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Abstract

Foundation models have transformed natural language processing and computer
vision. A rapidly growing literature on time-series foundation models (TSFMs)
seeks to replicate this success in forecasting. TSFMs take as input a context, which
consists of past time-series variables, and possibly covariate time-series data, and
output predicted future values and/or distributions over the variables. Most TSFMs
are formulated as neural networks trained via supervised learning, with virtually
all employing transformer architectures. Despite the success of transformers in
other disciplines, these architectures suffer from slow performance in time-series
domains because of their high computational demands; moreover, they often fail
to leverage long-range time and cross-feature data dependencies. In this paper,
we investigate Likelihood-Aligned Forecast Networks (LAFNs), which output
both point and probabilistic forecasts, and as such minimize a loss function that
incorporates both Euclidean loss for the point prediction and likelihood loss for the
probabilistic prediction. Our LAFN network architecture comprises a hypernetwork
that generates weights for a target network, the latter of which captures strong
temporal and cross-feature biases. By decoupling the forecasting model into hyper
and target networks, LAFNs harness the power of foundation models, in their
adaptability to a wide variety of downstream tasks, and, at the same time, leverage
the inductive strengths of classic approaches to time-series prediction.

1 Introduction

Foundation models have revolutionized natural language processing and computer vision, establishing
a new paradigm where large-scale pretraining yields broadly transferable representations for zero-shot
tasks. Motivated by these successes, a rapidly expanding literature has emerged around time-series
foundation models (TSFMs), forecasting models designed to generalize across diverse forecasting
tasks. TSFMs typically take as input a historical context of past observations, along with optional
covariates, and output forecasts or predictive distributions for future values. While transformer-based
architectures dominate this space, these architectures suffer from slow performance in time-series
domains because of their high computational demands; moreover, they often fail to leverage long-
range time and cross-feature data dependencies. Consequently, as observed by practitioners (e.g., [1]),
simple statistical models (e.g., ARIMA [2], SVR [3, 4]) with well-chosen hyperparameters have been
seen to outperform large transformers in forecasting tasks where forecasting latency is paramount, as
are long-range time and cross-feature data dependencies.1

This observation suggests a potential approach to building computationally efficient TSFMs that
can model long-range and cross-feature dependencies, namely to train a network that, based on
the input historical context, outputs parameters for a simple statistical model. Generalizing this
insight further, in this paper, we study Likelihood-Aligned Forecast Networks (LAFNs), a small

1We include additional related works in Section F.
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metanetwork [5, 6] that consists of a hypernetwork, which learns representations of time-series data
and generates weights (i.e., hyperparameters) for a lightweight target network that captures strong
inductive temporal and cross-feature biases. By decoupling the forecasting model into hyper and
target networks, LAFNs are designed to harness the power of foundation models, in their adaptability
to a wide variety of downstream tasks, and, at the same time, leverage the inductive strengths of
classic approaches to time-series prediction.

In this work, we show that LAFNs are capable of generating forecasts on par with transformer-based
TSFMs, while using only a fraction of the parameter count (460,000 parameters), and training exclu-
sively on synthetic multivariate time-series data, as large, real-world multivariate time-series corpora
are few and far between. We generate these synthetic datasets through the Cholesky decomposition
of structured Gram matrices, producing controllable temporal and cross-feature patterns. Importantly,
our network provides both point and probabilistic forecasts, and is trained with a novel loss function
that aligns the two forecasts and leads to the extraction of more generalizable patterns from the
training data. We believe that together, these design choices suggest a scalable path toward universal,
data-efficient TSFMs that combine interpretability, modularity, and predictive power.

Contributions We investigate the plausibility of LAFNs as candidate architectures for TSFMs, and
provide preliminary evidence that these models can produce forecasts that generalize across domains,
while capturing temporal and cross-feature data dependencies. Our contributions are as follows:

• We propose Likelihood-Aligned Forecast Networks (LAFN), a hypernetwork architecture
designed for time-series forecasting, and demonstrate on-par or superior performance of
these models as compared to existing TSFMs and widely-used statistical forecasting models.

• We propose a new loss function (Equation 1) for LAFN, which can in general be used to
train neural networks that simultaneously predict point and probabilistic forecasts, which
trade offs accuracy between the two during training.

• We introduce CholeskySynth (Algorithm 1), a new synthetic multivariate time-series data
generation method that efficiently generalizes the KernelSynth method [7] from univariate
to multivariate domains.

2 Likelihood-Aligned Forecast Networks

We refer the reader to Section A for the notational conventions we adopt, as well as for additional
mathematical preliminaries and definitions of our evaluation metrics. We use l, h,m ∈ N as the
(historical) context length, forecast horizon, and the number of variates, respectively.

Problem Formulation We assume time-series data D .
= {(l(k), h(k),m(k),Y (k),Y ∗(k))}k∈[n],

comprising n ∈ N multivariate samples s.t. for all k ∈ [n], Y = (y1, . . . ,ym(k))
T ∈ Y l(k)×m(k) ⊆

Rl(k)×m(k)

is the context and Y ∗ = (y1, . . . ,ym(k))
T ∈ Yh(k)×m(k) ⊆ Rl(k)×m(k)

is the target. Our
goal is to learn an (uncertainty-aware) forecaster Y 7→ (F θ(Y ), µθ(Y )) ∈ Yh×m ×∆(Yh×m),
which takes as input context Y ∈ Y l×m of length l ∈ N and outputs point forecasts F θ(Y ) and
probability forecasts µθ(Y ) of future values of the m ∈ N variates for the next h ∈ N time-steps.2

While prior work on deterministic (resp. stochastic) forecasting typically formulates the learning
problem as minimizing Euclidean error (resp. negative log-likelihood), there is no widely accepted
learning objective for uncertainty-aware forecasters that jointly models both accuracy and uncertainty.
A naive approach would be to minimize the arithmetic mean of Euclidean error and negative log-
likelihood. However, such an objective is known to weight the two losses unevenly, often over-
optimizing one at the expense of the other [8]. To address this imbalance, we propose minimizing
their geometric mean, which corresponds to minimizing the mean of both objectives up to diminishing
marginal returns in either loss component:

min
θ

E(Y ,Y ∗)∼P(D)

[
exp

{
log

∥∥Y ∗ − F θ(Y )
∥∥2 + log

(
log

(
1

µθ(Y )

))}]
(1)

LAFNs name derives from the fact that they minimize this loss.
2A forecaster F θ (resp. µθ ) alone is said to be a deterministic (resp. stochastic) forecaster.
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Algorithm 1 CholeskySynth: Synthetic Multivariate Time-Series Generation
Input: Kernel banks KU ,KV ⊆ {R×R→ R}, maximum kernels per axis kU , kV ∈ N, time-series
length p, number of variates m
Output: Synthetic multivariate time series X ∈ Rp×m

1: κU ∼ Unif{1, . . . , kU}, κV ∼ Unif{1, . . . , kV } ▷ sample kernel counts

2: {g1, . . . , gκU
} i.i.d.∼ KU , {h1, . . . , hκV

} i.i.d.∼ KV ▷ draw kernels
3: U ← [g1(t, t

′)]t,t′∈[p], V ← [h1(t, t
′)]t,t′∈[m] ▷ initialize Gram matrices

4: for i = 2, . . . , κU do
5: ⋆i ∼ {PSD-preserving binary operators} ▷ e.g., +, ×
6: U ← U ⋆i [gi(t, t

′)]t,t′∈[p] ▷ compose time kernels
7: for i = 2, . . . , κV do
8: ⋆k ∼ {PSD-preserving binary operators} ▷ e.g., +, ×
9: V ← V ⋆i [hi(t, t

′)]t,t′∈[m] ▷ compose time kernels
10: Compute lower Cholesky factor A s.t. U = AA⊤

11: Compute upper Cholesky factor B s.t. U = B⊤B.
12: z ∼ N (0, Ipm) ▷ sample from a matrix of standard normal random variables
13: Sample Z ← [zij ∼ N (0, 1)]i∈[p],j∈[m]

14: X ← AZB ▷ apply Cholesky factors to obtain matrix-normal sample
15: Return X

Data Generation In order to minimize the learning objective defined in Equation (1), we need a
suitable distribution P(D) for time-series data. Unfortunately, real-world multivariate time-series
corpora are few and far between. To overcome this challenge, we introduce the CholeskySynth
algorithm (Algorithm 1), a computationally efficient multivariate generalization of KernelSynth [7],
which generates univariate time-series data. At a high level, our algorithm generates samples from
a matrix-normal distribution [9], using two covariance matrices, U and V , which are built using
kernel functions, and intended to express temporal and cross-variate dependencies, respectively.
CholeskySynth is able to generate multivariate time-series data by varying the generation procedure
for the covariance matrices U and V , respectively.

As there does not exist an open-source implementation of sampling from a matrix normal distribution,
we generate these samples using Cholesky decompositions of the covariance matrices. We provide an
efficient implementation of this routine in our code repo. In our implementation, a small diagonal jitter
is added to the covariance matrices to ensure positive definiteness before Cholesky factorization, to
ensure numerical stability. CholeskySynth scales cubically in the number of time steps and variables,
due to the Cholesky decompositions, with quadratic computational memory requirements.

Forecaster Network Overview. With our data generation method in hand, the learning objective in
Equation (1) can now be minimized via a stochastic gradient descent method. As such we we now turn
to describing our forecaster, the Likelihood-Aligned Forecast Network (LAFN), a metanetwork [5, 6]
for time-series data. LAFN (H ,πϕ) comprises a hypernetwork [10–12] (Y ;θ) 7→H (Y ;θ)

.
= ϕ,

which takes as input the context Y and outputs weights ϕ, the latter of which parameterize a target
network (τ ;ϕ) 7→ π(τ ;ϕ)

.
= (Ŷ , µ(·)), which takes as input a vector τ = (τ1, . . . , τh) of h future

time steps to forecastand outputs point forecasts Ŷ and a distribution of forecasts µ. We describe the
inputs of the target network as a vector of time steps τ rather than the forecast horizon h to emphasize
the fact that the network reasons about the forecasts across all time steps τ simultaneously, rather
than autoregressively forecasting each individual time step one by one.

Hypernetwork Our hypernetwork comprises four patcher layers of different patch sizes (i.e., 8,
32, 64, 128), which embed the context along the variate dimension, process it into patches, and then
embed along the time dimension. We used a context window of 2048, padding or trimming the inputs
as appropriate for input contexts with a longer or shorter context window than the model’s.

The output of each patch layer is passed into a context layer, which consists of 3 intrapatch layers that
comprise gating layers with skip connections, feedforward layers with skip connections, and GELU
activations that operate along the time and feature dimension. Finally, for each patch, the output of
the intrapatch layer is projected into the parameter space of the target network.
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Target network The target network is made up of three stacks of forecast layers, with each one
comprising a gating layer with skip connections, a feedforward layer with skip connections, and
GELU activations that operate on the input time steps τ . The output of the forecast layer is then
fed into 1) a forecast head with a linear layer that outputs point forecasts; and 2) a distribution head
with a feedforward linear layer that outputs mixture weights, as well as mean and standard deviation
parameters that are used to define the stochastic forecast as a Gaussian mixture distribution. In our
implementation, we choose h

.
= 128 as the length of τ ; however, our model can forecast data of

arbitrary length with appropriate trimming or autoregression.

Importantly, the target network does not use the position of future forecasts τ to create embeddings,
but rather uses τ as direct inputs to be transformed by network. This small change enables the target
network to predict seasonality and trend components of the data, which are a function of the time
steps themselves rather than of the embedded time-series data provided by the hypernetwork. Further,
as the hypernetwork’s outputs depend on a transformation of the data based on various patch sizes,
the weights it outputs for the target network allow the target network to accurately predict long-,
medium-, and short-range trends and seasonalities in the data.

3 Results

We include a summary of the results of experiments with LAFN and other competing models in
Table 1a. We generate our results using the TempusBench evaluation framework [13], We summarize
all additional results in Section E.

Table 1: Average Win Rates for deterministic and probabilistic forecasting models.

(a) Average Win Rate for MAPE Metric.

Model Name Average Win Rate
LAFN 0.7931
Timesfm 0.6730
Croston Classic 0.6164
Seasonal Naive 0.5849
Toto 0.5789
Varmax 0.5714
Arima 0.5346
Moment 0.5220
Lagllama 0.5031
Lstm 0.4969
Moirai 0.4966
Svr 0.4874
Tabpfn 0.4828
Random Forest 0.4748
Tiny Time Mixer 0.4151
Chronos 0.4025
Exponential Smoothing 0.3333
Prophet 0.3333
Theta 0.3300

(b) Average Win Rate for CRPS Metric

Model Name Average Win Rate
Toto 1.0000
Moirai 0.7857
Lafn 0.5714
Chronos 0.4000
Lagllama 0.2667

4 Future Directions

We omit, for this workshop version of the LAFN paper, two ongoing research directions still under
active development: (i) forecasting with covariates and (ii) the evaluation of probabilistic forecasting
models. A more general and extended version of LAFN will be released in the coming months as
part of the full paper.
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A Additional Mathematical Background

A.1 Mathematical notation

We adopt the following calligraphic conventions to insist on the nature of the mathematical object at
hand: We use calligraphic uppercase letters to denote sets (e.g., X ), bold uppercase letters to denote
matrices (e.g., X), bold lowercase letters to denote vectors (e.g., p), lowercase letters to denote scalar
quantities (e.g., x), and uppercase letters to denote random variables (e.g., X). We denote the ith
row vector of a matrix (e.g., X) by the corresponding bold lowercase letter with subscript i (e.g.,
xi). Similarly, we denote the jth entry of a vector (e.g., p or xi) by the corresponding lowercase
letter with subscript j (e.g., pj or xij). We denote functions by a letter determined by the value of
the function, e.g., f if the mapping is scalar valued, f if the mapping is vector valued, and F if the
mapping is set valued.

We denote the set {1, . . . , n} by [n], the set {n, n+ 1, . . . ,m} by [n : m], the set of natural numbers
by N, and the set of real numbers by R. We denote the positive and strictly positive elements of
a set using a + or ++ subscript, respectively, e.g., R+ and R++. For any n ∈ N, we denote the
n-dimensional vector of zeros and ones by 0n and 1n, respectively.

A.2 Mathematical Definitions

We let ∆n = {x ∈ Rn
+ |

∑n
i=1 xi = 1} denote the unit simplex in Rn, and ∆(A) denote the

set of all probability measures over a given set A. We also define the support of a probability
density function f ∈ ∆(X ) as supp(f) .

= {x ∈ X | f(x) > 0}. Finally, we denote the orthogonal
projection operator onto a set C by ΠC , i.e., ΠC(x)

.
= argminy∈C ∥x− y∥2.

A.3 Evaluation Metrics

An evaluation metric ℓ : Yh × Yh → R+ is a positive-, scalar-valued function s.t. for any forecast
Ŷ ∈ Yh and realized future target values Y ∗ ∈ Yh, ℓ(Ŷ ,Y ∗) ≥ 0 denotes the distance between
the forecast and the realized values. We consider the following evaluation metrics at present. The
mean absolute error (MAE) is defined as ℓMAE(Ŷ ,Y ∗)

.
= 1

mh

∑
i∈[m]

∑h
τ=1|ŷiτ − y∗iτ |. The mean

squared error (MSE) is defined as ℓMSE(Ŷ ,Y ∗)
.
= 1

mh

∑
i∈[m]

∑h
τ=1(ŷiτ − y∗iτ )

2. The mean abso-

lute scale error (MASE) is defined as ℓMASE(Ŷ ,Y ∗)
.
= 1

mh

∑
i∈[m]

∑h
τ=1

|ŷiτ−y∗
iτ |

1
h−1

∑l−1
τ=1|yiτ+1−yiτ |

.3

3We note MAE is scale-dependent but less sensitive to outliers, MSE disproportionately penalizes large
forecast errors and is therefore more outlier-sensitive, while MASE normalizes errors w.r.t. the forecasts of naive
forecast method (i.e., setting the next time-step’s forecast to be the current time-step realized value), making it
scale-free and comparable across datasets or domains.
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B Additional Details on CholeskySynth

We provide in our code repo (https://github.com/Smlcrm/CholeskySynth) an efficient implementation
of the CholeskySynth method (??) in Jax [14]. We summarize the kernels used to generate the data
used in the training of LAFN in Table 2, and note that we have used κU

.
= 4 and κV

.
= 3. We

include in Figure 1 visualizations of multivariates time-series generated by CholeskySynth under the
aforementioned parameter choices.

Table 2: Kernel bank used for data generation.

Kernel Formula Hyperparameters

Constant κConst(x, x
′) = C C = 1

White
Noise κWhite(x, x

′) = σ2
n 1x=x′ σ2

n ∈ {0.1, 1.0}

Polynomial κPoly(x, x
′) = (σ2 + x⊤x′)α σ ∈ {0, 1, 10}, α ∈ {1, 2, 3}

RBF κRBF(x, x
′) = exp

(
− ∥x− x′∥2

2ℓ2

)
ℓ ∈ {0.01, 0.1, 1, 10}

Rational
Quadratic κRQ(x, x

′) =
(
1 +

∥x− x′∥2

2αℓ2

)−α

α ∈ {0.01, 0.1, 1, 10}, ℓ = 1

Periodic κPer(x, x
′) = exp

(
− 2 sin2(π

∥x− x′∥
p

)
)

p ∈ { 24

2048
,

48

2048
,
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,
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2048

,
48·7
2048

,
96·7
2048

,

7

2048
,
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2048
,

30

2048
,

60

2048
,
365

2048
,
730

2048
,

4

2048
,

26

2048
,

52

2048
,

6

2048
,

12

2048
,

40

2048
,

10

2048
}
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Figure 1: Examples of synthetic time series generated via Cholesky-based sampling. Each row is
a sample from CholeskySynth, and each column is a variate. Each subplot represents a different
covariance structure or noise process.

C Forecasting Models Included in LAFN’s evaluation

In this section, we summarize the forecasting models which have been included in the evaluation
LAFN. We summarize all models in Table 3, and provide and comparison of TSFMs, machine
learning forecasting models, and statistical forecasting models in Table 4.

C.0.1 Moirai

Moirai is a universal time series forecasting model developed by Salesforce AI Research, built
upon a masked encoder-only Transformer architecture. It is designed as a single, large pre-trained
model capable of handling diverse forecasting tasks without dataset-specific retraining. The model is
pre-trained on LOTSA, a large-scale archive of over 27 billion observations, enabling it to perform
powerful zero-shot forecasting. [15]

• Input: Accepts univariate or multivariate time series with an arbitrary number of variates and
covariates.
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Table 3: Summary of forecasters included in TempusBench.
Category Included Models Core Characteristics
Foundation Models Moirai, Moirai-MoE,

TimesFM, TimesFM-2.0,
Chronos, Lag-Llama, Toto,
MOMENT, TTM,
TabPFN-TS

Paradigm: Universal, zero-
shot/few-shot forecasting. A sin-
gle large model is pre-trained on
massive, diverse datasets and gen-
eralizes to new tasks without re-
training.
Architecture: Primarily based on
Transformers or other deep learn-
ing structures like MLP-Mixers.
They process raw time series via
patching or novel tokenization
schemes.
I/O: Often produce probabilistic
forecasts and can natively handle
univariate, multivariate, and covari-
ate data.

Classic Machine Learning LSTM, Random Forest,
XGBoost, SVR

Paradigm: Supervised learning
models trained per-dataset. They
excel at capturing complex, non-
linear relationships but require
specific training for each task.
Architecture: Diverse, including
Recurrent Neural Networks (for se-
quence memory), Tree Ensembles
(for interaction effects), and Kernel
Methods.
I/O: Typically require explicit
feature engineering (e.g., lags, cal-
endar variables) to create a tabular
format. Most often produce point
forecasts.

Statistical & Decomposable ARIMA, Holt-Winters,
Prophet, Theta Method,
Croston’s Method, Seasonal
Naive

Paradigm: Assume the time se-
ries is generated by an underlying
statistical process or can be decom-
posed into simpler, interpretable
components like trend and season-
ality.
Architecture: An explicit mathe-
matical formula is fitted directly to
an individual time series.
I/O: Highly interpretable point
forecasts. Often specialized for
particular data patterns (e.g., inter-
mittency with Croston’s).
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• Output: Produces a probabilistic forecast by predicting the parameters of a flexible mixture
distribution (composed of Student’s t, Negative Binomial, Log-Normal, and low-variance Normal
distributions).

• Architecture: Employs a masked encoder-only Transformer. Its key innovations include:

– Multi Patch Size Projection: Uses different patch sizes to effectively process time series of
varying frequencies.

– Any-variate Attention: Flattens multivariate series into a single sequence and uses binary
attention biases to manage an arbitrary number of variates while maintaining permutation
equivariance.

• Forecasting Type: A universal, zero-shot, probabilistic forecaster. It can generate point forecasts
by taking the median of the predicted distribution.

C.0.2 Moirai-MoE

Moirai-MoE is an advanced version of the Moirai foundation model that integrates a Sparse Mixture
of Experts (MoE) architecture. Instead of relying on heuristic-based, frequency-specific projection
layers, Moirai-MoE delegates the task of modeling diverse time series patterns to specialized "expert"
networks within its Transformer layers. This allows for automatic, token-level specialization in
a data-driven manner, leading to improved accuracy and greater efficiency in terms of activated
parameters. [16]

• Input: Accepts univariate or multivariate time series with an arbitrary number of variates and
covariates.

• Output: Produces a probabilistic forecast by predicting the parameters of a flexible mixture
distribution for the next token in an autoregressive manner.

• Architecture: Employs a decoder-only Transformer that replaces the standard Feed-Forward
Network (FFN) layers with MoE layers. Key architectural changes from the original Moirai
include:

– Mixture of Experts (MoE): A gating function routes each time series token to a small subset
of specialized expert networks, allowing the model to handle diverse patterns at a granular
level.

– Single Projection Layer: It uses a single input/output projection layer for all time series,
removing the dependency on frequency-based heuristics.

• Forecasting Type: A universal, zero-shot, probabilistic forecaster that is more accurate and
efficient (in terms of activated parameters) than the original Moirai model. It can generate point
forecasts by taking the median of the predicted distribution.

C.0.3 TimesFM

TimesFM is a time-series foundation model developed by Google Research, designed for zero-shot
forecasting. It is based on a decoder-only Transformer architecture and is pretrained on a very
large corpus of time series data, combining both real-world and synthetic sources. The model’s key
objective is to provide accurate out-of-the-box point forecasts on unseen datasets without requiring
any dataset-specific training. [17]

• Input: Accepts a univariate time series context window.

• Output: Produces a point forecast for a given prediction horizon.

• Architecture: Employs a decoder-only Transformer architecture that processes the time series in
patches. Key architectural features include:

– Decoder-Only Transformer: Utilizes a standard decoder-style attention mechanism to
autoregressively predict future values patch by patch.

– Input Patching: The input time series is segmented into non-overlapping patches, which are
then embedded using a residual block of MLPs before being fed to the Transformer.

• Forecasting Type: A universal, zero-shot, point forecaster designed primarily for long-horizon
forecasting tasks.
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C.0.4 TimesFM-2.0

TimesFM-2.0 is an improved version of the original foundation model from Google Research. While
retaining the same decoder-only Transformer architecture, its key innovation lies in forecasting the
residual component of a time series after performing a seasonal-trend decomposition. This approach
makes the model significantly more accurate, particularly for time series that exhibit clear trends.
[17]

• Input: Accepts a univariate time series context window.

• Output: Produces a point forecast for a given prediction horizon.

• Architecture: Based on the original decoder-only Transformer with input patching. The primary
architectural update is its residual forecasting methodology:

– Seasonal-Trend Decomposition: The model first decomposes the input series to separate its
trend and seasonal components.

– Residual Forecasting: The core Transformer then forecasts the residual (the signal remaining
after decomposition). This forecast is added back to the projected trend to produce the final
prediction.

• Forecasting Type: A universal, zero-shot, point forecaster with enhanced performance on trended
time series compared to its predecessor.

C.0.5 Chronos

Chronos is a family of pretrained time series models developed by Amazon Science that frames
forecasting as a language modeling task. The core idea is to "tokenize" time series values by scaling
and quantizing them into a fixed vocabulary. By doing so, standard Transformer-based language
model architectures can be trained on sequences of these tokens using a cross-entropy loss, effectively
learning the "language" of time series. [7]

• Input: Accepts a univariate time series context window.

• Output: Produces a probabilistic forecast by generating multiple sample future trajectories. A
point forecast can be derived from the median of these samples.

• Architecture: Based on standard language model architectures (specifically the T5 encoder-decoder
family). Its defining characteristic is its unique data preprocessing pipeline:

– Tokenization via Quantization: The model first applies mean scaling to the input time
series. It then quantizes these scaled values into a finite set of discrete tokens, converting the
continuous series into a sequence of categorical variables.

– Language Model Training: The model is trained to predict the next token in a sequence
using a standard cross-entropy loss, analogous to how a language model predicts the next
word.

• Forecasting Type: A universal, zero-shot, probabilistic forecaster.

C.0.6 TabPFN

TabFPN is a forecasting framework that adapts feature pyramid networks (FPN), originally developed
for computer vision tasks, to tabular time-series data. The approach builds hierarchical feature
representations across multiple temporal resolutions, enabling the model to capture both short- and
long-range dependencies. Unlike traditional time-series architectures, TabFPN treats forecasting as a
structured feature-learning problem on tabularized sequences, combining multiscale decomposition
with probabilistic prediction.

• Input: A univariate or multivariate time series, converted into tabular form with hierarchical
features at multiple temporal resolutions.

• Output: Produces probabilistic forecasts by estimating distributions over future values at
each horizon; point forecasts can be obtained from the distribution mean or median.

• Architecture:
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– Feature Pyramids: The series is decomposed into multiple temporal scales (e.g., short-
term, medium-term, seasonal) using windowed transformations. Each scale yields a
feature representation.

– FPN Backbone: These features are passed into a feature pyramid network adapted for
tabular regression, allowing cross-scale information flow and refinement.

– Prediction Head: Aggregates multiscale features to generate forecasts, with uncertainty
quantification via distributional outputs.

• Forecasting Type: A universal, zero-shot, probabilistic forecaster with explicit multiscale
feature integration.

C.0.7 TabPFN-TS

TabPFN-TS is a novel approach that adapts TabPFN-v2, a general-purpose tabular foundation model,
for time series forecasting. The core methodology involves recasting the forecasting problem as
a tabular regression task. This is achieved through lightweight feature engineering on the time
index, without relying on lagged values. Notably, the underlying TabPFN-v2 model was pretrained
exclusively on synthetic tabular data and has not seen any time series data. [18]

• Input: A univariate time series, which is converted into a feature matrix based on timestamps.

• Output: Produces a probabilistic forecast by approximating the posterior predictive distribution for
each future time step. Point forecasts can be derived from the mean or median of this distribution.

• Architecture: It does not use a time-series-specific architecture. Instead, it relies on:

– Feature Engineering: The time series is transformed into a tabular dataset by creating
features from timestamps. These include standard calendar features (e.g., hour of day, day of
week), automatically detected seasonal features via a Fourier transform, and a simple running
index.

– TabPFN-v2 Model: The generated tabular data is fed into the pretrained TabPFN-v2 model,
which performs the regression task to predict future values.

• Forecasting Type: A universal, zero-shot, probabilistic forecaster.

C.0.8 Tiny Time Mixers (TTM)

Tiny Time Mixers (TTM) is a family of lightweight pre-trained models from IBM Research, based on
the efficient TSMixer architecture. In contrast to large, LLM-based approaches, TTMs are designed
to be extremely small (<1M parameters) and fast, while still providing strong zero-shot and few-shot
forecasting performance. The models are pre-trained exclusively on a large corpus of public time
series datasets, making them a highly efficient alternative for universal forecasting. [19]

• Input: Accepts univariate or multivariate time series, with optional support for exogenous variables
during the fine-tuning stage.

• Output: Produces a point forecast for a given prediction horizon.

• Architecture: Based on the MLP-Mixer architecture. The model is pre-trained in a channel-
independent manner and uses a multi-level structure to handle diverse data and tasks.

– TSMixer Backbone: The core of the model uses simple MLP blocks for temporal and feature
mixing, avoiding the computational overhead of Transformer-based attention.

– Multi-Resolution Pre-training: Employs several novel techniques to handle heterogeneous
datasets, including adaptive patching (using different patch configurations at different layers)
and data augmentation via downsampling.

– Multi-level Modeling: Uses a frozen pre-trained backbone and a smaller, fine-tunable decoder,
which can incorporate channel-mixing and an exogenous mixer to fuse external signals for
target-specific tasks.

• Forecasting Type: A universal, zero-shot/few-shot, point forecaster, notable for its small size and
computational efficiency.
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C.0.9 Lag-Llama

Lag-Llama is a foundation model for univariate probabilistic time series forecasting. It is built upon
a decoder-only Transformer architecture, similar to LLaMA, and is pretrained on a large, diverse
corpus of open-source time series data. The model’s key innovation is its tokenization strategy, which
uses lagged values of the time series as input features, allowing it to generalize across different
frequencies and domains. [20]

• Input: Accepts a univariate time series context window.

• Output: Produces a probabilistic forecast by outputting the parameters of a Student’s t-distribution
for the next time step. Future trajectories are generated autoregressively.

• Architecture: Based on a decoder-only Transformer (LLaMA). Its defining characteristic is its
input representation:

– Tokenization via Lag Features: Instead of patching, the input token for each time step is a
vector composed of lagged values from the time series history (e.g., values from 1, 7, and 14
days prior). This is augmented with standard date-time features.

– Value Scaling: Applies robust scaling (using median and IQR) to normalize the input values
and includes the scaling parameters as additional features.

• Forecasting Type: A universal, zero-shot/few-shot, probabilistic forecaster.

C.0.10 Toto

Toto (Time Series Optimized Transformer for Observability) is a foundation model from Datadog,
specifically designed for multivariate time series forecasting with a focus on observability metrics.
It is built on a decoder-only Transformer architecture and incorporates several novel components
to handle the unique challenges of observability data, such as high non-stationarity and heavy-
tailed distributions. The model is pretrained on a large and diverse corpus that includes real-world
observability data, public datasets, and synthetic data. [21]

• Input: Accepts multivariate time series.

• Output: Produces a probabilistic forecast by predicting the parameters of a Student-T mixture
model.

• Architecture: A decoder-only Transformer with several key innovations tailored for observability
data:

– Patch-based Causal Normalization: A novel per-patch scaling method that computes
normalization statistics from current and past data to handle highly nonstationary series.

– Proportional Factorized Attention: An efficient attention mechanism that uses a mix of time-
wise and variate-wise attention blocks to judiciously model interactions in high-dimensional
multivariate data.

– Student-T Mixture Model Head: An output layer that models the predictive distribution
as a mixture of Student-T distributions to better capture the complex, heavy-tailed nature of
observability metrics.

– Composite Robust Loss: A hybrid loss function combining negative log-likelihood with a
robust point-wise loss to stabilize training in the presence of outliers.

• Forecasting Type: A universal, zero-shot, probabilistic forecaster for multivariate time series.

C.0.11 MOMENT

MOMENT (Multi-task, Open-source, Foundation Model for Time-series) is a family of open-source
foundation models from Carnegie Mellon University designed for general-purpose time series analysis.
The models are built on a Transformer encoder architecture and are pretrained on a large, diverse
collection of public time series called the "Time Series Pile." A key characteristic of MOMENT is its
versatility; it is designed to serve as a building block for a wide range of downstream tasks, including
forecasting, classification, anomaly detection, and imputation, often with minimal task-specific
fine-tuning. [22]
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• Input: Accepts a univariate time series of a fixed length. Multivariate time series are handled by
treating each channel independently.

• Output: Produces a reconstructed version of the input time series. This output can be adapted
for various downstream tasks, such as generating forecasts by masking future values or extracting
embeddings for classification.

• Architecture: A standard Transformer encoder that processes time series data in patches.

– Masked Pre-training: The model is pretrained using a masked time series prediction task. It
learns to reconstruct randomly masked patches of the input time series, enabling it to learn
robust representations.

– Patching: The input time series is segmented into non-overlapping patches, which are then
linearly projected into embeddings for the Transformer.

– Lightweight Prediction Head: A simple linear layer is used to reconstruct the time series
from the Transformer’s output embeddings. This head can be easily replaced or adapted for
different downstream tasks.

• Forecasting Type: A universal foundation model for general time series analysis. It can be used for
zero-shot or few-shot forecasting (point-based), classification, anomaly detection, and imputation.

C.0.12 ARIMA

The Autoregressive Integrated Moving Average (ARIMA) model is a class of statistical models
for analyzing and forecasting time series data. It is a generalization of the simpler Autoregressive
Moving Average (ARMA) model that can be applied to non-stationary time series. The model’s name
reflects its three core components: Autoregression (AR), Integrated (I), and Moving Average (MA).
These components capture the key temporal structures within the data, such as dependencies on past
observations and past forecast errors. [23]

• Input: A univariate time series.

• Output: A point forecast for future time steps. While classical ARIMA produces point forecasts,
probabilistic forecasts can be generated by assuming a distribution for the error term.

• Mathematical Formulation: An ARIMA(p, d, q) model is defined by three parameters: the order
of the autoregressive component (p), the degree of differencing (d), and the order of the moving
average component (q). The model assumes that the differenced time series, ỹt = (1−B)dyt, is
stationary, where B is the backshift operator. The formulation for the stationary series ỹt is:

ỹt = c+

p∑
i=1

ϕiỹt−i +

q∑
j=1

θjϵt−j + ϵt (2)

where:

– p is the autoregressive order, representing the number of lagged observations included in the
model.

– d is the degree of differencing, representing the number of times the raw observations are
differenced to achieve stationarity.

– q is the moving average order, representing the size of the moving average window applied to
past forecast errors.

– ϕ is the vector of autoregressive coefficients.
– θ is the vector of moving average coefficients.
– c is a constant term.
– ϵt is the white noise error term at time t, typically assumed to be drawn from a Gaussian

distribution with zero mean.

• Forecasting Type: A statistical model that provides point forecasts. It is often used as a baseline
in forecasting tasks. Seasonal variations can be included by using a Seasonal ARIMA (SARIMA)
model.
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C.0.13 Croston’s Method

Croston’s method is a forecasting technique specifically designed for intermittent demand time series,
which are characterized by sporadic, non-zero values interspersed with periods of zero demand. The
method decomposes the original time series into two separate components: the magnitude of the
non-zero demand and the time interval between consecutive demands. By forecasting these two
components separately using Simple Exponential Smoothing and then combining them, the model
provides a more accurate estimate of the mean demand per period compared to standard smoothing
methods, which can be biased when applied to intermittent data. [24]

• Input: A univariate time series with intermittent demand.
• Output: A point forecast for the average demand per period.
• Mathematical Formulation: The method maintains and updates two estimates: one for the non-

zero demand size (ẑ) and one for the interval between demands (p̂). Let yt be the demand at time
t, and let q be the time elapsed since the last demand. The updates occur only when a non-zero
demand is observed (yt > 0):

ẑt = ẑt−1 + α(yt − ẑt−1) (3)
p̂t = p̂t−1 + α(q − p̂t−1) (4)

If demand at time t is zero, the estimates are not updated (ẑt = ẑt−1, p̂t = p̂t−1) and the interval
counter q is incremented. After a demand occurs, q is reset to 1. The final forecast for the mean
demand per period, ŷt, is the ratio of the two smoothed components:

ŷt =
ẑt
p̂t

(5)

where α is the smoothing parameter.
• Forecasting Type: A statistical model for point forecasting, specialized for intermittent or "lumpy"

demand patterns.

C.0.14 Holt-Winters Exponential Smoothing

Holt-Winters is an extension of exponential smoothing that explicitly models trend and seasonality. It
is a widely used statistical method for forecasting time series data that exhibit these components. The
method operates by applying exponential smoothing to three components: the level, the trend, and
the seasonality. There are two primary variations of the model, additive and multiplicative, which
differ in how they incorporate the seasonal component. [25]

• Input: A univariate time series with trend and seasonality.
• Output: A point forecast for future time steps.

• Mathematical Formulation: The model provides separate updating equations for the level (l̂t),
trend (̂bt), and seasonal (ŝt) components, using smoothing parameters α, β, and γ, respectively.
Let L be the length of the seasonal period.
Additive Method: Used when the seasonal variation is roughly constant throughout the series.

Level: l̂t = α(yt − ŝt−L) + (1− α)(l̂t−1 + b̂t−1) (6)

Trend: b̂t = β(l̂t − l̂t−1) + (1− β)̂bt−1 (7)

Seasonality: ŝt = γ(yt − l̂t) + (1− γ)ŝt−L (8)
The forecast for h steps ahead is given by:

ŷt+h|t = l̂t + hb̂t + ŝt−L+h+
L

where h+
L = ⌊(h− 1) (mod L)⌋+ 1 (9)

Multiplicative Method: Used when the seasonal variation changes in proportion to the level of the
series.

Level: l̂t = α

(
yt

ŝt−L

)
+ (1− α)(l̂t−1 + b̂t−1) (10)

Trend: b̂t = β(l̂t − l̂t−1) + (1− β)̂bt−1 (11)

Seasonality: ŝt = γ

(
yt

l̂t

)
+ (1− γ)ŝt−L (12)
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The forecast for h steps ahead is given by:

ŷt+h|t = (l̂t + hb̂t)ŝt−L+h+
L

where h+
L = ⌊(h− 1) (mod L)⌋+ 1 (13)

• Forecasting Type: A statistical model for point forecasting that can handle various combinations
of trend and seasonality.

C.0.15 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) architecture
specifically designed to address the vanishing gradient problem, allowing it to learn and remember
long-term dependencies in sequential data. Unlike traditional neural networks, LSTMs have internal
mechanisms called "gates" that regulate the flow of information. These gates enable the network to
selectively remember or forget information over long periods, making it particularly well-suited for
time series forecasting. [23]

• Input: A sequence of historical time series observations.
• Output: A point forecast for one or more future time steps.
• Mathematical Formulation: The core of an LSTM unit is its cell state, ĉt, which acts as a memory.

The flow of information into and out of the cell is controlled by three gates: the forget gate (ft),
the input gate (it), and the output gate (ot). At each time step t, these gates update the cell state
and produce a hidden state, ĥt.

Forget Gate: ft = σ(wf · [ĥt−1, yt] + bf ) (14)

Input Gate: it = σ(wi · [ĥt−1, yt] + bi) (15)

Candidate State: c̃t = tanh(wc · [ĥt−1, yt] + bc) (16)
Cell State Update: ĉt = ft ⊙ ĉt−1 + it ⊙ c̃t (17)

Output Gate: ot = σ(wo · [ĥt−1, yt] + bo) (18)

Hidden State Update: ĥt = ot ⊙ tanh(ĉt) (19)
where W and b are the weight matrices and bias vectors for each gate, σ is the sigmoid function,
and ⊙ denotes element-wise multiplication. The final prediction is typically generated by passing
the hidden state ĥt through a dense output layer.

• Forecasting Type: A neural network model for point forecasting that can capture complex non-
linear patterns in time series data.

C.0.16 Prophet

Prophet is a forecasting procedure developed by Meta, based on a decomposable time series model.
It is designed to be robust to missing data and shifts in the trend, and it typically handles holidays and
seasonal effects well. The model fits an additive model with components for trend, seasonality, and
holidays. [26]

• Input: A univariate time series with timestamps.
• Output: A point forecast, along with uncertainty intervals.
• Mathematical Formulation: The Prophet model is specified as a sum of three components:

yt = g(t) + s(t) + h(t) + ϵt (20)
where:

– g(t) is the trend component, which is modeled as either a piecewise linear or logistic growth
function. This allows the model to capture non-periodic changes in the time series.

– s(t) is the seasonality component, which models periodic changes (e.g., yearly, weekly, daily).
It is approximated by a Fourier series:

s(t) =

N∑
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
(21)

where P is the period of the seasonality (e.g., 365.25 for yearly).
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– h(t) is the holiday component, which represents the effects of holidays and special events. It
is modeled as a sum of indicator functions for each holiday.

– ϵt is the error term, assumed to be normally distributed white noise.

• Forecasting Type: A decomposable statistical model for point and probabilistic forecasting,
particularly effective for business time series with strong seasonal patterns and holiday effects.

C.0.17 Random Forest

Random Forest is an ensemble machine learning model that operates by constructing a multitude
of decision trees at training time. For time series forecasting, it is applied as a regression model to
a featurized dataset. By fitting numerous trees on various sub-samples of the data and employing
randomness in feature selection, it improves predictive accuracy and controls over-fitting. The final
prediction is an average of the outputs from all individual trees, making the model robust and capable
of capturing complex, non-linear relationships. [27]

• Input: A feature matrix X where rows are observations and columns are engineered features (e.g.,
lags, calendar variables), and a corresponding target vector y.

• Output: A point forecast for each input feature vector.

• Architecture and Formulation: A Random Forest is an ensemble of B decision trees. Its
predictive power comes from two sources of randomness introduced during training:

– Bagging (Bootstrap Aggregating): Each individual tree, fb, is trained on a bootstrap sample
(a random sample drawn with replacement) from the original training dataset.

– Feature Randomness: When splitting a node in a tree, the algorithm considers only a random
subset of the total features, which decorrelates the trees in the forest.

For a new input feature vector x, the forecast is the average of the predictions from all B trees in
the ensemble:

ŷ(x) =
1

B

B∑
b=1

fb(x) (22)

• Forecasting Type: An ensemble machine learning model for point forecasting. It is non-parametric
and highly effective at modeling non-linear relationships between features and the target variable.

C.0.18 Seasonal Naive

The Seasonal Naive model is a simple yet effective baseline method for forecasting time series with a
strong seasonal component. Its core principle is that the forecast for a future period is equal to the
last observed value from the same season. For example, the forecast for this Monday would be the
value from last Monday. Despite its simplicity, it serves as a crucial benchmark for more complex
models. [28]

• Input: A univariate time series with a known seasonal period.

• Output: A point forecast for future time steps.

• Mathematical Formulation: The forecast for h steps ahead from time t, denoted ŷt+h|t, is the
last observed value from the corresponding season. Let L be the seasonal period (e.g., L = 7 for
daily data with weekly seasonality). The forecast is given by:

ŷt+h|t = yt+h−L·k (23)

where k = ⌈h/L⌉ is an integer that ensures the lagged time index refers to the most recent
observation from the target season. For a one-season-ahead forecast (h = L), this simplifies to
ŷt+L|t = yt.

• Forecasting Type: A simple statistical baseline for seasonal point forecasting.
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C.0.19 Support Vector Regression (SVR)

Support Vector Regression (SVR) is a supervised learning algorithm that extends the principles
of Support Vector Machines (SVMs) to regression problems. Instead of finding a hyperplane that
separates classes, SVR aims to find a function that deviates from the target values by a value no
greater than a specified margin, ϵ, for as many of the training points as possible. It is particularly
effective in high-dimensional spaces and is robust to some outliers due to its use of an ϵ-insensitive
loss function, which ignores errors within this margin. [29]

• Input: A feature matrix X and a corresponding target vector y.
• Output: A point forecast for each input feature vector.
• Mathematical Formulation: The goal of SVR is to find a function f(x) = wTx + b that is

as "flat" as possible. This is achieved by minimizing the norm of the weight vector, ||w||2. The
optimization problem is formulated to tolerate errors up to a margin ϵ while penalizing points that
fall outside this margin using slack variables ξi and ξ∗i . The primal optimization problem is:

min
w,b,ξ

1

2
||w||2+C

n∑
i=1

(ξi + ξ∗i ) (24)

subject to the constraints:

yi − (wTxi + b) ≤ ϵ+ ξi (25)

(wTxi + b)− yi ≤ ϵ+ ξ∗i (26)
ξi, ξ

∗
i ≥ 0 (27)

where C is a regularization parameter that controls the trade-off between the flatness of the model
and the amount up to which deviations larger than ϵ are tolerated. Non-linear relationships are
handled by mapping the data to a higher-dimensional space using a kernel function.

• Forecasting Type: A machine learning model for point forecasting that is robust to some outliers
and effective in high-dimensional feature spaces.

C.0.20 Theta Method

The Theta method is a statistical forecasting technique based on the concept of decomposition.
It models a time series by breaking it down into two components, or "theta lines." The first line
represents the long-term trend of the data, while the second line is constructed to capture the short-
term dynamics by modifying the curvature of the original series. These two lines are forecasted
independently and then combined to produce the final forecast. The standard Theta model has been
shown to be equivalent to Simple Exponential Smoothing with a drift term. [30]

• Input: A univariate time series.
• Output: A point forecast for future time steps.
• Mathematical Formulation: The method decomposes the original time series, yt, into two theta

lines.
– Line 1 (Trend Component): This line is the simple linear trend fitted to the data, which is

found by ordinary least squares regression:

ỹ
(1)
t = â+ b̂t (28)

This line is extrapolated linearly to produce its forecast.
– Line 2 (Short-term Component): This line is constructed by modifying the original series

with a coefficient θ. A common and effective choice is θ = 2, which doubles the local
curvatures of the series. This modified series, ỹ(2)

t , is then forecasted using Simple Exponential
Smoothing (SES).

The final forecast, ŷt+h, is a simple average of the forecasts from the two lines:

ŷt+h =
1

2

(
ŷ
(1)
t+h + ŷ

(2)
t+h

)
(29)

• Forecasting Type: A statistical decomposition model for point forecasting, often used as a strong
baseline for its simplicity and performance.
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C.0.21 XGBoost

XGBoost (Extreme Gradient Boosting) is a powerful and efficient implementation of the gradient
boosting framework. It is an ensemble model that builds decision trees sequentially, where each new
tree is trained to correct the errors made by the previous ones. For time series forecasting, XGBoost
is used as a regression model on a featurized dataset, making it highly effective at capturing complex,
non-linear relationships between the engineered features (e.g., lags, calendar variables) and the target.
[28]

• Input: A feature matrix X and a corresponding target vector y.
• Output: A point forecast for each input feature vector.
• Architecture and Formulation: XGBoost builds an additive model where the final prediction is

the sum of the predictions from K decision trees:

ŷi =

K∑
k=1

fk(xi) (30)

The trees are added one at a time in a greedy fashion. The k-th tree, fk, is chosen to minimize a
regularized objective function:

L(k) =

n∑
i=1

l(yi, ŷ
(k−1)
i + fk(xi)) + Ω(fk) (31)

where l is a differentiable loss function, ŷ(k−1)
i is the prediction from the first k − 1 trees, and Ω is

a regularization term that penalizes the complexity of the tree:

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (32)

Here, T is the number of leaves in the tree, w is the vector of scores on the leaves, and γ and λ are
regularization parameters.

• Forecasting Type: An ensemble machine learning model for point forecasting, known for its high
performance, speed, and regularization capabilities.
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D Benchmark Tasks Included

In this section, we describe the datasets that have been used for each benchmark task. We summarize
the dataset used for each benchmark task in Table 5.

D.1 Synthetic Data: Cyclic Seasonality with Additive Trends

D.1.1 Description

This category of synthetic data models a time series that exhibits both a complex seasonal pattern
and a persistent, long-term trend. The data is generated using two related methods. Both methods
start with a foundational signal that combines multi-frequency sinusoids with a linear trend. The
second, more complex method builds upon this foundation by introducing an additional, randomized
sinusoidal component to the signal.

In both cases, non-negative noise from an exponential distribution is added to the deterministic signal.
These datasets are ideal for testing a model’s ability to identify and separate periodicities from an
underlying linear trend, with the second method providing a more complex seasonal structure.

D.1.2 Mathematical Formulation

The generation process for both methods is based on a primary signal, ybase(t), which includes
seasonal, trend, and offset components:

ybase(t) = 2 sin(t) + 2 cos

(
t

2

)
︸ ︷︷ ︸

Seasonality

+
1

4
t︸︷︷︸

Trend

+ 4︸︷︷︸
Offset

(33)

Method 1: Fixed Additive Trend In the first method, the true signal, y1(t), is simply the base function.
The final observed value, Yt, is this signal plus an additive noise term, ϵt.

Yt = y1(t) + ϵt = ybase(t) + ϵt (34)

Method 2: Randomized Additive Trend The second method introduces additional complexity. For
each generated time series, a random frequency parameter, α, is sampled once from a continuous
uniform distribution:

α ∼ U(a, b) (35)
In the provided code, this range is fixed from a = 0 to b = 5. This parameter is used to create an
additional sinusoidal component that is added to the base signal. The true signal, y2(t), is therefore:

y2(t) = ybase(t) + sin(αt) (36)

The final observed value, Yt, is this enhanced signal plus the noise term:

Yt = y2(t) + ϵt (37)

Noise Model For both methods, the noise term, ϵt, is drawn from an exponential distribution with a
scale parameter β:

ϵt ∼ Exponential(β) (38)

D.1.3 Adjustable Parameters

The data generation process is controlled by the following parameters.

• Number of Points (num_points, N ): This integer parameter sets the total number of
data points, defining the length of the time series.

• Start Time (start_time, t0): This parameter defines the initial time value for the series.
• Noise Scale (noise_std, β): This parameter represents the scale (and mean) of the

exponential noise distribution. A larger value for β increases the average magnitude of the
positive noise added to the base signal.
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Table 5: Summary of datasets used for benchmark tasks.

Benchmark Task l h n m

Trend
Multivariate (Non-stationary) Electricity Consumption [31] 512 64 1741 44
Univariate (Non-stationary) Software Development Job Postings [32] 512 64 1827 1

Decomposition
Univariate (Additive) Synthetically Generated Additive (Section D.1) 1024 64 3000 1
Univariate (Multiplicative) Synthetically Generated Multiplicative (Section D.2) 1024 64 3000 1

Frequency
Multivariate (Days) Gold Price in India [33] 1024 64 4024 5
Univariate (Days) Coinbase Litecoin [34] 512 64 1827 1
Multivariate (Hours) Madrid Transport Pollution [35] 2048 64 181753 14
Multivariate (Minutes) Historical Stock Data (2003-2024) [36] 2048 64 122110 6
Multivariate (Minutes) Historical Stock Data (2003-2024, Longest) [36] 2048 64 122110 6
Multivariate (Months) Airlines Baggage Complains [37] 32 8 84 4
Univariate (Months) Inventories to Sales Ratio [38] 64 64 402 1
Univariate (Quarters) German House Prices [39] 32 32 221 1
Multivariate (Seconds) Utah Drilling [40] 2048 64 9661 35
Univariate (Weeks) Federal Funds Effective Rate [41] 1024 64 3713 1
Univariate (Years) Personal Consumption Expenditures [42] 32 8 96 1

Seasonality
Multivariate (Periodic) Madrid Transport (Cyclical) [35] 2048 64 181753 14
Univariate (Periodic) Synthetic Cyclic 1024 64 3000 1
Univariate (Quasiperiodic) Synthetic Non-stationary 1024 64 3000 1

Domain
Univariate (Climate) Delhi Climate [43] 512 64 1462 1
Multivariate (Economics/Finance) Gold Price in India [33] 1024 64 4024 5
Multivariate (Economics/Finance) Gold Price in India (Real) [33] 1024 64 4024 5
Univariate (Economics/Finance) Coinbase Litecoin [34] 512 64 1827 1
Multivariate (Energy) Room SplitSmart [44] 2048 64 10603 2
Univariate (Energy) Room SplitSmart [44] 128 64 561 1
Multivariate (Healthcare) NYC Covid Cases [45] 512 64 2005 54
Univariate (Healthcare) Employees Health Care [46] 64 64 427 1
Univariate (Manufacturing) Inventories to Sales Ratio [38] 64 64 402 1
Multivariate (Nature) Soil Monitoring [47] 1024 64 4323 127
Multivariate (Nature) Soil Monitoring (500) [47] 1024 64 4323 127
Univariate (Nature) Soil Monitoring [47] 128 64 679 1
Multivariate (Sales) Airlines Baggage Complains [37] 32 8 84 4
Univariate (Sales) German House Prices [39] 32 32 221 1

Multivariate (Software) Cyber Attacks on
Water Distribution Networks [48] 512 64 1741 44

Univariate (Software) Software Development Job Postings [32] 512 64 1827 1
Multivariate (Transport) Airlines Baggage Complains (100) [37] 32 8 84 4
Multivariate (Transport) Madrid BEN pollution [49] 2048 64 181753 14
Multivariate (Transport) Madrid BEN pollution (Noisy) [35] 2048 64 181753 14
Univariate (Transport) Madrid BEN pollution [49] 2048 64 172622 1
Univariate (Web) Web Traffic [50] 1024 64 2793 1

Data sparsity
Multivariate (Dense) Gold Price in India [33] 1024 64 4024 5
Univariate (Dense) Chicken Pox [51] 128 64 522 1
Univariate (Sparse) Patient Chart [52] 2048 64 8093 1

Value type
Univariate (Binary) Absenteeism at Work [53] 128 64 740 1
Univariate (Categorical) Online Retail [54] 2048 64 541909 1
Multivariate (Continuous) Gold Price in India [33] 1024 64 4024 5
Univariate (Continuous) Forest Fires [55] 128 64 517 1
Multivariate (Count) Madrid BEN pollution [49] 2048 64 181753 14
Univariate (Count) Occupancy [56] 2048 64 10129 1
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• Random Frequency (alpha, α): (Method 2 only) This parameter is not set by the user
but is sampled internally from a uniform distribution U(0, 5) for each generated series. It
introduces variability in the seasonal component across different datasets created by the
second method.

D.2 Synthetic Data: Cyclic Seasonality with Multiplicative and Additive Trends

D.2.1 Description

This category of synthetic data models a time series characterized by a complex interaction of seasonal
components and trends. A key feature is a multiplicative trend, where the amplitude of one of the
seasonal components grows exponentially over time. This is combined with another stable seasonal
component and a linear additive trend.

The data is generated using two related methods. The first method uses a fixed, deterministic signal.
The second method introduces additional complexity by adding another sinusoidal component with
a randomized frequency to the base signal. In both cases, non-negative noise from an exponential
distribution is added. These datasets are particularly useful for testing a model’s ability to handle
heteroscedasticity, where the variance of the series changes over time, in the presence of other
seasonalities and trends.

D.2.2 Mathematical Formulation

Both methods are built upon a primary signal, ybase(t), which is a composite of several functions:

ybase(t) = et/100 sin(t)︸ ︷︷ ︸
Multiplicative Seasonality

+ 3 cos

(
t

2

)
︸ ︷︷ ︸

Additive Seasonality

+
1

2
t︸︷︷︸

Linear Trend

(39)

Method 1: Fixed Multiplicative Trend In the first method, the true signal, y1(t), is simply the base
function. The final observed value, Yt, is this signal plus an additive noise term, ϵt.

Yt = y1(t) + ϵt = ybase(t) + ϵt (40)

Method 2: Randomized Additive Component The second method adds another layer of seasonality.
For each generated time series, a random frequency parameter, α, is sampled once from a continuous
uniform distribution:

α ∼ U(a, b) (41)

In the provided code, this range is fixed from a = 5 to b = 10. The true signal, y2(t), is the base
signal plus this new randomized sinusoidal component:

y2(t) = ybase(t) + sin(αt) (42)

The final observed value, Yt, is this enhanced signal plus the noise term:

Yt = y2(t) + ϵt (43)

Noise Model For both methods, the noise term, ϵt, is drawn from an exponential distribution with a
scale parameter β:

ϵt ∼ Exponential(β) (44)

D.2.3 Adjustable Parameters

The data generation process is controlled by the following parameters.

• Number of Points (num_points, N ): This integer parameter sets the total number of
data points, defining the length of the time series.

• Start Time (start_time, t0): This parameter defines the initial time value for the series.
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• Noise Scale (noise_std, β): This parameter represents the scale (and mean) of the
exponential noise distribution. A larger value for β increases the average magnitude of the
positive noise added to the base signal.

• Random Frequency (alpha, α): (Method 2 only) This parameter is not set by the user
but is sampled internally from a uniform distribution U(5, 10) for each generated series. It
introduces variability in the seasonal component across different datasets created by the
second method.
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E Benchmark Evaluations

Our benchmark evaluation across multiple deterministic and stochastic forecasting metrics reveals
several key insights regarding model performance and efficiency. Notably, LAFN, with only 0.4M
(400K) parameters, demonstrates remarkable performance efficiency compared to significantly larger
foundation models such as TimesFM (200M parameters) [17], Chronos (20M parameters) [7], and
Moirai (approximately 91M for the base variant) [15].

On deterministic metrics, LAFN achieves the best performance on several tasks: it attains the
lowest MAE on the Baggage dataset (0.358) and SplitSmart Energy task (0.645) (see Table 6),
the lowest RMSE on Baggage (0.483) (Table 9), and the lowest MASE on both Baggage (0.689)
and SplitSmart (1.524) (Table 8). This performance persists despite LAFN’s compact architecture,
achieving competitive or superior results compared to models with up to 2000×more parameters. For
instance, while LAFN achieves the best MAE on Baggage, TimesFM ( 200M parameters) achieves
0.526 on the same task, and Chronos (depending on variant) achieves 0.841. Similarly, on SplitSmart,
LAFN’s MASE of 1.524 outperforms TimesFM (1.617), demonstrating that parameter efficiency
does not necessarily compromise forecasting accuracy.

On stochastic metrics, LAFN also shows strong performance, achieving the best CRPS scores on
Madrid Count and Madrid Hours datasets (both 0.798) (Table 12), despite competing against large-
scale foundation models. The quantile score (Table 10) and weighted interval score (Table 11) results
further validate LAFN’s capability to provide well-calibrated probabilistic forecasts with minimal
model complexity.

These findings align with recent research on efficient forecasting architectures [57] and suggest
that architectural design and training methodology are as important as model scale for time series
forecasting [7, 15]. LAFN’s success highlights the potential for lightweight yet effective forecasting
models suitable for resource-constrained environments, while maintaining competitive performance
against much larger foundation models [57].
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F Additional Related Works

Classical time-series forecasting began with statistical models that exploit stochastic structure and
domain priors, including ARIMA and its Box–Jenkins methodology [58], exponential-smoothing
state-space ETS [59], the Theta method [60], and multivariate VAR models [61]. Deep learning
methods later advanced accuracy and scale by learning nonlinear temporal dependencies from large
corpora: DeepAR [62], N-BEATS [63], DLinear [64], TiDE [65], TFT [66], PatchTST [67], and
iTransformer [68]. Probabilistic forecasters further model predictive distributions, e.g., diffusion-
based TimeGrad [69], score-based CSDI for imputation and forecasting [70], and conditional-flow
GRU-NVP [71].

TSFMs. Inspired by NLP/vision pretraining, TSFMs train on heterogeneous corpora and evaluate
in zero/few-shot settings across domains and horizons. Representative models include Moirai [72],
Chronos [7], TimesFM [73], Lag-Llama [74], Timer [75], UniTS [76], TTM (Tiny Time Mixers)
[77], Moment [22], and multimodal VisionTS [78], TiRex [79]. Collectively, they demonstrate strong
zero-shot point and probabilistic accuracy on diverse benchmarks while revealing open challenges at
long horizons (error accumulation) and at very high frequencies.

Public datasets and repositories. Public corpora have underpinned progress from statistical to
foundation-model eras. The M-competitions (M3 and M4) provided broad univariate benchmarks
across domains and frequencies [80, 81], followed by the retail-demand M5 competition [82]. The
Monash Time-Series Forecasting Archive curates a large, standardized repository spanning many
domains and sampling granularities [83]. Large-scale pretraining/evaluation collections include
LOTSA (released with Moirai) [72], the Chronos corpus with in-domain/zero-shot splits [7], and the
diverse univariate corpus aggregated in Lag-Llama [74]. Task-focused collections such as the LTSF
suite [64] (e.g., ETT datasets) and broader benchmarks like TFB [84] and ProbTS [85] assemble
datasets emphasizing horizon length, covariates, and probabilistic outputs. Recent work has also
introduced BOOM, a large-scale benchmark of 2,807 real-world multivariate observability time
series ( 350 million points) reflecting challenges such as heavy tails and abrupt regime shifts, and
BOOMLET, a smaller uniformly sampled subset ( 23 million points across 1,627 variates) for scalable
experimentation [21].

Evaluation frameworks and benchmarks. Tooling and standardized evaluation have evolved in
parallel. Practitioner libraries such as Prophet [86] and sktime [87] offer classical and ML baselines
with unified interfaces, while GluonTS [88] and PyTorchTS [89] provide probabilistic deep-learning
pipelines. Benchmarking efforts including LTSF [64], BasicTS+ [? ], TFB [84], and ProbTS [85]
compare statistical, deep, and (in some cases) foundation models, but differ in task taxonomies, splits,
and leakage controls. Standardized metrics such as MASE [90] and CRPS [91] enable cross-dataset
aggregation of point and probabilistic performance, yet consistent pretraining/evaluation protocols
and leakage-free large-scale corpora remain key needs for fair TSFM assessment.
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