

Setting up the Mobile Push channel

Integrating SALESmanago
with Your Mobile App:

REACT NATIVE

Contents

1. Prerequisites​ 2
2. SDK installation and initialization​ 3
3. Mobile Push and In-App setup​ 4

3.A. Android: Connecting SALESmanago to Firebase​ 4
3.B. Android: Handling In-App notifications​ 6
3.C. iOS: Handling In-App notifications​ 7
3.D. Deep links​ 8

4. Managing consents​ 11
5. Contact data​ 13

5.A. Updating all Contact properties at once​ 14
5.B. Updating basic Contact data​ 16
5.C. Updating Email Marketing and Mobile Marketing consent status​ 17
5.D. Updating custom consents​ 18
5.E. Adding and removing Contact tags​ 19
5.F. Data field specification​ 20

6. Adding events​ 23

1. Prerequisites

When integrating your mobile app with SALESmanago, bear in mind the following
requirements:

●​ Minimum supported versions:

○​ Android: min. 7.0 Nougat (API level 24)
○​ iOS: min. 15.0 (iPhone versions 6s and above)
○​ React Native: min. 0.68.0

●​ Supported React Native architectures:

○​ Old architecture: YES
○​ New architecture (Fabric): YES

●​ Permissions: To be able to send notifications to your app users, you need two types of
permissions, both of which must be requested by your app:

○​ System permission (all iOS versions, for Android – versions 13 [API level 33]
and above)

○​ Marketing consent

The status of these two permissions must be transferred to SALESmanago (for more
details, see Section 4 below).

NOTE: Currently, there is no option to reassign a device to a different Contact (different
email address).

EXAMPLE: After using a development version of your mobile app, you want to test
notifications for a different user. The execution of the
Salesmanago.updateContactProperties or Salesmanago.updateContactData methods
with a different email address will not assign the device to the new email address.

2

Unset

Unset

2. SDK installation and initialization

To install the @salesmanago/mobile-push-sdk-react-native library, execute the following
methods:

 # using npm
 npm install @salesmanago/mobile-push-sdk-react-native

 # OR using Yarn
 yarn add @salesmanago/mobile-push-sdk-react-native

To initialize the SALESmanago SDK, call the init() method, which passes the
applicationContext object and SALESmanago API key. This method must be called at the
app's startup.

The required API key can be generated in SALESmanago (Menu > Channels > Mobile Push >
Settings > Integration settings > API keys tab).

import { Salesmanago } from '@salesmanago/mobile-push-sdk-react-native';

Salesmanago.init(<API key>)

3

3. Mobile Push and In-App setup

Push notifications are sent via Firebase Cloud Messaging on Android and the Apple Push
Notification service (APNs) on iOS. To ensure that your notifications function as intended,
perform the configuration steps described below.

3.A. Android: Connecting SALESmanago to Firebase

To integrate SALESmanago with your mobile app, include your google-services.json file
(required to initialize the SALESmanago SDK) in the app-level root directory.

To obtain the google-services.json file:

1.​ Open the Firebase Console and select your project.
2.​ Click the gear icon next to Project Overview and select Project Settings.
3.​ Scroll down to the Your apps section, select your Android app, and click the download

button for the google-services.json file.

Note that you can also obtain your Android app's config file via REST API
(projects.androidApps.getConfig >>).

Place the downloaded JSON file in the app-level directory of your app. Make sure that you
only have the most recently downloaded config file in your app.

4

https://firebase.google.com/docs/reference/firebase-management/rest/v1beta1/projects.androidApps/getConfig

Unset

Unset

At this stage, add the Gradle plugin named “Google Services” (for example, from the MVN
Repository >>) to your project-level build.gradle file:

Groovy

plugins {
 // ...

 // dependency for the Google services Gradle plugin
 id("com.google.gms.google-services") version "<version>" apply false
}

and to the app-level build.gradle file:

Groovy

plugins {
 id("com.android.application")

 // Google services Gradle plugin
 id("com.google.gms.google-services")

 ...
}

5

https://mvnrepository.com/artifact/com.google.gms/google-services
https://mvnrepository.com/artifact/com.google.gms/google-services

Unset

Unset

3.B. Android: Handling In-App notifications

To make sure In-App notifications are displayed correctly in your React Native app on Android,
you need to properly configure your main activity.

Check your AndroidManifest.xml file and look at the <activity> tag for your main activity.
Make sure the android:taskAffinity attribute is not set to an empty string. If
taskAffinity is empty, Android may block notifications from appearing properly.

Correct:

<activity
 android:name=".MainActivity"
 android:taskAffinity="com.example.myapp" />

Incorrect:

<activity
 android:name=".MainActivity"
 android:taskAffinity="" />

If you do not set android:taskAffinity at all, Android will automatically assign a default
value based on your app’s package name, which works correctly for displaying In-App
notifications.

6

Unset

Unset

3.C. iOS: Handling In-App notifications

InApp notifications are sent with the apns-push-type header set to background. To enable
the handling of In-App notifications by your mobile app, implement the
didReceiveRemoteNotification method in the UIApplicationDelegate protocol:

Swift

func application(
 _ application: UIApplication,
 didRegisterForRemoteNotificationsWithDeviceToken deviceToken: Data
) {
 Salesmanago.sendDeviceTokenData(deviceToken)
}

Objective-C

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo
fetchCompletionHandler:(void (^)(UIBackgroundFetchResult))completionHandler
{
 [Salesmanago didReceiveRemoteNotificationWithUserInfo:userInfo];
 completionHandler(UIBackgroundFetchResultNoData);
}

7

3.D. Deep links

Just like standard links lead to webpages, deep links redirect users to specific locations
within your application (for example, a product view).

If you want to use deep links in Mobile Push and/or In-App notifications, you need to perform
additional configuration for both Android and iOS.

8

Unset

Android

For Android, each deep link needs to be declared in your app.

The AndroidManifest.xml file declares your main activity (usually MainActivity) within the
<activity> tag. To enable this activity to handle deep links, declare your scheme in a
separate <intent-filter>. For instance, if you create a notification in SALESmanago with
the following deep link: salesmanago://main, the <activity> tag should contain the
following declarations:

<activity
 ...
 ...

 <intent-filter>
 ...
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="salesmanago" />
 </intent-filter>
</activity>

9

Unset

iOS

For iOS, the deep link scheme has to be declared in your Info.plist file. For instance, if you
create a notification in SALESmanago with the following deep link: salesmanago://main,
your Info.plist file should contain the following declarations:

<key>CFBundleURLTypes</key>
<array>
 <dict>
 <key>CFBundleTypeRole</key>
 <string>Editor</string>
 <key>CFBundleURLName</key>
 <string>YOUR APP BUNDLE IDENTIFIER</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>salesmanago</string>
 </array>
 </dict>
</array>

You can also register one or more URL schemes in Xcode.

Read more in Apple’s documentation >>

URL scheme registration

1.​ Open the Info tab of your project settings.
2.​ In the URL Types section, declare all URL schemes supported by your app. Click the

plus button and provide the required details.
●​ The identifier is your mobile app’s bundle ID (also used when integrating

SALESmanago with iOS).
●​ The URL scheme must be unique. To ensure that your URL scheme is unique,

we recommend using your brand or application name in it, for example:
benhauer-salesmanago.

10

https://developer.apple.com/documentation/xcode/defining-a-custom-url-scheme-for-your-app

4. Managing consents

SALESmanago expects your application to transfer two distinct permissions for Push
notifications: system permission and marketing consent. This configuration must be
performed within the mobile app’s code.

NOTE: The order in which these permissions are requested is not important. However, users
who have already granted marketing consent may be more likely to give system permission
as well.

System permission

Your application must request system permission to display notifications. The moment the
permission request is shown to the user can be configured in the app’s code.

When the system permission is granted or denied, this status must be explicitly transferred to
SALESmanago using the Salesmanago.updatePushNotificationSystemPermissions();
method.

If a user dismisses the permission request, no information is transferred to SALESmanago or
Android and the request can be shown to this user again.

If a user denies the permission request, it cannot be shown to this user again.

If you attempt to obtain the permission by opening the device’s notification settings for your
app, once the user returns to the application, use the
Salesmanago.updatePushNotificationSystemPermissions() method to update the
permission status.

Additionally, every time you call the init method in Android, the permission status is
automatically updated in SALESmanago (for example, when a user blocks notifications on the
list of notifications or changes the permission status in Android’s notification settings).

In iOS, the init method does not update the system permission status.

11

Unset

Marketing consent

In addition to system permission, SALESmanago requires obtaining marketing consent for
displaying Mobile Push and In-App notifications. The way this consent is acquired (for
example, its format, appearance, and display time) is fully configurable on your side.

The marketing consent request can be shown to the same user multiple times. Its status
should be transferred to SALESmanago for both Contacts and anonymous app users, using
the Salesmanago.updateMobilePushOptIn(OptInOption) method. An example is
provided below, and the possible statuses are described in Section 5.

NOTE: If you plan to display the marketing consent as a pop-up and want to prevent it from
reappearing after consent has been given, ensure that the information about its acceptance
(consent status: GRANTED) is stored by your mobile app. This must be configured on your side.

Salesmanago.updateMobilePushOptIn(OptInOption.GRANTED);

12

5. Contact data

The main entity in SALESmanago is a “Contact”. A Contact represents a
customer/user/website visitor who has provided their email address (the email address is
required to create a “Contact Card”).

Contacts can be described using a number of properties (“Contact data”) useful for various
marketing activities, including personalization, segmentation, and targeting. This section
describes a number of methods that can be used to transfer Contact data from your mobile
app to SALESmanago.

NOTE: When transferring Contact data, the only mandatory field is the email address. If the
email address is not transferred, SALESmanago can only store the system permission and
the marketing consent described in Section 4. above, and the app user is considered
anonymous.

The following Contact properties can be transferred via the SALESmanago SDK:

●​ Contact data: name, email address, phone number, standard details (see Sections 5.A
and 5.B below)

●​ Marketing consents:
○​ Mobile Push and In-App consent (see Section 4 above)
○​ Email Marketing consent (see Sections 5.A and 5.C below)
○​ Mobile Marketing consent (see Sections 5.A and 5.C below)

●​ Custom consents (see Sections 5.A and 5.D below)
●​ Contact tags (see Sections 5.A and 5.E below)

The respective data fields available in the SALESmanago SDK are described in the table in
Section 5.F.

The SDK enum class OptInOption represents the possible statuses for both marketing
consents and custom consents:

●​ GRANTED—Contact has given the consent.

●​ DENIED—Contact has not given or has withdrawn the consent.

●​ NO_ANSWER—Contact has neither given nor rejected the consent. The current status
will remain unchanged. If there is no status yet, the status will be set to DENIED.

13

Unset

5.A. Updating all Contact properties at once

Use the Salesmanago.updateContactProperties method to update multiple types of
Contact properties at once.

All properties are optional. If you do not want to transfer any of them, specify only the desired
ones using named parameters. However, the first time you want to transfer Contact data, you
need to include the email address (required to create a Contact Card in SALESmanago).

Salesmanago.updateContactProperties({
 contactData: {
 name: "John Doe",
 email: "john.doe@example.com",
 phone: "+48123456789",
 standardDetails: { "custom_field": "custom_value" }
 },
 marketingConsents: {
 email: OptInOption.GRANTED,
 mobile: OptInOption.DENIED,
 monitoring: OptInOption.NO_ANSWER
 },
 additionalConsents: [
 { name: "custom consent", status: OptInOption.DENIED }
],
 tagsToAdd: ["tag_to_add"],
 tagsToRemove: ["tag_to_remove"]
});

14

To facilitate the development of your mobile app, SALESmanago provides

you with additional methods for updating only specific types of Contact

properties (Sections 5.B–5.E).

These methods are particularly useful when migrating your native Android

and/or iOS application(s) to React Native.

15

Unset

5.B. Updating basic Contact data

You can use a dedicated method to add or edit only basic Contact properties: name, address,
phone number, and standard details.

Additionally, this method passes the email address, meaning it can be used to create new
Contacts. However, the email address cannot be edited using this method. If you provide a
different email address when updating Contact data, this field will be ignored.

To update a Contact’s email address, use the contact/upsert method >>.

 Salesmanago.updateContactData({
 name: "John Doe",
 email: "john.doe@example.com",
 phone: "+48123456789",
 standardDetails: { "custom_field": "custom_value" }
});

16

https://docs.salesmanago.com/#adding-a-new-contact-or-modifying-the-existing-contact

Unset

5.C. Updating Email Marketing and Mobile Marketing consent status

The Email Marketing consent is required to send marketing emails (newsletter) to your
Contacts.

The Mobile Marketing consent is required to send marketing text messages (SMS,
WhatsApp, Viber) to your Contacts.

Both these consent types can be requested via your mobile app and transferred to
SALESmanago.

NOTE: This method can only be used after the user’s email address has been transferred to
SALESmanago using the Salesmanago.updateContactProperties or
Salesmanago.updateContactData method.

Salesmanago.updateContactMarketingConsents({
 email: OptInOption.DENIED,
 mobile: OptInOption.NO_ANSWER,
 monitoring: OptInOption.GRANTED
});

17

Unset

5.D. Updating custom consents

Custom consents are consents other than marketing consents (for example, consent to the
processing for personal data for the purposes of an agreement). They are defined individually
by each SALESmanago Client.

Custom consents are created and managed in Menu → Audiences → Contacts → Custom
consents.

NOTE: This method can only be used after the user’s email address has been transferred to
SALESmanago using the Salesmanago.updateContactProperties or
Salesmanago.updateContactData method.

Salesmanago.updateContactAdditionalConsents([
 { name: "some custom consent", status: OptInOption.GRANTED }
]);

18

Unset

5.E. Adding and removing Contact tags

Tags are labels assigned to Contacts to enable their segmentation and precise targeting.

Tags can only consist of letters, digits, underscores (_), and dashes (-). Spaces will be
converted to underscores. The minimum length is 3 characters, and the maximum length is
255 characters.

NOTE: This method can only be used after the user’s email address has been transferred to
SALESmanago using the Salesmanago.updateContactProperties or
Salesmanago.updateContactData method.

Salesmanago.addTags(["only_tag_to_add"]);
Salesmanago.removeTags(["only_tag_to_remove"]);

19

5.F. Data field specification

The data fields available in the SALESmanago SDK are described in the table below.

The same fields are used in all five methods for transferring Contact properties (Sections
5.A–5.E above).

Fields available in SALESmanago SDK

Object Field Limits Description

contactData

email RFC882 Required to create a Contact Card
and store Contact data in
SALESmanago.
App users who have not provided
an email address are referred to
as “anonymous” and the only data
that can be stored for them is
system permission status and
marketing consent status.

name 255 Contact’s name, for example, first
and last name.

phone 255

Only digits
and plus
character

Contact’s phone number. It should
start with + followed by the
country code.

standardDe

tails
(object)

16x255 Object containing key-value pairs.
Standard details can be used to
store additional information about
Contacts.

marketingConsents emailOptIn SDK enum
class
OptInOption

Email Marketing consent status:

●​ GRANTED—Contact has given
the consent.

●​ DENIED—Contact has not
given or has withdrawn the

20

consent.

●​ NO_ANSWER—Contact has
neither given nor rejected the
consent. The current status
will remain unchanged. If
there is no status yet, the
status will be set to DENIED.

mobileOptI

n

SDK enum
class
OptInOption

Mobile Marketing consent status:

●​ GRANTED—Contact has given
the consent.

●​ DENIED—Contact has not
given or has withdrawn the
consent.

●​ NO_ANSWER—Contact has
neither given nor rejected the
consent. The current status
will remain unchanged. If
there is no status yet, the
status will be set to DENIED.

additionalConsents array of
objects

255

SDK enum
class
OptInOption

Array of objects containing the
name of a custom consent and its
status:

●​ GRANTED—Contact has given
the consent.

●​ DENIED—Contact has not
given or has withdrawn the
consent.

●​ NO_ANSWER—Contact has
neither given nor rejected the
consent. The current status
will remain unchanged. If
there is no status yet, the
status will be set to DENIED.

Custom consents can be created
in Menu → Audiences → Contacts
→ Custom consents.

21

tagsToAdd array 3-255 per tag

a-zA-Z0-9_
and -

Max. 16 tags
per request

Array of tags to be assigned to the
Contact. Use ASCII characters
only.

tagsToRemove

array 3-255 per tag

a-zA-Z0-9_
and -

Max. 16 tags
per request

Array of tags to be removed from
the Contact. Use ASCII characters
only.

NOTE: Tags present in both the
addTags and removeTags arrays
will be removed only. In that event,
Automation Processes based on
assigning a tag or increasing a tag
scoring will not be triggered.

22

Unset

6. Adding events

The SALESmanago SDK enables tracking user activity by transferring predefined events to
SALESmanago. The events are recorded for both Contacts and anonymous app users.

EventType is an SDK enum class representing the possible event types. At present, the
following event types are available:

●​ LOGIN—Occurs when the user logs in to your mobile app.

Salesmanago.addEvent(EventType.LOGIN);

If you have any questions or doubts concerning the configuration of
the Mobile Push channel, or if you would like to have your setup

verified by our Support specialist, please contact us at:

support@salesmanago.com

23

	
	1. Prerequisites
	
	
	2. SDK installation and initialization
	
	
	3. Mobile Push and In-App setup
	3.A. Android: Connecting SALESmanago to Firebase
	
	
	3.B. Android: Handling In-App notifications
	
	
	
	3.C. iOS: Handling In-App notifications
	
	
	3.D. Deep links

	
	4. Managing consents
	
	
	5. Contact data
	
	5.A. Updating all Contact properties at once
	
	
	
	5.B. Updating basic Contact data
	
	
	5.C. Updating Email Marketing and Mobile Marketing consent status
	
	
	5.D. Updating custom consents
	
	
	5.E. Adding and removing Contact tags
	
	
	
	5.F. Data field specification

	
	
	6. Adding events

