduction in PM₁₀ mass emissions (metric tonnes per day) from ODSVRA modeled with DRI Model
 - Modeling scenario:
 - Top 10 emissions days in 2013 (pre-control "baseline")

DRI Model

1. Wind Field (CALMET)

2. PM₁₀ Mass Emissivity (PI-SWERL)

PM₁₀ mass emissions (metric tons/day)

3. Dust Dispersion (LSPDM)

PM10 dust concentration (μg/m³)

Modeling scenario: Top 10 mass emissions days in 2013

Riding area PM₁₀ mass emissions
- modeled (metric tons per day)

Mean = 213.1 metric tons/day

CDF PM₁₀ concentration – observed (µg per cubic meter)

Mean = $129 \, \mu g/m^3$

Dust Control Effect on Mass Emissions

% Area Under Treatment

**16.5% Reduction in Riding Area <u>Mass</u> <u>Emissions</u> Following Spring 2020 Projects

Dust Control Effect on <u>PM₁₀ Concentration</u> at CDF

10 Highest Emisison Days (2013 winds/2013 emissions)	PM ₁₀ (μg m ⁻³)
Observed	128
Modeled Baseline	123
Modeled 2020 Controls 100% Effective	57

**53.7% Reduction in CDF PM10 Concentration Following Spring 2020 Projects

Modeling summary

- Model shows improvements in air quality (PM_{10}) at the CDF monitoring site related to control projects installed as of 2020
- Continued efforts to examine additional needs to meet air quality objectives at sensitive receptor sites

Source: DRI, 2019. Figure Notes: The red outline represents the boundary of the Oceano Dunes SVRA open riding area

Next Steps: Dust Control Treatments

- 48-acre foredune
 - Intensively monitor evolution of the 6 treatment areas
 - Monitoring will inform adaptive management for future treatment strategies
- 44.4 acres Spring 2020 controls
 - 40 acre seasonal treatment
 - 4.4 acre permanent treatment

Next Steps: DRI Model Improvements

- 1. CALMET improvements
 - assimilation of local SODAR upper air data (vs. Vandenberg AFB)
 - high-resolution modeling to address foredune topographic feedbacks
- 2. PI-SWERL improvements
 - 2020 campaign ongoing
- 3. Dispersion model improvements
 - Filter sampling at CDF to increase understanding of PM₁₀ sources

1. Wind Field (CALMET) + 2. PM₁₀ Mass Emissivity (PI-SWERL) + 3. Dust Dispersion (LSPDM)

Concluding thoughts

COVID-19 Closure Impacts

- Emissions will not have ceased in absence of OHV activity during COVID-19 closure
 - Decades of surface disturbance, long-term geological processes

Adaptive Management

- 2019 was a BIG push year with significant initiatives (foredune, plantings, increased monitoring, new modeling efforts, etc.),
 - > responses to these efforts will take time to yield benefits
- Protocols & monitoring now in place to detect responses and inform mitigations

