
 

 

Setting up the Mobile Push channel 

 

Integrating SALESmanago 
with Your Mobile App: 

iOS 

 

 

Contents 

1. Prerequisites 2 
2. SDK installation and initialization 3 
3. Mobile Push and In-App setup 5 

3.A. Managing consents 5 
3.B. Handling notifications 9 
3.C. Implementing deep links 12 

i. UIApplicationDelegate 13 
ii. UIWindowSceneDelegate 14 

4. Contact data 16 
4.A. Updating all Contact properties at once 17 
4.B. Updating basic Contact data 20 
4.C. Updating Email Marketing and Mobile Marketing consent status 21 
4.D. Updating custom consents 22 
4.E. Adding and removing Contact tags 23 
4.F. Data field specification 24 

5. Adding events 27 

 



 

 

1. Prerequisites 

When integrating your mobile app with SALESmanago, bear in mind the following 
requirements: 

● Minimum supported OS Version: The minimum iOS version supported by the 
SALESmanago SDK is iOS 15.0 (available for iPhone versions 6s and above). 

● Permissions: To be able to send notifications to your app users, you need two types of 
permissions, both of which must be requested by your app: 

○ System permission 
○ Marketing consent 

The status of these two permissions must be transferred to SALESmanago (for more 
details, see Section 3 below). 

 

NOTE: Currently, there is no option to reassign a device to a different Contact (different 
email address). 

EXAMPLE: After using a development version of your mobile app, you want to test 
notifications for a different user. The execution of the updateUserProperties or 
updateUserContactData methods with a different email address will not assign the device to 
the new email address. 

 

 

 

 

2 



 

 

2. SDK installation and initialization 

You can install the SALESmanago SDK for the Mobile Push channel in two ways: 

● Automatically (using Swift Package Manager) – Add the following link: 

https://bitbucket.org/benhauerdev/salesmanago-mobile-push-sdk-ios.git 

to your Xcode project settings, in Package Dependencies. 

● Manually: 

1. Download SalesmanagoSDK.xcframework from the SALESmanago repository: 
https://bitbucket.org/benhauerdev/salesmanago-mobile-push-sdk-ios/src/main 

2. In your Xcode project’s editor, select the app target and open the General tab. 

3. Expand the Frameworks, Libraries, and Embedded Content section. 

4. Click the add button (+), select Add Other, and then Add Files to locate your static 
framework. Click Open. 

5. Choose the Embed & Sign option from the Embed value list for the static 
framework. 

  

 

To initialize the SALESmanago SDK, call the initialize() method,  passing the 
SALESmanago API key. This method must be called at the app's startup, usually in the 
configurationForConnecting method of the AppDelegate class. 

The required API key can be generated in SALESmanago (Menu > Channels > Mobile Push > 
Settings > Integration settings > API keys tab). 

 

 

3 

https://bitbucket.org/benhauerdev/salesmanago-mobile-push-sdk-ios.git


Unset

Unset

 
 

Swift 
 

import UIKit 
import SalesmanagoSDK 
 
func application( 
    _ application: UIApplication, 
    configurationForConnecting connectingSceneSession: UISceneSession, 
    options: UIScene.ConnectionOptions 
) -> UISceneConfiguration 
    Salesmanago.initialize(apiKey: <SALESmanago API key>) 
} 

 
 
 
Objective-C 
 

#import <UIKit/UIKit.h> 
#import <SalesmanagoSDK/SalesmanagoSDK-Swift.h> 
 
- (UISceneConfiguration *)application:(UIApplication *)application 
configurationForConnectingSceneSession:(UISceneSession 
*)connectingSceneSession options:(UISceneConnectionOptions *)options 
{ 
    [Salesmanago initializeWithApiKey:<SALESmanago API key>]; 
} 

 

 

4 



 

 

3. Mobile Push and In-App setup 

Push notifications are sent using the Apple Push Notification service (APNs). 

 

3.A. Managing consents 

SALESmanago expects your application to transfer two distinct permissions for Push 
notifications: system permission and marketing consent. This configuration must be 
performed within the mobile app’s code. 

NOTE: 

● The order in which these permissions are requested is not important and totally up to 
you. However, users who have already granted marketing consent may be more likely 
to give system permission as well. 

● The system permission status is transferred together with the marketing consent, 
using the Salesmanago.updateMobilePushOptIn method. 

 
 
System permission 

Your application must request system permission to display notifications. The moment the 
permission request is shown to the user can be configured in the app’s code. 

If a user dismisses the permission request, no information is transferred to SALESmanago or 
iOS and the request can be shown to this user again. 

If a user denies the permission request, it cannot be shown to this user again. 

The status of the system permission is transferred to SALESmanago together with the 
current status of the marketing consent, using the Salesmanago.updateMobilePushOptIn 
method.  

If a user denies the request, you can still try to obtain the permission by encouraging them to 
change the device’s notification settings for your app. The mobile app can be configured to 
open the iOS notification settings. Once the user returns to the application, use the 
updateMobilePushOptIn or sendDeviceTokenData methods to update the permission 
status. Both methods are provided below. 

 

5 



Unset

Unset

 
 

Swift 

import UserNotifications 
import UIKit 
 
... 
 
let granted = try await UNUserNotificationCenter 
    .current() 
    .requestAuthorization( 
    options: UNAuthorizationOptions(arrayLiteral: .alert, .badge, .sound) 
    ) 
     
if granted { 
    UIApplication.shared.registerForRemoteNotifications() 
} 

 
 
 
Objective-C 

#import <UserNotifications/UserNotifications.h> 
#import <UIKit/UIKit.h> 
 
... 
 
[[UNUserNotificationCenter currentNotificationCenter] 
requestAuthorizationWithOptions:(UNAuthorizationOptionBadge | 
UNAuthorizationOptionSound | UNAuthorizationOptionAlert) 
completionHandler:^(BOOL granted, NSError * _Nullable error) { 
    if (granted) { 
        [[UIApplication sharedApplication] registerForRemoteNotifications]; 
    } 
}]; 

 

6 



Unset

Unset

 
 

In the didRegisterForRemoteNotificationsWithDeviceToken function of the 
UIApplicationDelegate protocol, call the sendDeviceTokenData method: 
 
 
Swift 

func application( 
    _ application: UIApplication, 
    didRegisterForRemoteNotificationsWithDeviceToken deviceToken: Data 
) { 
    Salesmanago.sendDeviceTokenData(deviceToken) 
} 

 

Objective-C 

- (void)application:(UIApplication *)app 
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken 
{ 
    [Salesmanago sendDeviceTokenData:deviceToken]; 
} 

 
 

 

 

7 



Unset

Unset

 
 

Marketing consent  

In addition to system permission, SALESmanago requires obtaining marketing consent for 
displaying Mobile Push and In-App notifications. The way this consent is acquired (for 
example, its format, appearance, and display time) is fully configurable on your side. 

The marketing consent request can be shown to the same user multiple times. Its status 
should be transferred to SALESmanago for both Contacts and anonymous app users, using 
the updateMobilePushOptIn method. 

NOTE: 

● The system permission status is transferred along with the marketing consent status, 
using the same method – updateMobilePushOptIn. 

● If you plan to display the marketing consent as a pop-up and want to prevent it from 
reappearing after consent has been given, ensure that the information about its 
acceptance (consent status: GRANTED) is stored by your mobile app. This must be 
configured on your side. 

 

Swift 

Salesmanago.updateMobilePushOptIn(.granted) 

 
 

Objective-C 

[Salesmanago updateMobilePushOptIn:OptInOptionGranted]; 

 

 

8 



Unset

Unset

 
 

3.B. Handling notifications 

Implement the methods below to ensure that your notifications work as intended. 

 

Push notifications 

If your mobile app is currently not opened, clicking a link in a notification should launch the 
app. The methods provided below allow the transferring of data from that notification to 
SALESmanago. 

If your application uses only the UIApplicationDelegate protocol and no 
UIWindowSceneDelegate protocol, implement the following method: 

 
Swift 

func application( 
    _ application: UIApplication, 
    didFinishLaunchingWithOptions launchOptions: 
[UIApplication.LaunchOptionsKey: Any]? = nil 
) -> Bool { 
    Salesmanago.application(didFinishLaunchingWithOptions: launchOptions) 
    return true 
} 

 

Objective-C 

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary<UIApplicationLaunchOptionsKey,id
> *)launchOptions 
{ 
    [Salesmanago 
applicationWithDidFinishLaunchingWithOptions:launchOptions]; 
    return YES; 
} 

 

9 



Unset

Unset

 
 

If your application uses the UIWindowSceneDelegate protocol, implement the following 
method: 

 
Swift 

func scene( 
    _ scene: UIScene, 
    willConnectTo session: UISceneSession, 
    options connectionOptions: UIScene.ConnectionOptions 
) { 
    Salesmanago.scene(willConnectWithOptions: connectionOptions) 
} 

 

Objective-C 

- (void)scene:(UIScene *)scene willConnectToSession:(UISceneSession 
*)session options:(UISceneConnectionOptions *)connectionOptions 
{ 
    [Salesmanago sceneWithWillConnectWithOptions:connectionOptions]; 
} 

 

10 



Unset

Unset

 
 

In-App notifications 

InApp notifications are sent with the apns-push-type header set to background. To enable 
the handling of In-App notifications by your mobile app, implement the 
didReceiveRemoteNotification method in the UIApplicationDelegate protocol: 

 
Swift 

func application( 
    _ application: UIApplication, 
    didReceiveRemoteNotification userInfo: [AnyHashable: Any], 
    fetchCompletionHandler completionHandler: @escaping 
(UIBackgroundFetchResult) -> Void 
) { 
    Salesmanago.didReceiveRemoteNotification(userInfo: userInfo) 
    completionHandler(.noData) 
} 

 

Objective-C 

- (void)application:(UIApplication *)application 
didReceiveRemoteNotification:(NSDictionary *)userInfo 
fetchCompletionHandler:(void (^)(UIBackgroundFetchResult))completionHandler 
{ 
    [Salesmanago didReceiveRemoteNotificationWithUserInfo:userInfo]; 
    completionHandler(UIBackgroundFetchResultNoData); 
} 

 

 

11 



 
 

3.C. Implementing deep links 

Unlike standard links that lead to webpages, deep links redirect users to specific locations 
within your application (for example, a product view). If you want to use deep links in your 
Mobile Push and/or In-App notifications, you need to register one or more URL schemes in 
Xcode. 

Read more in Apple’s documentation >> 

 

URL scheme registration 

1. Open the Info tab of your project settings. 

2. In the URL Types section, declare all URL schemes supported by your app. Click the 
plus button and provide the required details. 

● The identifier is your mobile app’s bundle ID (also used when integrating 
SALESmanago with iOS). 

● The URL scheme must be unique. To ensure that your URL scheme is unique, 
we recommend using your brand or application name in it, for example: 
benhauer-salesmanago. 

 

After registering at least one URL scheme, implement the deep link handling method(s) 
provided below, depending on the protocol you use. 

 

 

12 

https://developer.apple.com/documentation/xcode/defining-a-custom-url-scheme-for-your-app


Unset

Unset

 
 

i. UIApplicationDelegate 

If your application uses only the UIApplicationDelegate protocol and no 
UIWindowSceneDelegate protocol, you need to implement one UIApplicationDelegate 
method for handling deep links: 

 
Swift 

func application( 
    _ app: UIApplication, 
    open url: URL, 
    options: [UIApplication.OpenURLOptionsKey: Any] = [:] 
) -> Bool { 
    // Handle `url` 
    return true 
} 

 
 

Objective-C 

- (BOOL)application:(UIApplication *)app openURL:(NSURL *)url 
options:(NSDictionary<UIApplicationOpenURLOptionsKey, id> *)options 
{ 
    if (url) { 
    // Handle `url` 
    } 
} 

 

 

13 



Unset

 
 

ii. UIWindowSceneDelegate 

If your application uses the UIWindowSceneDelegate protocol, you need to implement two 
UIWindowSceneDelegate methods for handling deep links. 

 
 
Swift 

func scene( 
    _ scene: UIScene, 
    willConnectTo session: UISceneSession, 
    options connectionOptions: UIScene.ConnectionOptions 
) { 
    windowScene = scene as? UIWindowScene 
 
    if let url: URL = connectionOptions.urlContexts.first?.url { 
    // Handle `url` 
    } 
} 
 
func scene( 
    _ scene: UIScene, 
    openURLContexts urlContexts: Set<UIOpenURLContext> 
) { 
    if let url: URL = urlContexts.first?.url { 
    // Handle `url` 
    } 
} 

 
 

14 



Unset

 
 

Objective-C 

- (void)scene:(UIScene *)scene willConnectToSession:(UISceneSession 
*)session options:(UISceneConnectionOptions *)connectionOptions 
{ 
    NSURL *url = connectionOptions.URLContexts.allObjects.firstObject.URL; 
    if (url) { 
    // Handle `url` 
    } 
} 
 
- (void)scene:(UIScene *)scene openURLContexts:(NSSet<UIOpenURLContext *> 
*)URLContexts 
{ 
    NSURL *url = URLContexts.allObjects.firstObject.URL; 
    if (url) { 
    // Handle `url` 
    } 
} 

 

 

 

15 



 

 

4. Contact data 

The main entity in SALESmanago is a “Contact”. A Contact represents a 
customer/user/website visitor who has provided their email address (the email address is 
required to create a “Contact Card”). 

Contacts can be described using a number of properties (“Contact data”) useful for various 
marketing activities, including personalization, segmentation, and targeting. This section 
describes a number of methods that can be used to transfer Contact data from your mobile 
app to SALESmanago. 

NOTE: When transferring Contact data, the only mandatory field is the email address. If the 
email address is not transferred, SALESmanago can only store the system permission and 
the marketing consent described in Section 3.B. above, and the app user is considered 
anonymous. 

The following Contact properties can be transferred via the SALESmanago SDK: 

● Contact data: name, email address, phone number, standard details (see Sections 4.A 
and 4.B below) 

● Marketing consents: 

○ Mobile Push and In-App consent (see Section 3 above) 
○ Email Marketing consent (see Section 4.C below) 
○ Mobile Marketing consent (see Section 4.C below) 

● Custom consents (see Section 4.D below) 

● Contact tags (see Section 4.E below) 

The respective data fields available in the SALESmanago SDK are described in the table in 
Section 4.F. 

The SDK enum class OptInOption represents the possible statuses for both marketing 
consents and custom consents: 

● GRANTED—Contact has given the consent. 

● DENIED—Contact has not given or has withdrawn the consent. 

● NO_ANSWER—Contact has neither given nor rejected the consent. The current status 
will remain unchanged. If there is no status yet, the status will be set to DENIED. 

16 



Unset

 
 

4.A. Updating all Contact properties at once 

Use the Salesmanago.updateUserProperties method to update multiple types of Contact 
properties at once. 

All properties are optional. If you do not want to transfer any of them, use named parameters 
in Swift or set these parameters to nil in Objective-C. However, the first time you want to 
transfer Contact data, you need to include the email address (required to create a Contact 
Card in SALESmanago). 

 

Swift 

Salesmanago.updateUserProperties( 
    contactData: UserContactData( 
    name: "John Doe", 
    email: "john.doe@email.com", 
    phone: "+44123456789", 
    standardDetails: [ 
        "ecoprogrammember": "yes", 
        "size": "XL", 
    ] 
    ), 
    marketingConsents: MarketingConsents( 
    email: .granted, 
    mobile: .noAnswer 
    ), 
    additionalConsents: [ 
    AdditionalConsent( 
        name: "custom consent", 
        status: .granted 
    ) 
    ], 
    tagsToAdd: ["tag_to_add"], 
    tagsToRemove: ["tag_to_remove"] 
) 

 
 

17 



Unset

 
 
 
Objective-C 

 
[Salesmanago updateUserPropertiesWithContactData:[[UserContactData alloc] 
        initWithName:@"John Doe" 
        email:@"john.doe@email.com" 
        phone:@"48123456789", 
        standardDetails: @[ 
            @"ecoprogrammember": @"yes", 
            @"size": @"XL" 
        ]] 
    marketingConsents:[[MarketingConsent alloc] 
        initWithEmail: OptInOptionDenied 
        mobile: OptInOptionGranted 
        monitoring: OptInOptionNoAnswer //Website monitoring* 
    ] 
    additionalConsents:@[[[AdditionalConsent alloc] 
        initWithName:@"custom consent" 
        status:OptInOptionDenied] 
    ] 
    tagsToAdd:@[@"tagsToAdd"] 
    tagsToRemove:@[@"tagsToRemove"] 
]; 

*This field, corresponding to the user’s consent to website monitoring (the storage of a SALESmanago 
cookie in their browser), may be removed from the SDK after the beta phase. 

 

18 



 
 
 
 
 
 
 
 
 
 

 

To ensure compatibility with the SDK for Android, SALESmanago provides 

you with additional methods for updating only specific types of Contact 

properties (Sections 4.B–4.E). Additionally, these methods allow you to 

avoid writing lengthy code blocks with nil parameters in Objective-C. 

 

 

 

19 



Unset

Unset

 
 

4.B. Updating basic Contact data 

You can use a dedicated method to add or edit only basic Contact properties: name, address, 
phone number, and standard details.  

Additionally, this method passes the email address, meaning it can be used to create new 
Contacts. However, the email address cannot be edited using this method. If you provide a 
different email address when updating Contact data, this field will be ignored. 

To update a Contact’s email address, use the contact/upsert method >>.  

 

Swift 

Salesmanago.updateUserContactData( 
    name: "John Doe", 
    email: "john.doe@email.com", 
    phone: "+48123456789", 
    standardDetails: [ 
    "ecoprogrammember": "yes", 
    "size": "XL", 
    ] 
) 

 
Objective-C 

[Salesmanago updateUserContactDataWithName:@"John Doe 
    email:@"john.doe@email.com" 
    phone:@"+48123456789", 
    standardDetails: @[ 
        @"ecoprogrammember": @"yes", 
        @"size": @"XL" 
    ] 
]; 

 
 

20 

https://docs.salesmanago.com/#adding-a-new-contact-or-modifying-the-existing-contact


Unset

Unset

 
 

4.C. Updating Email Marketing and Mobile Marketing consent status 

The Email Marketing consent is required to send marketing emails (newsletter) to your 
Contacts. 

The Mobile Marketing consent is required to send marketing text messages (SMS, 
WhatsApp, Viber) to your Contacts. 

Both these consent types can be requested via your mobile app and transferred to 
SALESmanago. 

NOTE: This method can only be used for Contacts, i.e., after the user’s email address has 
been transferred to SALESmanago using the Salesmanago.updateUserProperties or  
Salesmanago.updateUserContactData method. 

 

Swift 

Salesmanago.updateUserMarketingConsents( 
    email: .granted, 
    mobile: .granted 
) 

 
 
Objective-C 

[Salesmanago updateUserMarketingConsentsWithEmail:OptInOptionGranted 
    mobile:OptInOptionGranted 
    monitoring:OptInOptionGranted //Website monitoring* 
]; 

*This field, corresponding to the user’s consent to website monitoring (the storage of a SALESmanago 
cookie in their browser), may be removed from the SDK after the beta phase. 

 

21 



Unset

Unset

 
 

4.D. Updating custom consents 

Custom consents are consents other than marketing consents (for example, consent to the 
processing for personal data for the purposes of an agreement). They are defined individually 
by each SALESmanago Client. 

Custom consents are created and managed in Menu → Audiences → Contacts → Custom 
consents. 

NOTE: This method can only be used for Contacts, i.e., after the user’s email address has 
been transferred to SALESmanago using the Salesmanago.updateUserProperties or  
Salesmanago.updateUserContactData method. 

 

Swift 

Salesmanago.updateUserAdditionalConsents([ 
    AdditionalConsent( 
    name: "Demo custom consent", 
    status: .granted 
    ) 
]) 

 
Objective-C 

[Salesmanago updateUserAdditionalConsents:@[ 
    [[AdditionalConsent alloc] initWithName:@"Demo custom consent" 
        status: OptInOptionGranted 
    ] 
]]; 

 
 

22 



Unset

Unset

 
 

4.E. Adding and removing Contact tags 

Tags are labels assigned to Contacts to enable their segmentation and precise targeting. 

Tags can only consist of letters, digits, underscores (_), and dashes (-). Spaces will be 
converted to underscores. The minimum length is 3 characters, and the maximum length is 
255 characters. 

NOTE: This method can only be used for Contacts, i.e., after the user’s email address has 
been transferred to SALESmanago using the Salesmanago.updateUserProperties or  
Salesmanago.updateUserContactData method. 

 

Swift 

Salesmanago.addTags(["only_tag_to_add"]) 
Salesmanago.removeTags(["only_tag_to_remove"]) 

 
Objective-C 

[Salesmanago addTags: @[@"only_tag_to_add"]]; 
[Salesmanago addTags: @[@"only_tag_to_remove"]]; 

 
 

 

23 



 
 

4.F. Data field specification 

The data fields available in the SALESmanago SDK are described in the table below. 

The same fields are used in all five methods for transferring Contact properties (Sections 
4.A–4.E above). 

 
Fields available in SALESmanago SDK 

 

Object Field Limits Description 

contactData 
 
 

email RFC882 Required to create a Contact Card 
and store Contact data in 
SALESmanago. 
App users who have not provided 
an email address are referred to 
as “anonymous” and the only data 
that can be stored for them is 
system permission status and 
marketing consent status. 

name 255 Contact’s name, for example, first 
and last name. 

phone 255 

Only digits 
and plus 
character 

Contact’s phone number. It should 
start with + followed by the 
country code. 

standardDe

tails 
(object) 
 

16x255 Object containing key-value pairs. 
Standard details can be used to 
store additional information about 
Contacts. 

marketingConsents emailOptIn SDK enum 
class 
OptInOption  

Email Marketing consent status: 

● GRANTED—Contact has given 
the consent. 

● DENIED—Contact has not 
given or has withdrawn the 

24 



 

consent. 

● NO_ANSWER—Contact has 
neither given nor rejected the 
consent. The current status 
will remain unchanged. If 
there is no status yet, the 
status will be set to DENIED. 

mobileOptI

n 
 

SDK enum 
class 
OptInOption  

Mobile Marketing consent status: 

● GRANTED—Contact has given 
the consent. 

● DENIED—Contact has not 
given or has withdrawn the 
consent. 

● NO_ANSWER—Contact has 
neither given nor rejected the 
consent. The current status 
will remain unchanged. If 
there is no status yet, the 
status will be set to DENIED. 

 

additionalConsents array of 
objects 

255 

SDK enum 
class 
OptInOption  

Array of objects containing the 
name of a custom consent and its 
status: 

● GRANTED—Contact has given 
the consent. 

● DENIED—Contact has not 
given or has withdrawn the 
consent. 

● NO_ANSWER—Contact has 
neither given nor rejected the 
consent. The current status 
will remain unchanged. If 
there is no status yet, the 
status will be set to DENIED. 

 
Custom consents can be created 
in Menu → Audiences → Contacts 
→ Custom consents. 

25 



 

tagsToAdd array 3-255 per tag 

a-zA-Z0-9_ 
and - 

Max. 16 tags 
per request 

Array of tags to be assigned to the 
Contact. Use ASCII characters 
only. 

tagsToRemove 
 

array 3-255 per tag 

a-zA-Z0-9_ 
and - 

Max. 16 tags 
per request 

Array of tags to be removed from 
the Contact. Use ASCII characters 
only. 
 
NOTE: Tags present in both the 
addTags and removeTags arrays 
will be removed only. In that event, 
Automation Processes based on 
assigning a tag or increasing a tag 
scoring will not be triggered. 

 
 

 

 

26 



Unset

Unset

 

 

5. Adding events 

The SALESmanago SDK enables tracking user activity by transferring predefined events to 
SALESmanago. The events are recorded for both Contacts and anonymous app users. 

EventType is an SDK enum class representing the possible event types. At present, the 
following event types are available: 

● LOGIN—Occurs when the user logs in to your mobile app. 

 

Swift 

Salesmanago.addEvent(EventType.LOGIN) 

 
 
Objective-C 

[Salesmanago addEventWithEventType: EventTypeLogin]; 

 
 

 

 

If you have any questions or doubts concerning the configuration of 
the Mobile Push channel, or if you would like to have your setup 

verified by our Support specialist, please contact us at: 

support@salesmanago.com 

 

27 


	 
	1. Prerequisites 
	 
	 
	 
	2. SDK installation and initialization 
	 
	 
	3. Mobile Push and In-App setup 
	3.A. Managing consents 
	 
	 
	 
	3.B. Handling notifications 

	 
	 
	 
	 
	3.C. Implementing deep links 
	 
	 
	i. UIApplicationDelegate 
	 
	 
	ii. UIWindowSceneDelegate 


	 
	4. Contact data 
	 
	4.A. Updating all Contact properties at once 
	 
	 
	 
	4.B. Updating basic Contact data 
	 
	 
	4.C. Updating Email Marketing and Mobile Marketing consent status 
	 
	 
	4.D. Updating custom consents 
	 
	 
	4.E. Adding and removing Contact tags 

	 
	 
	 
	 
	4.F. Data field specification 
	 
	5. Adding events 


