TempusBench: An Evaluation Framework for
Time-Series Forecasting

Denizalp Goktas* Gerardo Riafio-Bricefio* Alif Abdullah Aryan Nair

Chenkai Shen Beatriz de Lucio Alexandra Magnusson Farhan Mashrur

Ahmed Abdulla Shawrna Sen Mahitha Thippireddy Gregory Schwartz

Amy Greenwald

Simulacrum
New York City, NY, USA

{deni, gerardo, amy}@smlcrm.com

Abstract

Foundation models have transformed natural language processing and computer
vision, and a rapidly growing literature on time-series foundation models (TSFMs)
seeks to replicate this success in forecasting. While recent open-source mod-
els demonstrate the promise of TSFMs, the field lacks a comprehensive and
community-accepted model evaluation framework. We see at least four major
issues impeding progress on the development of such a framework. First, current
evaluation frameworks consist of benchmark forecasting tasks derived from often
outdated datasets (e.g., M3), many of which lack clear metadata and overlap with
the corpora used to pre-train TSFMs.Second, existing frameworks evaluate mod-
els along a narrowly defined set of benchmark forecasting tasks such as forecast
horizon length or domain, but overlook core statistical properties such as non-
stationarity and seasonality. Third, domain-specific models (e.g., XGBoost) are
often compared unfairly, as existing frameworks neglect a systematic and consistent
hyperparameter tuning convention for all models. Fourth, visualization tools for
interpreting comparative performance are lacking. To address these issues, we
introduce TempusBench, an open-source evaluation framework. TempusBench
consists of 1) new datasets which are not included in existing TSFM pretraining
corpora, 2) a set of novel benchmark tasks that go beyond existing ones, and 3) a
model evaluation pipeline with a standardized hyperparameter tuning protocol, and
4) a tensorboard-based visualization interface. We provide access to our code on
GitHub: https://github.com/Smlcrm/TempusBench.

1 Introduction

The success of foundation models (i.e., models trained on large and diverse datasets that can be
used to solve downstream tasks) in natural language processing (NLP) and computer vision has
inspired an emerging literature on time-series foundation models. Time-series foundation models
(TSFMs) are models that take past time-series data (and possibly covariate time-series data) as input

*Equal contribution.

NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT?S).

 https://github.com/Smlcrm/TempusBench

and output future values (or distributions over them), typically formulated as neural networks trained
via supervised learning. While about a dozen open-source TSFMs are now available, comparing their
performance to one another and to traditional domain-specific models (e.g., ARIMA [1], SVR [2, 3])
remains difficult. A handful of evaluation frameworks have been released, but the field still lacks
comprehensive, community-accepted standards for model evaluation [4], creating an impediment for
the replication of the success of foundation models in NLP and computer vision [5].

We see four major challenges facing existing evaluation frameworks. First, the evaluation
ecosystem relies on outdated datasets such as M3 [6] and M4 [7], many lacking metadata (e.g.,
variable names). More importantly, the existing evaluation datasets overlap with the pretraining
corpora of TSFMs, leading to inflated estimates of zero-shot generalization [8]. For example, except
for Moirai2, all TSFMs assessed by GIFT-Eval include test data in their training corpus [9, 10].
Second, current frameworks define benchmark forecasting tasks only along narrow axes (i.e., forecast
horizon, variate type, frequency, and domain). While useful, these miss key statistical properties
long studied in time-series analysis such as (non-)stationarity, and seasonality. Without evaluation
across such properties, it seems unlikely that frameworks can yield generalizable conclusions about
model capabilities. Third, existing frameworks have not yet developed standardized hyperparameter
tuning routines, leading to comparisons made between TSFMs and domain-specific models to be
unfair as the performance of domain-specific models depend heavily on hyperparameter choice.’
Indeed, as noted by practitioners [11], simple statistical models with well-chosen hyperparameters
can outperform more complex ones, highlighting the need for consistent tuning routines. Fourth,
currently, evaluation typically reduces to numerical metrics such as mean squared error, which
practitioners remark [12] provide limited interpretability. For instance, under GIFT-Eval, seasonal
naive outperforms five open-source TSFMs, but this offers no insight into the strength and weaknesses
of TSFMs, since seasonal naive fails when seasonality is weak. Beyond quantitative scores, qualitative
analyses—especially forecast visualizations—are essential.

To address these issues, we introduce TempusBench, an open-source evaluation framework. Tempus-
Bench consists of 1) new datasets which are not included in existing TSFM pretraining corpora, 2) a
set of novel benchmark tasks that goes beyond existing ones, , and 3) a model evaluation pipeline
with a standardized hyperparameter tuning protocol, and 4) tensorboard-based visualization interface.

1.1 Contributions

TempusBench, going beyond TSFMs, includes 20 forecasting models , a number of which such
as XGBoost, have previously not been considered by evaluation frameworks, and overcomes the
aforementioned four issues by improving along the following dimensions. First, we introduce
new time-series datasets which do not come from existing time-series evaluation datasets, and
which are not contained in the training corpus of open-source TSFMs released to date. Second, we
propose new benchmark task types that extend beyond horizon length, variate type, frequency, and
domain. These include categories based on stationarity, seasonality, variable type (continuous, count,
binary, categorical), sparsity (sparse vs. dense), dataset size (small vs. large), and quality (noisy
vs. measurement error). Third, we introduce a model evaluation pipeline which runs a standardized
and automated hyperparameter selection procedure for all forecasting models with hyperparameters,
allowing a fair comparison of all forecasting methods. Fourth, TempusBench comes packages with
a tensorboard-based visualization application which easily allows researchers and practitioners to
visualize and interpret the performance of various models on different task types.

2 Background

We refer the reader to Appendix A for the notational convention we adopt, as well as for additional
mathematical preliminaries and evaluation metric definitions.

Forecasters A (time-series) forecasting task T = (I, h,n,m, X,), X,Y) consists of a context
length | € N, a forecast horizon h € N, m € N target time-series Y = (yy,...,Y,,). where
for each variate i € [m], entries of y, € V! take values from a set of target values J C R, and
n € N covariate time-series X = (xy,...,x,)" where for each covariate j € [n], z; € X"
takes values from a set of covariate values X; C R. For convenience, we denote the joint set of

>TSFMs require hyperparameter searches during pretraining, but not during evaluation.

Table 1: Property comparisons of various forecasting benchmarks.

Property Monash [13]TFB [14] LTSF [15]BasicTS+ [16] ProbTS [17] GIFT-Eval [9] TempusBench

Frequency Second Minute Minute Minute Minute Second Second

Range to Year to Year to Week to Day to Week to Year to Year

. 7 6 5 3 5 7 10
omains

Train/Test

data leak v v v v v v

¥;‘;‘:s‘e Uni Uni/Multi Multi Multi Multi Uni/Multi Uni/Mulii

Eze;dgltcﬁlon Short Short Long Short/Long Short/Long Short/Long Short/Long

Stat. Benchmarks X X X X X X

Forecaster types ~ Stat/DL Stat/DL Stat/DL Stat/DL Stat./DL/FM Stat./DL/FM Stat./ML/DL/FM

Hyperparam.

autotuning X X X X X X

target variate values by) = Xi cim
forecasting task 7 is said to be univariate (resp. multivariate) iff m = 1 (m > 1). A forecasting task
T is said to be unconditional (resp. conditional) iff n = 0 (resp. n > 0). A forecasting task 7 is
said to be a continuous (resp. count | categorical | binary) forecasting task iff for all i € [m] }; C R
is a continuous set (resp. V; = N1Y; C N 1Y, = {0,1}). A (point) forecast for a forecasting

| Y; and the joint set of covariate values X = Xje[n] X A

task 7is a matrix Y = (g,...,,,) s.t. for all target variates i € [m], y, € Y corresponds to
forecasted values of variate i for & steps. A (point) forecasting model (or, colloquially, a forecaster) is
amapping F : X!Th x Yl — Yhst. F(X,Y) = (£1(X,Y),..., £,(X,Y)7 is a forecast for
T3 A probabilistic forecasting model is a mapping 7 : X7 x Y — A(V") s.t. 7(X,Y)[Y] >0
denotes the probability of Yy e) being realized.

Forecasting Evaluation Frameworks In reality, many forecasters F¢ : X!+ x ! — V" are
dependent on some hyperparameters 8 € ©, and it is more appropriate to talk about a family of fore-
casters F© = {F?}gco, and choose the forecaster with parameters which is the most appropriate for
a forecasting task.* A forecaster evaluation framework B = (p,q, &, {0:}0_, , {FO}_, {T;};eq)
consists of p € N familes of forecasters, with for each i € [p], F O: being defined by a set of
hyperparameters ©;; g € N forecasting tasks (or, colloquially, benchmarks, or benchmark tasks)
{Tj}jelq : and a hyperparameter tuner £ , which takes as input a benchmark and outputs some
hyperparameters.

3 TempusBench

We describe in Section 4, additional extensions of TempusBench which will be released in the
full-paper version. TempusBench, denoted B™®, is a forecasting evaluation framework where the
hyperparameter tuner £TP is given by three-step procedure: given a benchmark, a (sub)set of
hyperparameters, and a family of forecasters, 1) a validation dataset of subsets of the target and
covariate time-series are created, 2) for each hyperparameter in the (sub)set of hyperparameters, the
average MSE is computed across all samples in the validation dataset, 3) the hyperparameter with the
lowest MSE is output. We summarize the set of families of forecasters, and the set of benchmarks
included in TempusBench in Table 12 (Appendix D) and Table 14 (Appendix D.1) respectively. See
Appendix B for additional details on computation.

4 Next Directions and Conclusion

‘We omit for the workshop version of TempusBench two directions in which we have been developing
TempusBench, namely the inclusion of conditional forecasting problems. We plan to release this
more general version of TempusBench in the coming months as part of the full-version of our paper.

*While our definition is in line with the literatur [9], more generally, a forecaster can be defined as a mapping
from forecasting tasks to forecasts, i.c., T F(T) =Y.

*For instance, the forecast of an ARIMA model is dependent on choices of hyperparameters given by the
order of number of time lags, the degree of differencing, and the order of the moving-average model, and it is
more appropriate to talk of the family of ARIMA models.

Table 2: Taxonomy of all univariate and multivariate benchmark tasks included in TempusBench.

Category Benchmark Tasks

Movement Stationary, Non-Stationary

Data Quality Noisy data, Data with measurement error

Frequency Seconds, Minutes, Hours, Days, Weeks, Months, Quarterly, Years

Context Length 30, 100, 500, 1000
Forecast Horizon 1, 20, 100, 500, 1000
Seasonality Cyclical, Non-Stationary cyclical, Regressive, Irregular, Additive, Multiplicative

Domain Energy, Transport, Climate, Software, Web, Sales, Nature, Econ., Healthcare, Manufacturing

Dataset Coverage sparse, dense
Target Type continuous, count, binary, categorical

Table 3: Average Win Rates for deterministic and probabilistic forecasting models.

(a) Average Win Rate for MAPE Metric. (b) Average Win Rate for CRPS Metric
Model Name Average Win Rate Model Name Average Win Rate
Lafn 0.7931 Toto 1.0000
Timesfm 0.6730 Moirai 0.7857
Croston Classic 0.6164 Lafn 0.5714
Seasonal Naive 0.5849 Chronos 0.4000
Toto 0.5789 Lagllama 0.2667
Varmax 0.5714
Arima 0.5346
Moment 0.5220
Lagllama 0.5031
Lstm 0.4969
Moirai 0.4966
Svr 0.4874
Tabpfn 0.4828
Random Forest 0.4748
Tiny Time Mixer 0.4151
Chronos 0.4025
Exponential Smoothing 0.3333
Prophet 0.3333
Theta 0.3300

We expect that the datasets used to define our benchmarks will eventually get included in the pretaining
corpus of TSFMs, as has been the case often with NLP benchmarks. To this end, we are developing
dynamic benchmarks where test data is continuously refreshed. While dynamic benchmarks can
easily be defined benchmarks making use of synthetic data (e.g., our seasonality benchmarks) by
continuously generating new datasets, for other benchmarks (e.g., our domain benchmarks) we are
building a rotating set of datasets which are pulled from live data APIs.

Finally, for the workshop version of TempusBench, in line with existing forecasting evaluation
frameworks, we consider benchmark categories such as target variate type, context length, forecast
length as defining individual forecasting tasks. However, a more comprehensive way to see these
benchmark categories would be as hyperparameters for other benchmark categories such as domains.
That is, for instance, a more comprehensive list of benchmarks would test the performance of
forecasting models for each domain (e.g., economics) for different choices of target variate types,
context lengths, and forecast lengths) We are planning to release these more comprehensive benchmark
types in the coming months as part of the full-version of our paper.

References

[1] George E. P. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and Control.
Holden-Day, San Francisco, 1970. 2

[2] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995. 2

[3] Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alexander Smola, and Vladimir
Vapnik. Support vector regression machines. In Advances in Neural Information Processing
Systems 9, pages 155-161. MIT Press, 1997. 2

[4] Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan,
and Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In
Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining,
pages 6555-6565, 2024. 2, 34

[5] Prajakta S Kalekar et al. Time series forecasting using holt-winters exponential smoothing.
Kanwal Rekhi school of information Technology, 4329008(13):1-13, 2004. 2, 25, 43, 44, 45

[6] Spyros Makridakis and Michele Hibon. The M3-competition: Results, conclusions and implica-
tions. International Journal of Forecasting, 16(4):451-476, 2000. 2, 42

[7] Spyros Makridakis, Evangelos Spiliotis, and Vassilis Assimakopoulos. The M4 competition:
Results, findings, conclusion and way forward. International Journal of Forecasting, 34(4):
802-808, 2018. 2, 42

[8] Pooja Anand, Mayank Sharma, and Anil Saroliya. A comparative analysis of artificial neural
networks in time series forecasting using arima vs prophet. In 2024 International Conference
on Communication, Computer Sciences and Engineering (IC3SE), pages 527-533. IEEE, 2024.
2,26,42,43, 44, 45

[9] Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong,
and Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation.
arXiv preprint arXiv:2410.10393,2024. 2, 3

[10] Salesforce. Gift-eval. Hugging Face Space, 2024. URL https://huggingface.co/
spaces/Salesforce/GIFT-Eval. Accessed: 2025-08-29. 2

[11] u/nkafr. The rise of foundation time-series forecasting models. https:
//www.reddit.com/r/datascience/comments/1e865bt/the_rise_of__
foundation_timeseries_forecasting/, 2024. URL https://www.reddit.
com/r/datascience/comments/1e865bt/the_rise_of_foundation_
timeseries_forecasting/. Reddit post on r/datascience. 2

[12] Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy. Interna-
tional journal of forecasting, 22(4):679—688, 2006. 2

[13] Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, et al. Monash time series
forecasting archive. In NeurIPS Datasets and Benchmarks Track, 2021. 3, 42

[14] Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo,
Aoying Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair
benchmarking of time series forecasting methods. arXiv preprint arXiv:2403.20150, 2024. 3,
42

[15] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121-11128, 2023. 3,42

[16] Zezhi Shao, Fei Wang, Yongjun Xu, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Tao
Sun, Guangyin Jin, Xin Cao, et al. Exploring progress in multivariate time series forecasting:
Comprehensive benchmarking and heterogeneity analysis. IEEE Transactions on Knowledge
and Data Engineering, 2024. 3

https://huggingface.co/spaces/Salesforce/GIFT-Eval
https://huggingface.co/spaces/Salesforce/GIFT-Eval
https://www.reddit.com/r/datascience/comments/1e865bt/the_rise_of_foundation_timeseries_forecasting/
https://www.reddit.com/r/datascience/comments/1e865bt/the_rise_of_foundation_timeseries_forecasting/
https://www.reddit.com/r/datascience/comments/1e865bt/the_rise_of_foundation_timeseries_forecasting/
https://www.reddit.com/r/datascience/comments/1e865bt/the_rise_of_foundation_timeseries_forecasting/
https://www.reddit.com/r/datascience/comments/1e865bt/the_rise_of_foundation_timeseries_forecasting/
https://www.reddit.com/r/datascience/comments/1e865bt/the_rise_of_foundation_timeseries_forecasting/

[17] Jiawen Zhang, Xumeng Wen, Zhenwei Zhang, Shun Zheng, Jia Li, and Jiang Bian. Probts:
Benchmarking point and distributional forecasting across diverse prediction horizons. Advances
in Neural Information Processing Systems, 37:48045-48082, 2024. 3

[18] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen
Sahoo. Unified training of universal time series forecasting transformers. arXiv preprint
arXiv:2402.02592, 2024. 20, 34

[19] Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann, Chenghao
Liu, Silvio Savarese, Caiming Xiong, and Doyen Sahoo. Moirai-moe: Empowering time series
foundation models with sparse mixture of experts. arXiv preprint arXiv:2410.10469, 2024. 20

[20] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model
for time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.
20, 21, 34

[21] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham
Kapoor, et al. Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815,
2024. 21, 34,42

[22] Shi Bin Hoo, Samuel Miiller, David Salinas, and Frank Hutter. From tables to time: How tabpfn-
v2 outperforms specialized time series forecasting models. arXiv preprint arXiv:2501.02945,
2025. 22

[23] Vijay Ekambaram, Arindam Jati, Pankaj Dayama, Sumanta Mukherjee, Nam Nguyen, Wesley M
Gifford, Chandra Reddy, and Jayant Kalagnanam. Tiny time mixers (ttms): Fast pre-trained
models for enhanced zero/few-shot forecasting of multivariate time series. Advances in Neural
Information Processing Systems, 37:74147-74181, 2024. 22

[24] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian
Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir
Hassen, et al. Lag-llama: Towards foundation models for probabilistic time series forecasting.
arXiv preprint arXiv:2310.08278, 2023. 23

[25] Ben Cohen, Emaad Khwaja, Youssef Doubli, Salahidine Lemaachi, Chris Lettieri, Charles
Masson, Hugo Miccinilli, Elise Ramé, Qiqi Ren, Afshin Rostamizadeh, et al. This time is

different: An observability perspective on time series foundation models. arXiv preprint
arXiv:2505.14766, 2025. 23, 45

[26] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024. 24,42, 45

[27] Sima Siami-Namini and Akbar Siami Namin. Forecasting economics and financial time series:
Arima vs. Istm. arXiv preprint arXiv:1803.06386, 2018. 24, 26, 42, 43, 44, 45

[28] Thomas R Willemain, Charles N Smart, Joseph H Shockor, and Philip A DeSautels. Fore-
casting intermittent demand in manufacturing: a comparative evaluation of croston’s method.
International Journal of forecasting, 10(4):529-538, 1994. 25

[29] Lin Lin, Fang Wang, Xiaolong Xie, and Shisheng Zhong. Random forests-based extreme
learning machine ensemble for multi-regime time series prediction. Expert Systems with
Applications, 83:164—-176, 2017. 27

[30] Senyao Wang and Jin Ma. A novel ensemble model for load forecasting: Integrating random
forest, xgboost, and seasonal naive methods. In 2023 2nd Asian Conference on Frontiers of
Power and Energy (ACFPE), pages 114-118. IEEE, 2023. 27, 29, 43, 44, 45

[31] Fan Zhang and Lauren J O’Donnell. Support vector regression. In Machine learning, pages
123-140. Elsevier, 2020. 28, 43

[32] Dimitrios D Thomakos and Konstantinos Nikolopoulos. Forecasting multivariate time series
with the theta method. Journal of Forecasting, 34(3):220-229, 2015. 28, 42, 43, 44

[33] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-
term temporal patterns with deep neural networks. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, SIGIR *18, pages 95-104,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356572. doi:
10.1145/3209978.3210006. URL https://doi.org/10.1145/3209978.3210006.

31
[34] Indeed. Software Development Job Postings on Indeed in the United States
[IHLIDXUSTPSOFTDEVE]. https://fred.stlouisfed.org/series/

THLIDXUSTPSOFTDEVE, 2025. Retrieved August 29, 2025. 31

[35] Nisarg Chodavadiya. Daily Gold Price (2015-2021) Time Series.
https://www.kaggle.com/datasets/nisargchodavadiya/
daily—-gold-price-20152021-time-series, 2025. Accessed on August 29,
2025. 31

[36] Coinbase. Coinbase Litecoin [CBLTCUSD]. https://fred.stlouisfed.org/
series/CBLTCUSD, 2025. Retrieved August 29, 2025. 31

[37] IgnacioQG. 2001-2022 Hourly Dataset of Pollution in
Madrid. https://www.kaggle.com/datasets/ignacioqqg/
20012022-hourly-dataset—of-pollution-in-madrid, 2022. Accessed
on August 29, 2025. 31

[38] DeltaTrup. LT 1-Minute Historical Stock Data (2003-
2024). https://www.kaggle.com/datasets/deltatrup/

lt-1-minute-historical-stock-data-2003-2024, may 2024. Accessed
on August 29, 2025. 31

[39] GabrielSantello. Airline Baggage Complaints — Time Series Dataset.
https://www.kaggle.com/datasets/gabrielsantello/
airline-baggage—-complaints-time-series—dataset, 2023. Accessed

on August 29, 2025. 31

[40] U.S. Census Bureau. Manufacturers: Inventories to Sales Ratio [MNFCTRIRSA]. https:
//fred.stlouisfed.org/series/MNFCTRIRSA, 2025. Retrieved August 29, 2025.
31

[41] Bank for International Settlements. Real Residential Property Prices for Germany
[QDER628BIS]. https://fred.stlouisfed.org/series/QDER628BIS, 2025.
Retrieved August 29, 2025. 31

[42] Energy and Geoscience Institute at the University of Utah. Utah FORGE: Well 16A(78)-32
Drilling Data. Accessed via Data.gov, 2025. Accessed on August 29, 2025. 31

[43] Board of Governors of the Federal Reserve System (US). Federal Funds Effective Rate [FF].
https://fred.stlouisfed.org/series/FF, 2025. Retrieved August 29, 2025. 31

[44] U.S. Bureau of Economic Analysis. Personal Consumption Expenditures: Chain-type
Price Index [DPCERG3A086NBEA]. https://fred.stlouisfed.org/series/
DPCERG3A086NBEA, 2025. Retrieved August 29, 2025. 31

[45] SumanthVrao. Daily Climate Time Series Data. https://www.kaggle.com/
datasets/sumanthvrao/daily-climate-time-series—data, 2021. Accessed
on August 29, 2025. 31

[46] BITS Pilani - Goa. SplitSmart: An Open Dataset for Enabling Research in Energy-Efficient
Ductless-Split Air Conditioner, 2024. Accessed on August 29, 2025. 31

[47] City of New York. COVID-19 Daily Counts of Cases, Hospitalizations, and Deaths, 2025.
Accessed on August 29, 2025. Daily count of NYC residents who tested positive for SARS-
CoV-2, hospitalized with COVID-19, and deaths among COVID-19 patients. 31

https://doi.org/10.1145/3209978.3210006
https://fred.stlouisfed.org/series/IHLIDXUSTPSOFTDEVE
https://fred.stlouisfed.org/series/IHLIDXUSTPSOFTDEVE
https://www.kaggle.com/datasets/nisargchodavadiya/daily-gold-price-20152021-time-series
https://www.kaggle.com/datasets/nisargchodavadiya/daily-gold-price-20152021-time-series
https://fred.stlouisfed.org/series/CBLTCUSD
https://fred.stlouisfed.org/series/CBLTCUSD
https://www.kaggle.com/datasets/ignacioqg/20012022-hourly-dataset-of-pollution-in-madrid
https://www.kaggle.com/datasets/ignacioqg/20012022-hourly-dataset-of-pollution-in-madrid
https://www.kaggle.com/datasets/deltatrup/lt-1-minute-historical-stock-data-2003-2024
https://www.kaggle.com/datasets/deltatrup/lt-1-minute-historical-stock-data-2003-2024
https://www.kaggle.com/datasets/gabrielsantello/airline-baggage-complaints-time-series-dataset
https://www.kaggle.com/datasets/gabrielsantello/airline-baggage-complaints-time-series-dataset
https://fred.stlouisfed.org/series/MNFCTRIRSA
https://fred.stlouisfed.org/series/MNFCTRIRSA
https://fred.stlouisfed.org/series/QDER628BIS
https://fred.stlouisfed.org/series/FF
https://fred.stlouisfed.org/series/DPCERG3A086NBEA
https://fred.stlouisfed.org/series/DPCERG3A086NBEA
https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data
https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data

[48] U.S. Bureau of Labor Statistics. All Employees, Health Care [CES6562000101]. https:
//fred.stlouisfed.org/series/CES6562000101, 2025. Retrieved August 29,
2025. 31

[49] NoeylsLearning. Soil and Environmental Monitoring. https://www.kaggle.com/
datasets/noeyislearning/soil-and-environmental-monitoring, 2024.
Accessed on August 29, 2025. 31

[50] Riccardo Taormina et al. The Battle of the Attack Detection Algorithms: Disclosing Cyber
Attacks on Water Distribution Networks. Journal of Water Resources Planning and Management,
144(8):04018048, aug 2018. doi: 10.1061/(ASCE)WR.1943-5452.0000969. URL https:
//www.batadal.net/data.html. 31

[51] Jorge Bafiuelos-Gimeno, Natalia Sobrino, and Rosa Arce-Ruiz. Initial Insights into Telework-
ing’s Effect on Air Quality in Madrid City. Environments, 11(9):204, 2024. doi: 10.3390/
environments11090204. URL https://www.mdpi.com/2076-3298/11/9/204. 31

[52] RaminHuseyn. = Web Traffic Time Series Dataset. https://www.kaggle.com/
datasets/raminhuseyn/web-traffic-time-series—dataset, 2024. Ac-
cessed on August 29, 2025. 31

[53] UCI Machine Learning Repository. Hungarian Chickenpox Cases. https://doi.org/10.
24432/C5103B,2021. 31

[54] Alistair Johnson et al. MIMIC-III Clinical Database Demo (version 1.4). https://doi.
org/10.13026/C2HM2Q, 2019. RRID:SCR_007345. 31

[55] Andrea Martiniano and Ricardo Ferreira. Absenteeism at work. https://doi.org/10.
24432/C5x882,2012. 31

[56] Daqing Chen. Online Retail. https://doi.org/10.24432/C5BW33, 2015. 31

[57] Paulo Cortez and Anibal Morais. Forest Fires. https://doi.org/10.24432/C5D88D,
2007. 31

[58] Adarsh Pal Singh and Sachin Chaudhari. Room Occupancy Estimation. https://doi.
org/10.24432/C5P605,2018. 31

[59] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time Series
Analysis: Forecasting and Control. Wiley, 5 edition, 2015. 42

[60] Rob J. Hyndman, Anne B. Koehler, J. Keith Ord, and Ralph D. Snyder. Forecasting with
Exponential Smoothing: The State Space Approach. Springer, 2008. 42

[61] Vassilis Assimakopoulos and Konstantinos Nikolopoulos. The theta model: A decomposition
approach to forecasting. International Journal of Forecasting, 16(4):521-530, 2000. 42

[62] Helmut Liitkepohl. New Introduction to Multiple Time Series Analysis. Springer, 2005. 42

[63] Valentin Flunkert, David Salinas, and Jan Gasthaus. Deepar: Probabilistic forecasting with
autoregressive recurrent networks, 2017. 42

[64] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural
basis expansion analysis for interpretable time series forecasting. In International Conference
on Learning Representations (ICLR), 2020. 42

[65] Abhimanyu Das et al. Long-term forecasting with tide: Time-series dense encoder. In Neural
Information Processing Systems (NeurlPS), 2023. 42

[66] Bryan Lim, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting, 2019. 42

[67] Yifan Nie, Zhihan Huang, Li Wang, Yuheng Sun, Yating He, and Zhifeng Zhang. A time series
is worth 64 words: Long-term forecasting with transformers. In International Conference on
Learning Representations (ICLR), 2023. 42

https://fred.stlouisfed.org/series/CES6562000101
https://fred.stlouisfed.org/series/CES6562000101
https://www.kaggle.com/datasets/noeyislearning/soil-and-environmental-monitoring
https://www.kaggle.com/datasets/noeyislearning/soil-and-environmental-monitoring
https://www.batadal.net/data.html
https://www.batadal.net/data.html
https://www.mdpi.com/2076-3298/11/9/204
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://doi.org/10.24432/C5103B
https://doi.org/10.24432/C5103B
https://doi.org/10.13026/C2HM2Q
https://doi.org/10.13026/C2HM2Q
https://doi.org/10.24432/C5X882
https://doi.org/10.24432/C5X882
https://doi.org/10.24432/C5BW33
https://doi.org/10.24432/C5D88D
https://doi.org/10.24432/C5P605
https://doi.org/10.24432/C5P605

[68] Han Liu et al. itransformer: Inverted transformers are effective for time series forecasting, 2023.
42

[69] Kashif Rasul, V Ashkinazi, I Schuster, A Schneider, and A Mishkin. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In Neural Information
Processing Systems (NeurIPS), 2021. 42

[70] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. In Neural Information Processing
Systems (NeurIPS), 2021. 42

[71] Kashif Rasul et al. Multivariate probabilistic time series forecasting via conditioned normalizing
flows, 2020. 42

[72] Sangwoo Woo et al. Moirai: Foundation models for time series forecasting. In International
Conference on Learning Representations (ICLR), 2024. 42

[73] Abhimanyu Das et al. Timesfm: Time series foundation models at scale, 2023. 42

[74] Kashif Rasul et al. Lag-llama: Towards foundation models for time series forecasting, 2023. 42
[75] Yan Liu et al. Timer: Efficient time-series foundation model, 2024. 42

[76] Tian Gao et al. Units: Universal time series foundation models, 2024. 42

[77] Vinay Ekambaram et al. Multi-level tiny time mixers for efficient time-series foundation models,
2024. 42

[78] Xing Chen et al. Visionts: Multimodal time-series foundation models, 2024. 42

[79] Spyros Makridakis, Evangelos Spiliotis, and Vassilis Assimakopoulos. The M5 accuracy
competition: Results, findings and conclusions. International Journal of Forecasting, 38(4):
1346-1364, 2022. 42

[80] Haixu Zhang et al. Probts: Benchmarking probabilistic forecasting. In Neural Information
Processing Systems (NeurIPS), 2023. 42

[81] SeanJ. Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):
3745, 2018. 42

[82] Markus Loning, Anthony Bagnall, Sajaysurya Ganesh, et al. sktime: A unified interface for
machine learning with time series. In Proceedings of the 2nd Workshop on Systems for ML
(NeurlIPS), 2019. 42

[83] Alexander Alexandrov et al. Gluonts: Probabilistic time series models in python, 2020. 42

[84] Kashif Rasul. Pytorchts: A probabilistic deep learning library for time series, 2021. GitHub
repository: https://github.com/zalandoresearch/pytorch-ts. 42

[85] Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast accuracy. Interna-
tional Journal of Forecasting, 22(4):679-688, 2006. 42

[86] Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359-378, 2007. 42

[87] Raj Kumar Tamatta. Time series forecasting of hospital Inpatients and Day case waiting list
using ARIMA, TBATS and Neural Network Models. PhD thesis, Dublin, National College of
Ireland, 2018. 42

[88] Caitlin Haskins. 5 Financial Forecasting Methods to Help Your Business. https://online.
hbs.edu/blog/post/financial-forecasting-methods, apr2021. Accessed on
August 14, 2025. 43

https://github.com/zalandoresearch/pytorch-ts
https://online.hbs.edu/blog/post/financial-forecasting-methods
https://online.hbs.edu/blog/post/financial-forecasting-methods

A Additional Mathematical Background

A.1 Mathematical notation

We adopt the following calligraphic conventions to insist on the nature of the mathematical object at
hand: We use calligraphic uppercase letters to denote sets (e.g., X'), bold uppercase letters to denote
matrices (e.g., X), bold lowercase letters to denote vectors (e.g., p), lowercase letters to denote scalar
quantities (e.g.,), and uppercase letters to denote random variables (e.g., X). We denote the ith
row vector of a matrix (e.g., X) by the corresponding bold lowercase letter with subscript ¢ (e.g.,
x;). Similarly, we denote the jth entry of a vector (e.g., p or x;) by the corresponding lowercase
letter with subscript j (e.g., p; or ;;). We denote functions by a letter determined by the value of
the function, e.g., f if the mapping is scalar valued, f if the mapping is vector valued, and F if the
mapping is set valued.

We denote the set {1,...,n} by [n], theset {n,n+ 1,...,m} by [n : m], the set of natural numbers
by N, and the set of real numbers by R. We denote the positive and strictly positive elements of
a set using a + or ++ subscript, respectively, e.g., R and Ry ;. For any n € N, we denote the
n-dimensional vector of zeros and ones by 0,, and 1,,, respectively.

A.2 Mathematical Definitions

We let A, = {& € R} | Y./ | ; = 1} denote the unit simplex in R", and A(A) denote the
set of all probability measures over a given set A. We also define the support of a probability
density function f € A(X) as supp(f) = {x € X | f(x) > 0}. Finally, we denote the orthogonal

projection operator onto a set C' by Ilc, i.e., lIo(z) = argmin, ¢ ||z — yl.

A.3 Evaluation Metrics

An evaluation metric £ : Y x Y — R is a positive-, scalar-valued function s.t. for any forecast
Y € V" and realized future target values Y* € yh, ¢ (i}, Y*) > 0 denotes the distance between the
forecast and the realized values. We consider the following evaluation metrics at present. The mean
absolute error (MAE) is defined as (MAR(Y Y*) = L. 2 icim] S G — 5| The mean squared

error (MSE) is defined as /MSE(Y | Y*) = L 2 icim] S (W — u,)2. The mean absolute scale

error (MASE) is defined as (MASE(Y Y*) = L. 2 icim] Y = El?itgyy:il—y |.5 The mean
r— 1 t= it it

absolute percentage error (MAPE) is defined as (MAPE(Y y*) = 100 icim] 2?21 Ig?“ty:ﬁ;tl .
it

>We note MAE is scale-dependent but less sensitive to outliers, MSE disproportionately penalizes large
forecast errors and is therefore more outlier-sensitive, while MASE normalizes errors w.r.t. the forecasts of naive
forecast method (i.e., setting the next time-step’s forecast to be the current time-step realized value), making it
scale-free and comparable across datasets or domains.

10

B Result Aggregation Procedure

After evaluating multiple forecasting models across a diverse set of benchmark tasks, we require
aggregation methods to summarize and compare model performance at the aggregate level. This
section describes two complementary aggregation procedures: average win rate and skill score.

B.1 Problem Setup

Let p denote the number of models under evaluation and ¢ denote the number of benchmark tasks.
For each model i € [p] and each benchmark task j € [g], we compute an error metric ¢ (e.g., MAE,
RMSE, MASE, CRPS). The error values are organized into a matrix £ € RP*4, where E[i, j] = (%
represents the error of model ¢ on task j.

In practice, some models may not produce valid results on certain tasks (e.g., due to computational
failures or data incompatibilities), resulting in missing values. Our aggregation procedures handle
these missing values gracefully by excluding unavailable comparisons.

B.2 Average Win Rate

The average win rate W; for model ¢ quantifies the probability that model ¢ achieves lower error than
another randomly chosen model i’ # 4 on a randomly chosen benchmark task. This metric provides a
pairwise comparison perspective that is robust to the absolute scale of errors across different tasks.

Formally, for model 7, the average win rate is computed as:

1
W; = el Z Z Wi it s (1)

j€ld]i'€[p]
i’ i

where |C;] is the total number of valid comparisons involving model ¢, and the win indicator w; .5 18
defined as:

1 if ¢+ < ¢J and both values are valid,

0.5 if ¢ = ¢"'J and both values are valid,

il] — . .o [. 2
Wisi'sj 0 if £ > ¢*>J and both values are valid, @

0 if either value is missing.

The normalization factor |C;| accounts for the actual number of valid comparisons:

ICi|= Z Z 1{¢" and ¢"'+3 are both valid}, 3)

J€ldl i’ €lp]
i’ i

where 1{-} is the indicator function.

B.3 SKkill Score

The skill score S; for model ¢ quantifies how much the model reduces forecasting error compared
to a fixed baseline model 3. Unlike win rate, which compares models in a pairwise manner, skill
score provides an absolute measure of improvement relative to a reference model (typically a simple
baseline such as seasonal naive forecasting).

For model i relative to baseline 3, the skill score is computed as:
1/IR:|

(e
S;=1-— H clip <W;€, u) , @)

JER:

where R; = {j € [q] : ¢* and P+ are both valid} is the set of tasks where both model i and
baseline S have valid results, and clip(z; £, u) = max(¢, min(z, u)) clips the relative error ratio to
the interval [¢, u] with £ = 1072 and u = 100.

11

The clipping operation prevents extreme relative errors (e.g., division by near-zero baseline errors)
from dominating the geometric mean. When ¢/ = 0, we handle this edge case as follows:

%j_{1 if (13 = 0,

83 \u if 049 > 0. 3)

The skill score interpretation is straightforward:

¢ 5; > 0: Model i performs better than the baseline (lower relative error).
¢ 5; = 0: Model i performs equivalently to the baseline.
» S; < 0: Model i performs worse than the baseline.

B.4 Geometric Mean Rationale

The skill score uses a geometric mean (via the product raised to the reciprocal power) rather than an
arithmetic mean for aggregating relative errors across tasks. This choice has several advantages:

* Scale invariance: The geometric mean is invariant to multiplicative scaling, ensuring that
tasks with different error magnitudes contribute proportionally rather than being dominated
by high-error tasks.

» Symmetry: The geometric mean treats improvements and degradations symmetrically (e.g.,
a 2x improvement and a 2 x degradation cancel out in the geometric mean).

* Robustness: The geometric mean is less sensitive to outliers than the arithmetic mean, which
is important when aggregating across diverse benchmark tasks.

B.5 Implementation Details

Both aggregation procedures are implemented in https://github.com/Smlcrm/
TempusBench, which handles missing values gracefully by excluding unavailable compar-
isons from the computation. The aggregators accept a pivot table (DataFrame) where rows represent
models i € [p], columns represent benchmark tasks j € [g], and values represent error metrics £,
Missing values are automatically detected and excluded from the aggregation, ensuring that models
are only compared on tasks where both models have valid results.

The implementation provides two aggregator classes: WinRate and SkillScore, both inheriting
from BaseAggregator. Each aggregator can be instantiated with a pivot table and, in the case of
SkillScore, a baseline model 3 (default: 5 = seasonal_naive).

12

 https://github.com/Smlcrm/TempusBench
 https://github.com/Smlcrm/TempusBench

C Additional results.

C.1 Win Rate Results

Win rates are computed for all evaluated models across different metrics. Higher win rates indicate
models that consistently outperform competitors.

C.1.1 Point Forecast Metrics

Point forecast metrics evaluate the accuracy of single-value predictions.

Mean Absolute Percentage Error (MAPE) Table 4a shows the average win rate for models
evaluated on the MAPE metric.

(a) Average Win Rate for MAPE Metric. See Ap-

pendix B for additional details on computation. (b) Average Win Rate for MAE Metric
Model Name Average Win Rate Model Name Average Win Rate
Lafn 0.7931 Timesfm 0.9057
Timesfm 0.6730 Toto 0.7368
Croston Classic 0.6164 Tiny Time Mixer 0.6604
Seasonal Naive 0.5849 Lafn 0.6414
Toto 0.5789 Croston Classic 0.6164
Varmax 0.5714 Svr 0.5818
Arima 0.5346 Tabpfn 0.5448
Moment 0.5220 Lstm 0.5409
Lagllama 0.5031 Moirai 0.5379
Lstm 0.4969 Chronos 0.5346
Moirai 0.4966 Random Forest 0.5000
Svr 0.4874 Arima 0.4717
Tabpfn 0.4828 Seasonal Naive 0.5220
Random Forest 0.4748 Lagllama 0.2704
Tiny Time Mixer 0.4151 Varmax 0.2571
Chronos 0.4025 Prophet 0.3836
Exponential Smoothing 0.3333 Moment 0.3019
Prophet 0.3333 Theta 0.2600
Theta 0.3300 Exponential Smoothing 0.2956
Moirai Moe 0.0000 Moirai Moe 0.0000

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) Tables 4b and 5a show
win rates for MAE and RMSE metrics respectively.

Mean Absolute Scaled Error (MASE) Table 5b shows win rates for the MASE metric. Note that
MASE and MAE have identical win rates in this benchmark, indicating similar relative performance
rankings.

C.1.2 Probabilistic Forecast Metrics

Probabilistic forecast metrics evaluate the quality of prediction intervals and distributions.

Continuous Ranked Probability Score (CRPS) Table 6a shows win rates for the CRPS metric,
which evaluates probabilistic forecasts.

Weighted Interval Score and Quantile Score Tables 6b and 7a show win rates for weighted
interval score and quantile score metrics.

13

(a) Average Win Rate for RMSE Metric

(b) Average Win Rate for MASE Metric

Model Name Average Win Rate Model Name Average Win Rate
Timesfm 0.8742 Timesfm 0.9057
Tiny Time Mixer 0.6730 Toto 0.7368
Toto 0.6316 Tiny Time Mixer 0.6604
Croston Classic 0.6855 Lafn 0.6414
Random Forest 0.5943 Croston Classic 0.6164
Arima 0.6038 Svr 0.5818
Svr 0.5755 Tabpfn 0.5448
Prophet 0.5535 Lstm 0.5409
Lafn 0.5517 Moirai 0.5379
Lstm 0.5472 Chronos 0.5346
Tabpfn 0.4966 Random Forest 0.5000
Chronos 0.4403 Arima 0.4717
Varmax 0.4143 Seasonal Naive 0.5220
Moirai 0.4345 Lagllama 0.2704
Seasonal Naive 0.3711 Varmax 0.2571
Exponential Smoothing 0.3648 Prophet 0.3836
Moment 0.3585 Moment 0.3019
Lagllama 0.1950 Theta 0.2600
Theta 0.1200 Exponential Smoothing 0.2956
Moirai Moe 0.0000 Moirai Moe 0.0000

(a) Average Win Rate for CRPS Metric

Model Name Average Win Rate
Toto 1.0000
Moirai 0.7857
Lafn 0.5714
Chronos 0.4000
Lagllama 0.2667
Moirai Moe 0.0000

(b) Average Win Rate for Weighted Interval Score

Model Name Average Win Rate
Toto 1.0000
Moirai 0.8571
Lafn 0.4643
Chronos 0.5000
Lagllama 0.2000
Moirai Moe 0.0000

(a) Average Win Rate for Quantile Score

Model Name Average Win Rate
Toto 1.0000
Moirai 0.8571
Lafn 0.5000
Chronos 0.4000
Lagllama 0.2667
Moirai Moe 0.0000

14

C.2 SKkill Score Results

Skill scores compare model performance to a baseline model (Seasonal Naive). Positive skill scores
indicate better performance than the baseline, while negative scores indicate worse performance.

Mean Absolute Percentage Error (MAPE) Skill Scores Table 8 shows skill scores for the MAPE
metric relative to the Seasonal Naive baseline.

Table 8: Skill Score for MAPE Metric (Baseline: Seasonal Naive)

Model Name SKkill Score
Varmax 0.3264
Timesfm 0.2237
Croston Classic 0.1145
Seasonal Naive 0.0000
Prophet -0.0240
Tabpfn -0.1035
Arima -0.0895
Lafn -0.0933
Chronos -0.1272
Tiny Time Mixer -0.2292
Exponential Smoothing -0.3066
Random Forest -0.3410
Toto -0.3500
Moment -0.3883
Svr -0.7162
Lstm -0.7212
Lagllama -0.9898
Theta -2.4162
Moirai Moe -1.6942
Moirai -1.7595

Mean Absolute Error (MAE) Skill Scores Table 9 shows skill scores for the MAE metric.

Table 9: Skill Score for MAE Metric (Baseline: Seasonal Naive)

Model Name Skill Score
Timesfm 0.5442
Toto 0.5081
Chronos 0.2852
Tiny Time Mixer 0.2510
Prophet 0.1179
Croston Classic 0.1016
Arima 0.0153
Lafn 0.0092
Seasonal Naive 0.0000
Tabpfn -0.0741
Varmax -0.0765
Random Forest -0.0866
Lstm -0.0516
Exponential Smoothing -0.1032
Svr -0.1683
Moment -0.3546
Moirai Moe -0.3957
Moirai -0.4945
Lagllama -1.9980
Theta -3.4353

15

Root Mean Squared Error (RMSE) Skill Scores

metric.

Table 10 shows skill scores for the RMSE

Table 10: Skill Score for RMSE Metric (Baseline: Seasonal Naive)

Model Name SKkill Score
Timesfm 0.5739
Toto 0.4378
Tiny Time Mixer 0.3033
Prophet 0.2328
Chronos 0.1801
Croston Classic 0.1177
Arima 0.0944
Lafn 0.0792
Random Forest 0.0019
Seasonal Naive 0.0000
Lstm -0.0049
Exponential Smoothing -0.0063
Svr -0.0094
Tabpfn -0.0202
Varmax -0.0446
Moirai Moe -0.1578
Moment -0.2504
Moirai -0.9759
Lagllama -1.4620
Theta -2.5424

Mean Absolute Scaled Error (MASE) Skill Scores
metric. Note that MASE and MAE have identical skill scores in this benchmark.

Table 11 shows skill scores for the MASE

Table 11: Skill Score for MASE Metric (Baseline: Seasonal Naive)

Model Name Skill Score
Timesfm 0.5442
Toto 0.5081
Chronos 0.2852
Tiny Time Mixer 0.2510
Prophet 0.1179
Croston Classic 0.1016
Arima 0.0153
Lafn 0.0092
Seasonal Naive 0.0000
Tabpfn -0.0741
Varmax -0.0765
Random Forest -0.0866
Lstm -0.0516
Exponential Smoothing -0.1032
Svr -0.1683
Moment -0.3546
Moirai Moe -0.3957
Moirai -0.4945
Lagllama -1.9980
Theta -3.4353

16

C.3 Key Findings

C.3.1 Top Performing Models
* MAPE Metric: Lafn achieves the highest win rate (0.7931), followed by Timesfm (0.6730)

and Croston Classic (0.6164).

» MAE/RMSE/MASE Metrics: Timesfm consistently achieves the highest win rates across

MAE (0.9057), RMSE (0.8742), and MASE (0.9057), with Toto and Tiny Time Mixer also
performing strongly.

Probabilistic Metrics: Toto achieves perfect win rates (1.0000) for both CRPS and Quantile
Score, while also achieving perfect win rate for Weighted Interval Score. Moirai shows
strong performance on probabilistic metrics (0.7857 for CRPS, 0.8571 for WIS and Quantile
Score).

C.3.2 SKkill Score Insights

Positive Skill Scores:

— MAPE: Varmax (0.3264), Timesfm (0.2237), and Croston Classic (0.1145) show
positive skill scores.

— MAE/RMSE/MASE: Timesfm, Toto, Tiny Time Mixer, and Chronos consistently
show positive skill scores across these metrics, indicating they outperform the Seasonal
Naive baseline.

Negative Skill Scores: Some models show negative skill scores, particularly Lagllama,
Theta, Moirai, and Moirai Moe, which perform worse than the baseline across most metrics.

Baseline Performance: The Seasonal Naive model serves as the baseline (skill score = 0.0)
and provides competitive performance across many tasks. On MAPE, most models actually
perform worse than the baseline, with only Varmax, Timesfm, and Croston Classic showing
positive skill.

C.3.3 Model-Specific Observations

Toto: Exceptional performance on probabilistic metrics with perfect win rates, while
maintaining decent performance on point forecast metrics.

Moirai: Strong probabilistic forecasting capabilities but weaker performance on point
forecast metrics (MAPE win rate: 0.4966).

Moirai Moe: Consistently shows zero win rate across all metrics, indicating it does not
outperform other models in any evaluated scenario.

Lafn: Best performer on MAPE metric but shows variable performance across other metrics.

17

D Forecasters

Table 12: Summary of forecasters included in TempusBench.

Category Included Models

Core Characteristics

Foundation Models Moirai, Moirai-MoE,
TimesFM, TimesFM-2.0,
Chronos, Lag-Llama, Toto,
MOMENT, TTM,
TabPFN-TS

Classic Machine Learning LSTM, Random Forest,
XGBoost, SVR

Statistical & Decomposable ARIMA, Holt-Winters,
Prophet, Theta Method,
Croston’s Method, Seasonal
Naive

Paradigm: Universal, zero-
shot/few-shot forecasting. A sin-
gle large model is pre-trained on
massive, diverse datasets and gen-
eralizes to new tasks without re-
training.

Architecture: Primarily based on
Transformers or other deep learn-
ing structures like MLP-Mixers.
They process raw time series via
patching or novel tokenization
schemes.

I/0: Often produce probabilistic
forecasts and can natively handle
univariate, multivariate, and covari-
ate data.

Paradigm: Supervised learning
models trained per-dataset. They
excel at capturing complex, non-
linear relationships but require
specific training for each task.
Architecture: Diverse, including
Recurrent Neural Networks (for se-
quence memory), Tree Ensembles
(for interaction effects), and Kernel
Methods.

I/0O: Typically require explicit
feature engineering (e.g., lags, cal-
endar variables) to create a tabular
format. Most often produce point
forecasts.

Paradigm: Assume the time se-
ries is generated by an underlying
statistical process or can be decom-
posed into simpler, interpretable
components like trend and season-
ality.

Architecture: An explicit mathe-
matical formula is fitted directly to
an individual time series.

I/0: Highly interpretable point
forecasts. Often specialized for
particular data patterns (e.g., inter-
mittency with Croston’s).

In this section, we summarize the forecasting models which have been included in TempusBench.
We summarize all models in Table 12, and provide and comparison of TSFMs, machine learning
forecasting models, and statistical forecasting models in Table 13.

18

*(Kouapruroyur ‘A)Ifeuoseas ‘puan

3-9) suroned ejep oyroads 10J JUSAIOYJO
AyS1y pue paziferoads Uy ‘suonepunoj
[eonsness Suons pue Ajiqelvdrdiojur ysSry

‘pIepue)s jou
9Ie JNq ISTXA SUOISIOA JTISI[IqeqOId 'S[BA
-191ut Ajureyrooun Sunerauas ‘uondaoxs
ue st joydouq "syseda1oj yutod AjLrewrtg

(s, uojs04))

Kouanuuioul 1o (s42juip 1o) Aeuos
-as 1] sureped JoJ paziferoads oq 10
(V¥ y) fireuones aunbar Aejy soL10s
QuIn) dJeLIBAIUN A} UO A[30a1Ip reradQ

(241N

"S ‘s, u01s0.4)) sonsumay o[dwirs pue ‘(viay
9oydoiq) SOpol dARIPpE J[qesodwod
-9p “(s421uIM~11OH ‘VIIY V) S1opowt
9oeds-ojelS SUOIR[NULIOJ [BOBWAYIRIA

"SOLIAS owIn Jo5Ie) AY) WOIJ A[JOIIP
PoJEWINS? oIk SIdJoWeIR “dINjonns J[qe
-sodwoo9p 10 $$9001d o1SBYI0IS SUIA[ISP
-un ue 3urwnsse soyoeoidde paseq-[opoN

‘(Jsoog

-DX 573) SuondrIANUI TRAUI[-UoU Xo[dWOod
Surmydes pue ‘(py£$7) serouspuadop
w19)-3uo] urjepowt ‘(L) AoUsIoyjo
reuoneindwos :syiduans oyroads-[opojn

-Jou9)sod oy Sunewrxoidde £q ndino on
-stiqeqoid e Surpraoid ‘uondooxe srqeiou
® SI §7-NAJGL "siseda10] jurod A[urewig

'saouanb

-0s mel ssaoold Lz pue WiST (JAS
1S00g DX S1¥) 19SeIep Ie[nqe) B 9Jeald 0)
(sorqerrea Jepusyed ‘s3ef “3-9) Surroou
-13u0 armyeay J1o1[d X9 axmbar A[ferouan

‘(YAS) Paseq-[ouIdy pue ‘(1s0o0g

-DX 4¥) sejquiesuy do1], “(S.L-NAd9L)
JouwroJsuel] -Te[nqel, ‘(ALST) NNI
‘(W.LL) WXIN-dTIA :S2In10IYOIe ISIDAI(]

‘Sururen-aid oA1s

-SeW URY) JOUJRI (SO[qUIASUD ‘QOUALINIAT
¢-3'9) S9INJOAIYDIE JOUNSIP 9FBIAS[AU,
‘Surroour3ue aInjeay uo Surk[aI uajo Yyse)
3unseoa10j oy1oads € 10J paures) S[OPON

‘Sururen oyroads
-)3SEIRp INOYIIM SUTBWOP SSOIOR SZI[BID
-uag 03 A)qIqe pue Ayroeded [opowr YSIH

"oouewnIoyrad JOYs-maJ/)0Ys-0I19Z [NFIOMOJ

‘(uerpaur “3-9)

UOTINQIISIP 9} WOIJ PIALIOP I S)SBIAIO]
JuIo0d "UonNNQLISIP A[QIXAY B JO SIAJOWEI
-ed oyy Sunorpaid ‘onsifiqeqoid AIson

"SOLIOS 9JeLIBATI[N/IUN

J[puey A[oAneu ue)) "(SOUO04Y)) UOTIRZI)
-uenb onfea 10 ‘(vuw)7-SYT) UOHEZIUN O}
paseq-3e[‘(psau ‘waiopy) Suryoyed
eIA A[eo1d4) ‘SOLIOS QW) MBI $S9001d

"SWISTUBYOAW UOT)US)Je paziferoads

pue ‘3unseoaI0J [BNPISAI ‘SIOAR] FJOIN
apnyout suorieAouu] “(Yjoq I0 ‘IpoddJ
IOpOdUH) PIseq-IouLIoJsuel], A[LIewd

*$1OSBIBP ISIQAIP ‘QAISSBU

woJj surayed soLIos-own) [RIUAS UIBd[
A9y, "SunseoaI10 JOYS-0I9Z ‘[BSIdATUN
10J poug1sop s[epow pauren-aid ‘o31e

(WLL) s4ax1py oual] Kutf, o

ey, Loy

3dAy, ndnQ

Surpuey nduy

AINJINIYOIY

wigipeaed 3.10)

SL-NAdY2L
24IDN [PUOSDIS o INAWON o
POYIPIN S, UOISOL)) o 010[
POYIZIN DIDY] JAS o DUD]T-SDT o
joydosd e 1S00gDX SOUOLY) o
SAJUIM -1]OH o 1S240,] WOPUDY o 0°T-WASPWLL / WASIWL] o
VNIV NIST HOW-IDAIOp / IDATOJN o popnpPUL SPPOIN
SPPOIAl [BINISTIR)S % [RIISSEL) ¢ dnoan) SPPOJAl SuruIed | duryory g dnoan SPPOJAl uonepunoy :1 dnois aanjed |

S[OPOIA SUNISEIIO JO MITAIOAQ dATjeIRdWIO)) (€T 9[qRL

19

D.0.1 Moirai

Moirai is a universal time series forecasting model developed by Salesforce Al Research, built
upon a masked encoder-only Transformer architecture. It is designed as a single, large pre-trained
model capable of handling diverse forecasting tasks without dataset-specific retraining. The model is
pre-trained on LOTSA, a large-scale archive of over 27 billion observations, enabling it to perform
powerful zero-shot forecasting. [18]

* Input: Accepts univariate or multivariate time series with an arbitrary number of variates and
covariates.

* Output: Produces a probabilistic forecast by predicting the parameters of a flexible mixture
distribution (composed of Student’s t, Negative Binomial, Log-Normal, and low-variance Normal
distributions).

* Architecture: Employs a masked encoder-only Transformer. Its key innovations include:

— Multi Patch Size Projection: Uses different patch sizes to effectively process time series of
varying frequencies.

— Any-variate Attention: Flattens multivariate series into a single sequence and uses binary
attention biases to manage an arbitrary number of variates while maintaining permutation
equivariance.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster. It can generate point forecasts
by taking the median of the predicted distribution.

D.0.2 Moirai-MoE

Moirai-MoE is an advanced version of the Moirai foundation model that integrates a Sparse Mixture
of Experts (MoE) architecture. Instead of relying on heuristic-based, frequency-specific projection
layers, Moirai-MoE delegates the task of modeling diverse time series patterns to specialized "expert"
networks within its Transformer layers. This allows for automatic, token-level specialization in
a data-driven manner, leading to improved accuracy and greater efficiency in terms of activated
parameters. [19]

* Input: Accepts univariate or multivariate time series with an arbitrary number of variates and
covariates.

* Output: Produces a probabilistic forecast by predicting the parameters of a flexible mixture
distribution for the next token in an autoregressive manner.

* Architecture: Employs a decoder-only Transformer that replaces the standard Feed-Forward
Network (FFN) layers with MoE layers. Key architectural changes from the original Moirai
include:

— Mixture of Experts (MoE): A gating function routes each time series token to a small subset
of specialized expert networks, allowing the model to handle diverse patterns at a granular
level.

— Single Projection Layer: It uses a single input/output projection layer for all time series,
removing the dependency on frequency-based heuristics.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster that is more accurate and
efficient (in terms of activated parameters) than the original Moirai model. It can generate point
forecasts by taking the median of the predicted distribution.

D.0.3 TimesFM

TimesFM is a time-series foundation model developed by Google Research, designed for zero-shot
forecasting. It is based on a decoder-only Transformer architecture and is pretrained on a very
large corpus of time series data, combining both real-world and synthetic sources. The model’s key
objective is to provide accurate out-of-the-box point forecasts on unseen datasets without requiring
any dataset-specific training. [20]

 Input: Accepts a univariate time series context window.

* Output: Produces a point forecast for a given prediction horizon.

20

* Architecture: Employs a decoder-only Transformer architecture that processes the time series in
patches. Key architectural features include:

— Decoder-Only Transformer: Utilizes a standard decoder-style attention mechanism to
autoregressively predict future values patch by patch.

— Input Patching: The input time series is segmented into non-overlapping patches, which are
then embedded using a residual block of MLPs before being fed to the Transformer.

» Forecasting Type: A universal, zero-shot, point forecaster designed primarily for long-horizon
forecasting tasks.

D.0.4 TimesFM-2.0

TimesFM-2.0 is an improved version of the original foundation model from Google Research. While
retaining the same decoder-only Transformer architecture, its key innovation lies in forecasting the
residual component of a time series after performing a seasonal-trend decomposition. This approach
makes the model significantly more accurate, particularly for time series that exhibit clear trends.
[20]

* Input: Accepts a univariate time series context window.
* Output: Produces a point forecast for a given prediction horizon.

* Architecture: Based on the original decoder-only Transformer with input patching. The primary
architectural update is its residual forecasting methodology:

— Seasonal-Trend Decomposition: The model first decomposes the input series to separate its
trend and seasonal components.

— Residual Forecasting: The core Transformer then forecasts the residual (the signal remaining
after decomposition). This forecast is added back to the projected trend to produce the final
prediction.

*» Forecasting Type: A universal, zero-shot, point forecaster with enhanced performance on trended
time series compared to its predecessor.

D.0.5 Chronos

Chronos is a family of pretrained time series models developed by Amazon Science that frames
forecasting as a language modeling task. The core idea is to "tokenize" time series values by scaling
and quantizing them into a fixed vocabulary. By doing so, standard Transformer-based language
model architectures can be trained on sequences of these tokens using a cross-entropy loss, effectively
learning the "language" of time series. [21]

* Input: Accepts a univariate time series context window.

* Output: Produces a probabilistic forecast by generating multiple sample future trajectories. A
point forecast can be derived from the median of these samples.

* Architecture: Based on standard language model architectures (specifically the T5 encoder-decoder
family). Its defining characteristic is its unique data preprocessing pipeline:

— Tokenization via Quantization: The model first applies mean scaling to the input time
series. It then quantizes these scaled values into a finite set of discrete tokens, converting the
continuous series into a sequence of categorical variables.

— Language Model Training: The model is trained to predict the next token in a sequence
using a standard cross-entropy loss, analogous to how a language model predicts the next
word.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster.

D.0.6 TabPFN

TabFPN is a forecasting framework that adapts feature pyramid networks (FPN), originally developed
for computer vision tasks, to tabular time-series data. The approach builds hierarchical feature
representations across multiple temporal resolutions, enabling the model to capture both short- and
long-range dependencies. Unlike traditional time-series architectures, TabFPN treats forecasting as a

21

structured feature-learning problem on tabularized sequences, combining multiscale decomposition
with probabilistic prediction.

* Input: A univariate or multivariate time series, converted into tabular form with hierarchical
features at multiple temporal resolutions.

e Output: Produces probabilistic forecasts by estimating distributions over future values at
each horizon; point forecasts can be obtained from the distribution mean or median.

¢ Architecture:

— Feature Pyramids: The series is decomposed into multiple temporal scales (e.g., short-
term, medium-term, seasonal) using windowed transformations. Each scale yields a
feature representation.

— FPN Backbone: These features are passed into a feature pyramid network adapted for
tabular regression, allowing cross-scale information flow and refinement.

— Prediction Head: Aggregates multiscale features to generate forecasts, with uncertainty
quantification via distributional outputs.

 Forecasting Type: A universal, zero-shot, probabilistic forecaster with explicit multiscale
feature integration.

D.0.7 TabPFN-TS

TabPEN-TS is a novel approach that adapts TabPFN-v2, a general-purpose tabular foundation model,
for time series forecasting. The core methodology involves recasting the forecasting problem as
a tabular regression task. This is achieved through lightweight feature engineering on the time
index, without relying on lagged values. Notably, the underlying TabPFN-v2 model was pretrained
exclusively on synthetic tabular data and has not seen any time series data. [22]

* Input: A univariate time series, which is converted into a feature matrix based on timestamps.

* Qutput: Produces a probabilistic forecast by approximating the posterior predictive distribution for
each future time step. Point forecasts can be derived from the mean or median of this distribution.

* Architecture: It does not use a time-series-specific architecture. Instead, it relies on:

— Feature Engineering: The time series is transformed into a tabular dataset by creating
features from timestamps. These include standard calendar features (e.g., hour of day, day of
week), automatically detected seasonal features via a Fourier transform, and a simple running
index.

— TabPFN-v2 Model: The generated tabular data is fed into the pretrained TabPFN-v2 model,
which performs the regression task to predict future values.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster.

D.0.8 Tiny Time Mixers (TTM)

Tiny Time Mixers (TTM) is a family of lightweight pre-trained models from IBM Research, based on
the efficient TSMixer architecture. In contrast to large, LLM-based approaches, TTMs are designed
to be extremely small (<1M parameters) and fast, while still providing strong zero-shot and few-shot
forecasting performance. The models are pre-trained exclusively on a large corpus of public time
series datasets, making them a highly efficient alternative for universal forecasting. [23]

 Input: Accepts univariate or multivariate time series, with optional support for exogenous variables
during the fine-tuning stage.

* Output: Produces a point forecast for a given prediction horizon.

* Architecture: Based on the MLP-Mixer architecture. The model is pre-trained in a channel-
independent manner and uses a multi-level structure to handle diverse data and tasks.

— TSMixer Backbone: The core of the model uses simple MLP blocks for temporal and feature
mixing, avoiding the computational overhead of Transformer-based attention.

— Multi-Resolution Pre-training: Employs several novel techniques to handle heterogeneous
datasets, including adaptive patching (using different patch configurations at different layers)
and data augmentation via downsampling.

22

— Multi-level Modeling: Uses a frozen pre-trained backbone and a smaller, fine-tunable decoder,
which can incorporate channel-mixing and an exogenous mixer to fuse external signals for
target-specific tasks.

* Forecasting Type: A universal, zero-shot/few-shot, point forecaster, notable for its small size and
computational efficiency.

D.0.9 Lag-Llama

Lag-Llama is a foundation model for univariate probabilistic time series forecasting. It is built upon
a decoder-only Transformer architecture, similar to LLaMA, and is pretrained on a large, diverse
corpus of open-source time series data. The model’s key innovation is its tokenization strategy, which
uses lagged values of the time series as input features, allowing it to generalize across different
frequencies and domains. [24]

* Input: Accepts a univariate time series context window.

* Qutput: Produces a probabilistic forecast by outputting the parameters of a Student’s t-distribution
for the next time step. Future trajectories are generated autoregressively.

* Architecture: Based on a decoder-only Transformer (LLaMA). Its defining characteristic is its
input representation:

— Tokenization via Lag Features: Instead of patching, the input token for each time step is a
vector composed of lagged values from the time series history (e.g., values from 1, 7, and 14
days prior). This is augmented with standard date-time features.

— Value Scaling: Applies robust scaling (using median and IQR) to normalize the input values
and includes the scaling parameters as additional features.

* Forecasting Type: A universal, zero-shot/few-shot, probabilistic forecaster.

D.0.10 Toto

Toto (Time Series Optimized Transformer for Observability) is a foundation model from Datadog,
specifically designed for multivariate time series forecasting with a focus on observability metrics.
It is built on a decoder-only Transformer architecture and incorporates several novel components
to handle the unique challenges of observability data, such as high non-stationarity and heavy-
tailed distributions. The model is pretrained on a large and diverse corpus that includes real-world
observability data, public datasets, and synthetic data. [25]

* Input: Accepts multivariate time series.

* Output: Produces a probabilistic forecast by predicting the parameters of a Student-T mixture
model.

* Architecture: A decoder-only Transformer with several key innovations tailored for observability
data:

Patch-based Causal Normalization: A novel per-patch scaling method that computes
normalization statistics from current and past data to handle highly nonstationary series.

— Proportional Factorized Attention: An efficient attention mechanism that uses a mix of time-
wise and variate-wise attention blocks to judiciously model interactions in high-dimensional
multivariate data.

— Student-T Mixture Model Head: An output layer that models the predictive distribution
as a mixture of Student-T distributions to better capture the complex, heavy-tailed nature of
observability metrics.

— Composite Robust Loss: A hybrid loss function combining negative log-likelihood with a
robust point-wise loss to stabilize training in the presence of outliers.

* Forecasting Type: A universal, zero-shot, probabilistic forecaster for multivariate time series.

D.0.11 MOMENT

MOMENT (Multi-task, Open-source, Foundation Model for Time-series) is a family of open-source
foundation models from Carnegie Mellon University designed for general-purpose time series analysis.

23

The models are built on a Transformer encoder architecture and are pretrained on a large, diverse
collection of public time series called the "Time Series Pile." A key characteristic of MOMENT is its
versatility; it is designed to serve as a building block for a wide range of downstream tasks, including
forecasting, classification, anomaly detection, and imputation, often with minimal task-specific
fine-tuning. [26]

* Input: Accepts a univariate time series of a fixed length. Multivariate time series are handled by
treating each channel independently.

* Output: Produces a reconstructed version of the input time series. This output can be adapted
for various downstream tasks, such as generating forecasts by masking future values or extracting
embeddings for classification.

* Architecture: A standard Transformer encoder that processes time series data in patches.

— Masked Pre-training: The model is pretrained using a masked time series prediction task. It
learns to reconstruct randomly masked patches of the input time series, enabling it to learn
robust representations.

— Patching: The input time series is segmented into non-overlapping patches, which are then
linearly projected into embeddings for the Transformer.

— Lightweight Prediction Head: A simple linear layer is used to reconstruct the time series
from the Transformer’s output embeddings. This head can be easily replaced or adapted for
different downstream tasks.

* Forecasting Type: A universal foundation model for general time series analysis. It can be used for
zero-shot or few-shot forecasting (point-based), classification, anomaly detection, and imputation.

D.0.12 ARIMA

The Autoregressive Integrated Moving Average (ARIMA) model is a class of statistical models
for analyzing and forecasting time series data. It is a generalization of the simpler Autoregressive
Moving Average (ARMA) model that can be applied to non-stationary time series. The model’s name
reflects its three core components: Autoregression (AR), Integrated (I), and Moving Average (MA).
These components capture the key temporal structures within the data, such as dependencies on past
observations and past forecast errors. [27]

e Input: A univariate time series.

* Output: A point forecast for future time steps. While classical ARIMA produces point forecasts,
probabilistic forecasts can be generated by assuming a distribution for the error term.

* Mathematical Formulation: An ARIMA(p, d, q) model is defined by three parameters: the order
of the autoregressive component (p), the degree of differencing (d), and the order of the moving
average component (q). The model assumes that the differenced time series, gy, = (1 — B)dyt, is

stationary, where B is the backshift operator. The formulation for the stationary series y; is:

P q
Yyi=c+ Z GiYi—i + Z Oje—j + € (6)
i=1 j=1

where:

— pis the autoregressive order, representing the number of lagged observations included in the
model.
d is the degree of differencing, representing the number of times the raw observations are
differenced to achieve stationarity.
q is the moving average order, representing the size of the moving average window applied to
past forecast errors.
¢ is the vector of autoregressive coefficients.
0 is the vector of moving average coefficients.
c is a constant term.
€; is the white noise error term at time ¢, typically assumed to be drawn from a Gaussian
distribution with zero mean.

» Forecasting Type: A statistical model that provides point forecasts. It is often used as a baseline
in forecasting tasks. Seasonal variations can be included by using a Seasonal ARIMA (SARIMA)
model.

24

D.0.13 Croston’s Method

Croston’s method is a forecasting technique specifically designed for intermittent demand time series,
which are characterized by sporadic, non-zero values interspersed with periods of zero demand. The
method decomposes the original time series into two separate components: the magnitude of the
non-zero demand and the time interval between consecutive demands. By forecasting these two
components separately using Simple Exponential Smoothing and then combining them, the model
provides a more accurate estimate of the mean demand per period compared to standard smoothing
methods, which can be biased when applied to intermittent data. [28]

* Input: A univariate time series with intermittent demand.

* Output: A point forecast for the average demand per period.

* Mathematical Formulation: The method maintains and updates two estimates: one for the non-
zero demand size () and one for the interval between demands (p). Let y, be the demand at time
t, and let g be the time elapsed since the last demand. The updates occur only when a non-zero
demand is observed (y, > 0):

Zy =21 +a(y, — zi1) @)
Pt =Pi—1 +alqg—pi-1) 3
If demand at time ¢ is zero, the estimates are not updated (2; = 2;_1, P = Py_1) and the interval

counter ¢ is incremented. After a demand occurs, g is reset to 1. The final forecast for the mean

demand per period, ¥, is the ratio of the two smoothed components:
~Z
Y= = C)
4

where « is the smoothing parameter.

* Forecasting Type: A statistical model for point forecasting, specialized for intermittent or "lumpy"
demand patterns.

D.0.14 Holt-Winters Exponential Smoothing

Holt-Winters is an extension of exponential smoothing that explicitly models trend and seasonality. It
is a widely used statistical method for forecasting time series data that exhibit these components. The
method operates by applying exponential smoothing to three components: the level, the trend, and
the seasonality. There are two primary variations of the model, additive and multiplicative, which
differ in how they incorporate the seasonal component. [5]

 Input: A univariate time series with trend and seasonality.
* Output: A point forecast for future time steps.

* Mathematical Formulation: The model provides separate updating equations for the level (lAt),

trend (Bt), and seasonal (S;) components, using smoothing parameters «, /3, and -, respectively.
Let L be the length of the seasonal period.

Additive Method: Used when the seasonal variation is roughly constant throughout the series.

Level: [, = a(y, — Se—p) + (1 — a)(l:,l —l—gt,l) (10)
Trend: b, = B(l; — li—1) + (1 — B)by_1 (11)
Seasonality: 5, = y(y; —) + (1 —)51 (12)
The forecast for h steps ahead is given by:
Yirn)t = lAt + hgt + §t7L+hz where hf =|(h—=1) (mod L)]+1 (13)

Multiplicative Method: Used when the seasonal variation changes in proportion to the level of the
series.

Level: [, =a <Ayt) + (1= a){yor +Dier) (14)
St—L
Trend: b, = B(l; — li—1) + (1 — B)by_1 (15)
Seasonality: §; =~ <:’lit> +(1—9)S-1 (16)
t

25

The forecast for h steps ahead is given by:
Gone = (o +hb)5,_p e where hf = [(h—1) (mod L)] +1 (17)

* Forecasting Type: A statistical model for point forecasting that can handle various combinations
of trend and seasonality.

D.0.15 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) architecture
specifically designed to address the vanishing gradient problem, allowing it to learn and remember
long-term dependencies in sequential data. Unlike traditional neural networks, LSTMs have internal
mechanisms called "gates" that regulate the flow of information. These gates enable the network to
selectively remember or forget information over long periods, making it particularly well-suited for
time series forecasting. [27]

* Input: A sequence of historical time series observations.
* Qutput: A point forecast for one or more future time steps.

* Mathematical Formulation: The core of an LSTM unit is its cell state, ¢;, which acts as a memory.
The flow of information into and out of the cell is controlled by three gates: the forget gate (f;),
the input gate (¢;), and the output gate (0;). At each time step ¢, these gates update the cell state

and produce a hidden state, h;.

Forget Gate: f; = o(wy - [i\lt—lvyt] +by) (18)

Input Gate: iy = o(w; - [hs—1,y,] + bi) (19)
Candidate State: ¢ = tanh(w, - [hy_1,y,] + be) (20)

Cell State Update: ¢; = f; ® Ct—1 + 4 © & 2D
Output Gate: 0y = o (w, - [he_1, ;] + bo) (22)

Hidden State Update: ;\lt = 0; © tanh(¢;) (23)

where W and b are the weight matrices and bias vectors for each gate, o is the sigmoid function,
and ©® denotes element-wise multiplication. The final prediction is typically generated by passing

the hidden state h; through a dense output layer.

* Forecasting Type: A neural network model for point forecasting that can capture complex non-
linear patterns in time series data.

D.0.16 Prophet

Prophet is a forecasting procedure developed by Meta, based on a decomposable time series model.
It is designed to be robust to missing data and shifts in the trend, and it typically handles holidays and
seasonal effects well. The model fits an additive model with components for trend, seasonality, and
holidays. [8]

* Input: A univariate time series with timestamps.
* Output: A point forecast, along with uncertainty intervals.
* Mathematical Formulation: The Prophet model is specified as a sum of three components:
Yy =g(t) +s(t) + h(t) + e (24)
where:

— g(t) is the trend component, which is modeled as either a piecewise linear or logistic growth
function. This allows the model to capture non-periodic changes in the time series.

— s(t) is the seasonality component, which models periodic changes (e.g., yearly, weekly, daily).
It is approximated by a Fourier series:

N
s(t) = Z <an cos (T) + by, sin (T)) (25)

n=1

where P is the period of the seasonality (e.g., 365.25 for yearly).

26

— h(t) is the holiday component, which represents the effects of holidays and special events. It
is modeled as a sum of indicator functions for each holiday.

— ¢ is the error term, assumed to be normally distributed white noise.

* Forecasting Type: A decomposable statistical model for point and probabilistic forecasting,
particularly effective for business time series with strong seasonal patterns and holiday effects.

D.0.17 Random Forest

Random Forest is an ensemble machine learning model that operates by constructing a multitude
of decision trees at training time. For time series forecasting, it is applied as a regression model to
a featurized dataset. By fitting numerous trees on various sub-samples of the data and employing
randomness in feature selection, it improves predictive accuracy and controls over-fitting. The final
prediction is an average of the outputs from all individual trees, making the model robust and capable
of capturing complex, non-linear relationships. [29]

* Input: A feature matrix X where rows are observations and columns are engineered features (e.g.,
lags, calendar variables), and a corresponding target vector y.
* Qutput: A point forecast for each input feature vector.

* Architecture and Formulation: A Random Forest is an ensemble of B decision trees. Its
predictive power comes from two sources of randomness introduced during training:

— Bagging (Bootstrap Aggregating): Each individual tree, fj, is trained on a bootstrap sample
(a random sample drawn with replacement) from the original training dataset.

— Feature Randomness: When splitting a node in a tree, the algorithm considers only a random
subset of the total features, which decorrelates the trees in the forest.

For a new input feature vector x, the forecast is the average of the predictions from all B trees in
the ensemble:

(26)

E
&
i
=
[]=
N
B

b=1

* Forecasting Type: An ensemble machine learning model for point forecasting. It is non-parametric
and highly effective at modeling non-linear relationships between features and the target variable.

D.0.18 Seasonal Naive

The Seasonal Naive model is a simple yet effective baseline method for forecasting time series with a
strong seasonal component. Its core principle is that the forecast for a future period is equal to the
last observed value from the same season. For example, the forecast for this Monday would be the
value from last Monday. Despite its simplicity, it serves as a crucial benchmark for more complex
models. [30]

* Input: A univariate time series with a known seasonal period.

* Output: A point forecast for future time steps.

* Mathematical Formulation: The forecast for / steps ahead from time ¢, denoted ¥, p,|;. is the
last observed value from the corresponding season. Let L be the seasonal period (e.g., L = 7 for
daily data with weekly seasonality). The forecast is given by:

Yirhlt = Yt+h—Lk (27)

where k& = [h/L] is an integer that ensures the lagged time index refers to the most recent
observation from the target season. For a one-season-ahead forecast (b = L), this simplifies to

Yi+Lit = Y-

*» Forecasting Type: A simple statistical baseline for seasonal point forecasting.

27

D.0.19 Support Vector Regression (SVR)

Support Vector Regression (SVR) is a supervised learning algorithm that extends the principles
of Support Vector Machines (SVMs) to regression problems. Instead of finding a hyperplane that
separates classes, SVR aims to find a function that deviates from the target values by a value no
greater than a specified margin, e, for as many of the training points as possible. It is particularly
effective in high-dimensional spaces and is robust to some outliers due to its use of an e-insensitive
loss function, which ignores errors within this margin. [31]

* Input: A feature matrix X and a corresponding target vector y.
* QOutput: A point forecast for each input feature vector.

+ Mathematical Formulation: The goal of SVR is to find a function f(z) = w”x + b that is
as "flat" as possible. This is achieved by minimizing the norm of the weight vector, ||w||?. The
optimization problem is formulated to tolerate errors up to a margin e while penalizing points that
fall outside this margin using slack variables &; and £;. The primal optimization problem is:

ﬂgélwll2+C;(&+§Z) (28)
subject to the constraints:
yi— (wia;+b) <e+§ (29)
(wha; +b) —y; <e+ & (30)
&, & =0 (€29

where C' is a regularization parameter that controls the trade-off between the flatness of the model
and the amount up to which deviations larger than € are tolerated. Non-linear relationships are
handled by mapping the data to a higher-dimensional space using a kernel function.

* Forecasting Type: A machine learning model for point forecasting that is robust to some outliers
and effective in high-dimensional feature spaces.

D.0.20 Theta Method

The Theta method is a statistical forecasting technique based on the concept of decomposition.
It models a time series by breaking it down into two components, or "theta lines." The first line
represents the long-term trend of the data, while the second line is constructed to capture the short-
term dynamics by modifying the curvature of the original series. These two lines are forecasted
independently and then combined to produce the final forecast. The standard Theta model has been
shown to be equivalent to Simple Exponential Smoothing with a drift term. [32]

e Input: A univariate time series.
* Output: A point forecast for future time steps.

* Mathematical Formulation: The method decomposes the original time series, y,, into two theta
lines.

— Line 1 (Trend Component): This line is the simple linear trend fitted to the data, which is
found by ordinary least squares regression:

g =a+ 0t (32)
This line is extrapolated linearly to produce its forecast.

— Line 2 (Short-term Component): This line is constructed by modifying the original series
with a coefficient . A common and effective choice is § = 2, which doubles the local

curvatures of the series. This modified series, §§2), is then forecasted using Simple Exponential

Smoothing (SES).
The final forecast, Y,y , is a simple average of the forecasts from the two lines:

S TP
Gien = 5 (915 +9550) (33)

* Forecasting Type: A statistical decomposition model for point forecasting, often used as a strong
baseline for its simplicity and performance.

28

D.0.21 XGBoost

XGBoost (Extreme Gradient Boosting) is a powerful and efficient implementation of the gradient
boosting framework. It is an ensemble model that builds decision trees sequentially, where each new
tree is trained to correct the errors made by the previous ones. For time series forecasting, XGBoost
is used as a regression model on a featurized dataset, making it highly effective at capturing complex,
non-linear relationships between the engineered features (e.g., lags, calendar variables) and the target.
[30]

* Input: A feature matrix X and a corresponding target vector y.

* Qutput: A point forecast for each input feature vector.

* Architecture and Formulation: XGBoost builds an additive model where the final prediction is
the sum of the predictions from K decision trees:

K
gi= Yy frl@) (34)
k=1

The trees are added one at a time in a greedy fashion. The k-th tree, fy, is chosen to minimize a
regularized objective function:

L9 =31y 5" + ful@i) + Q) (33)
i=1

where [is a differentiable loss function, §§’H) is the prediction from the first k£ — 1 trees, and €2 is

a regularization term that penalizes the complexity of the tree:

T
1
Q(f) =~T + §AZw§. (36)
j=1
Here, T is the number of leaves in the tree, w is the vector of scores on the leaves, and v and A are
regularization parameters.

*» Forecasting Type: An ensemble machine learning model for point forecasting, known for its high
performance, speed, and regularization capabilities.

29

D.1 Benchmark Tasks Included in TempusBench

In this section, we describe the datasets that have been used for each benchmark task. We summarize
the dataset used for each benchmark task in Table 2.

D.2 Synthetic Data: Cyclic Seasonality with Additive Trends
D.2.1 Description

This category of synthetic data models a time series that exhibits both a complex seasonal pattern
and a persistent, long-term trend. The data is generated using two related methods. Both methods
start with a foundational signal that combines multi-frequency sinusoids with a linear trend. The
second, more complex method builds upon this foundation by introducing an additional, randomized
sinusoidal component to the signal.

In both cases, non-negative noise from an exponential distribution is added to the deterministic signal.
These datasets are ideal for testing a model’s ability to identify and separate periodicities from an
underlying linear trend, with the second method providing a more complex seasonal structure.

D.2.2 Mathematical Formulation

The generation process for both methods is based on a primary signal, ypase(t), which includes
seasonal, trend, and offset components:

. t 1
Ypase (1) = 2sin(t) + 2 cos (2> + Zt + 4 (37)
S~~~ Offset
Trend

Seasonality

Method 1: Fixed Additive Trend In the first method, the true signal, y; (¢), is simply the base function.
The final observed value, Y3, is this signal plus an additive noise term, €;.

}/t = (t) + e = ybase(t) + € (38)

Method 2: Randomized Additive Trend The second method introduces additional complexity. For
each generated time series, a random frequency parameter, «, is sampled once from a continuous
uniform distribution:

a~U(a,b) (39)

In the provided code, this range is fixed from ¢ = 0 to b = 5. This parameter is used to create an
additional sinusoidal component that is added to the base signal. The true signal, yo(t), is therefore:

Y2 (t) = ybase(t) + SiH(OLt) (40)
The final observed value, Y3, is this enhanced signal plus the noise term:
K:yQ(t)+€t (41)

Noise Model For both methods, the noise term, €, is drawn from an exponential distribution with a
scale parameter 3:
€; ~ Exponential(3) 42)

D.2.3 Adjustable Parameters

The data generation process is controlled by the following parameters.
* Number of Points (num_points, N): This integer parameter sets the total number of
data points, defining the length of the time series.
» Start Time (start_time, t(): This parameter defines the initial time value for the series.

* Noise Scale (noise_std, (): This parameter represents the scale (and mean) of the
exponential noise distribution. A larger value for 8 increases the average magnitude of the
positive noise added to the base signal.

30

Table 14: Summary of datasets used for benchmark tasks.

Benchmark Task l h n m
Trend
Multivariate (Non-stationary) Electricity Consumption [33] 512 64 1741 44
Univariate (Non-stationary) Software Development Job Postings [34] 512 64 1827 1
Decomposition
Univariate (Additive) Synthetically Generated Additive (Appendix D.2) 1024 64 3000 1
Univariate (Multiplicative) Synthetically Generated Multiplicative (Appendix D.3) 1024 64 3000 1
Frequency
Multivariate (Days) Gold Price in India [35] 1024 64 4024 5
Univariate (Days) Coinbase Litecoin [36] 512 64 1827 1
Multivariate (Hours) Madrid Transport Pollution [37] 2048 64 181753 14
Multivariate (Minutes) Historical Stock Data (2003-2024) [38] 2048 64 122110 6
Multivariate (Minutes) Historical Stock Data (2003-2024, Longest) [38] 2048 64 122110 6
Multivariate (Months) Airlines Baggage Complains [39] 32 8 84 4
Univariate (Months) Inventories to Sales Ratio [40] 64 64 402 1
Univariate (Quarters) German House Prices [41] 32 32 221 1
Multivariate (Seconds) Utah Drilling [42] 2048 64 9661 35
Univariate (Weeks) Federal Funds Effective Rate [43] 1024 64 3713 1
Univariate (Years) Personal Consumption Expenditures [44] 32 8 96 1
Seasonality
Multivariate (Periodic) Madrid Transport (Cyclical) [37] 2048 64 181753 14
Univariate (Periodic) Synthetic Cyclic 1024 64 3000 1
Univariate (Quasiperiodic) Synthetic Non-stationary 1024 64 3000 1
Domain
Univariate (Climate) Delhi Climate [45] 512 64 1462 1
Multivariate (Economics/Finance) Gold Price in India [35] 1024 64 4024 5
Multivariate (Economics/Finance) Gold Price in India (Real) [35] 1024 64 4024 5
Univariate (Economics/Finance) Coinbase Litecoin [36] 512 64 1827 1
Multivariate (Energy) Room SplitSmart [46] 2048 64 10603 2
Univariate (Energy) Room SplitSmart [46] 128 64 561 1
Multivariate (Healthcare) NYC Covid Cases [47] 512 64 2005 54
Univariate (Healthcare) Employees Health Care [48] 64 64 427 1
Univariate (Manufacturing) Inventories to Sales Ratio [40] 64 64 402 1
Multivariate (Nature) Soil Monitoring [49] 1024 64 4323 127
Multivariate (Nature) Soil Monitoring (500) [49] 1024 64 4323 127
Univariate (Nature) Soil Monitoring [49] 128 64 679 1
Multivariate (Sales) Airlines Baggage Complains [39] 32 8 84 4
Univariate (Sales) German House Prices [41] 32 32 221 1
Multivariate (Software) Cyber Attacks on Water Networks [50] 512 64 1741 44
Univariate (Software) Software Development Job Postings [34] 512 64 1827 1
Multivariate (Transport) Airlines Baggage Complains (100) [39] 32 8 84 4
Multivariate (Transport) Madrid BEN pollution [51] 2048 64 181753 14
Multivariate (Transport) Madrid BEN pollution (Noisy) [37] 2048 64 181753 14
Univariate (Transport) Madrid BEN pollution [51] 2048 64 172622 1
Univariate (Web) Web Traffic [52] 1024 64 2793 1
Data sparsity
Multivariate (Dense) Gold Price in India [35] 1024 64 4024 5
Univariate (Dense) Chicken Pox [53] 128 64 522 1
Univariate (Sparse) Patient Chart [54] 2048 64 8093 1
Value type
Univariate (Binary) Absenteeism at Work [55] 128 64 740 1
Univariate (Categorical) Online Retail [56] 2048 64 541909 1
Multivariate (Continuous) Gold Price in India [35] 1024 64 4024 5
Univariate (Continuous) Forest Fires [57] 128 64 517 1
Multivariate (Count) Madrid BEN pollution [51] 2048 64 181753 14
Univariate (Count) Occupancy [58] 2048 64 10129 1

31

* Random Frequency (alpha, «): (Method 2 only) This parameter is not set by the user
but is sampled internally from a uniform distribution U (0, 5) for each generated series. It
introduces variability in the seasonal component across different datasets created by the
second method.

D.3 Synthetic Data: Cyclic Seasonality with Multiplicative and Additive Trends
D.3.1 Description

This category of synthetic data models a time series characterized by a complex interaction of seasonal
components and trends. A key feature is a multiplicative trend, where the amplitude of one of the
seasonal components grows exponentially over time. This is combined with another stable seasonal
component and a linear additive trend.

The data is generated using two related methods. The first method uses a fixed, deterministic signal.
The second method introduces additional complexity by adding another sinusoidal component with
a randomized frequency to the base signal. In both cases, non-negative noise from an exponential
distribution is added. These datasets are particularly useful for testing a model’s ability to handle
heteroscedasticity, where the variance of the series changes over time, in the presence of other
seasonalities and trends.

D.3.2 Mathematical Formulation

Both methods are built upon a primary signal, yuase (t), Which is a composite of several functions:

t 1
Ypase (1) = et/100 sin(t) + 3cos <2> + §t (43)

Multiplicative Seasonality

Additive Seasonality ~ Linear Trend

Method 1: Fixed Multiplicative Trend In the first method, the true signal, y; (¢), is simply the base
function. The final observed value, Y, is this signal plus an additive noise term, €;.

Yi=un (t) + € = ybase(t) + € 44)

Method 2: Randomized Additive Component The second method adds another layer of seasonality.
For each generated time series, a random frequency parameter, «, is sampled once from a continuous
uniform distribution:

a~Ula,b) 45)

In the provided code, this range is fixed from a = 5 to b = 10. The true signal, y»(¢), is the base
signal plus this new randomized sinusoidal component:

Y2 (t) = ybase(t) + Sin(at) (46)
The final observed value, Y}, is this enhanced signal plus the noise term:
}/t == yQ(t) + €t (47)

Noise Model For both methods, the noise term, ¢, is drawn from an exponential distribution with a
scale parameter 3:
e ~ Exponential(3) (48)

D.3.3 Adjustable Parameters
The data generation process is controlled by the following parameters.

* Number of Points (num_points, N): This integer parameter sets the total number of
data points, defining the length of the time series.

 Start Time (start_time, t(): This parameter defines the initial time value for the series.

32

* Noise Scale (noise_std, (5): This parameter represents the scale (and mean) of the
exponential noise distribution. A larger value for /3 increases the average magnitude of the
positive noise added to the base signal.

* Random Frequency (alpha, «): (Method 2 only) This parameter is not set by the user
but is sampled internally from a uniform distribution U (5, 10) for each generated series. It
introduces variability in the seasonal component across different datasets created by the
second method.

33

E Benchmark Evaluations

Our benchmark evaluation across multiple deterministic and stochastic forecasting metrics reveals
several key insights regarding model performance and efficiency. Notably, LAFN, with only 0.4M
(400K) parameters, demonstrates remarkable performance efficiency compared to significantly larger
foundation models such as TimesFM (200M parameters) [20], Chronos (20M parameters) [21], and
Moirai (approximately 91M for the base variant) [18].

On deterministic metrics, LAFN achieves the best performance on several tasks: it attains the lowest
MAE on the Baggage dataset (0.358) and SplitSmart Energy task (0.645) (see Table 15), the lowest
RMSE on Baggage (0.483) (Table 18), and the lowest MASE on both Baggage (0.689) and SplitSmart
(1.524) (Table 17). This performance persists despite LAFN’s compact architecture, achieving
competitive or superior results compared to models with up to 2000x more parameters. For instance,
while LAFN achieves the best MAE on Baggage, TimesFM (200M parameters) achieves 0.526 on
the same task, and Chronos (depending on variant) achieves 0.841. Similarly, on SplitSmart, LAFN’s
MASE of 1.524 outperforms TimesFM (1.617), demonstrating that parameter efficiency does not
necessarily compromise forecasting accuracy.

On stochastic metrics, LAFN also shows strong performance, achieving the best CRPS scores on
Madrid Count and Madrid Hours datasets (both 0.798) (Table 21), despite competing against large-
scale foundation models. The quantile score (Table 19) and weighted interval score (Table 20) results
further validate LAFN’s capability to provide well-calibrated probabilistic forecasts with minimal
model complexity.

These findings align with recent research on efficient forecasting architectures [4] and suggest
that architectural design and training methodology are as important as model scale for time series
forecasting [18, 21]. LAFN’s success highlights the potential for lightweight yet effective forecasting
models suitable for resource-constrained environments, while maintaining competitive performance
against much larger foundation models [4].

34

LS6L'T

Qowr rerowr

— £819°0 €€0t — — — S1S9'¢ STEL0 SIEL0 95t0'1 EY
— — - — - — — — — 62£9°0 010
8Y9¢€°0 L0180 TLLYO SLSO'T ¥T6L0 9PE0'T 81801 TIL6'0 ¥9L0'T SL6'O eurey[Se|
— €9L°0 — — — — — 8811°0 8811°0 €811 XeurreA
£0850°0 LY89°0 995°0 §T6°0 $T6°0 §T6°0 T6T1°0 L080°0 L080°0 YLTLO IS
127700 11890 1SLSO 150T°1 1S0T'T 150T°1 — LETBO'0 LETRD0 €750 uydqe;
90€+0°0 $+9°0 LYIS0 €298°0 £€298°0 £€298°0 — 6521°0 6521°0 P8SE0 NAV'T
L9TE00 TILO 9800°1 LTLEO $96°0 17,60 SIT0 I7€1°0 SSET0 101°1 Juawow
TLT00 100L°0 81€9°0 8076°0 80%6°0 80160 €6780°0 €¥E600 E€¥E600 ¥LTLO 18910J WopueI
L6LI00 6690 S009°0 680 YLI60 LEO6'0 9L160°0 ¥9£80°0 62210 €STL0 uns|
8TE10°0 9689°0 €LTH0 7698°0 76980 76980 8€L000 S601°0 $601°0 ¥195°0 Joxtw—owy~Aun
£0900°0 609L°0 981 95180 9518°0 9518°0 890¥0°0 6801°0 6801°0 998T'1 OATRU” [EUOSES
$6500°0 S0SL'0 €TEET L099°0 L099°0 L099°0 LO0Y0'0 891600 891600 LT9E'T OISSE[DUOJSOIO
¥6500°0 P6EL'O TEST'I ¥L96°0 ¥L96°0 ¥L96°0 LLEO'0 698800 6988070 ISH'1 euiLe
88500°0 €IPL0 99ST'T 9111 9111 9111 vITE00 TTELO TET0 96°T Suryoowss™ [enuauodxa
€010°0 ¥289°0 TS9O €6vT Tl — 66L6'7LOY 8I¥000 TEIT'0 LTIT0 1209°0 Texiour
$S500°0 S169°0 62950 68111 91l 6L60°1 ££00°0 1960°0 €09600 T1¥8°0 SOuoIYd
LSS00°0 SP89°0 86LE0 SLO SLO SLO P-AI1€9T €ST80'0 €ST800 S9TSO wysow)
€1€50°0 88LL°0 T99L'T LST80 LST80 LST80 S96ZI'T €OLTO €0L1°0 €051 1oydoad
BJWuyen wewguds [0S SURIL PUPRN SINOH PUPRIN JUNOD PUPRAL 00ISVT ploDuIpul BIpU[p[oD oFeSSeqg [oPOIA

SNsOY AVIN ST d1qeL

35

— - — — — — — — — 6901°T€9 dow Texrow
— — — — — — — — — €6€L91€ 010}
— 99198 YLIETTII — — — L9ST'PSOT 6LYSI8E 6LPS'I8E SOTT'IT 2R
€CST'6ST TLO'E9T LIL6OEL 160€°LT9 95£8'98¢ L990°STS 6916'vL 9IEI'SPT €S€8'60C TIOE'TIT euwey3e]
SHL8ST LTTO68 ISPE'LIE TE6V'669 TE67'669 TE67'669 — WSSy TSSS'TH 9605°S0T NAV'T
— P81T6ET — — — — — TWTL'EE THTL'EE 6LES'SLY XeuweA
6LS'STI EL8PIT TISO'L6E 189€°TEL 189€°TEL 189€°TEL €91'8C €016'68 €01668 TTO6I'HT9 Ias
vH08LY OISEYLT LIT6'688 vISSSIS 10£8'96L 6LL6'LOS 901891 €L09'ST LOTOTE 9LL89IT Juowow
L+3908°C S698'IET 9TI9T8S HI66IEL §199°'L99 SSLI'TOL 809S'€T OLLSIT S8€9'L8 LOEE'LLS ws|
€69'1T PELSEIT LLSS'LYS — ¥ELO'6E6 YELO'6E6 YELO'6E6 — 8EIT'Sy SEII'Sh TSTTO8Y uydqe)
9€COTT 6LOVLYT ISLKIS9 ELVITEL ELYITEL ELYI'TEL S81°C1 L6T9T6 L6T9T6 TT6I'PTY 159105 wopues
12087 L¥SE'60T 88LI'STIT TTLY'STL TCLy'sTL TTLy'sTL L6LS'S — 68€€16 68EE’I6 SI8YHiY ewie
6L STOI'TIT €TES0EVT STPYObL STryovL STryovL €90Ly 1TES'L6I 1TEYL6I 9LOO'LIS — Surpoows fenusuodxo
SPLS'T 669€'80T LLYS'9L91 v1L9CS v1L9CS v1L92S SLY6'S 98IV'EIT 98I¥'EIl TSIOPET 9ATRU” [EUOSEDS
90SS'T 880V'ITT $0S8'96El TIO8'ESE T108°€S€E T108°€SE $9S8'S LELES6 LELE'S6 LOLO'LLE OISSE[O” U0JSOID
6+0S0'T 9TKITI 6£€0°T9T S8LY'TH8 S8LY'TH8 S8LY'T8 WSO 6T6V'I9L 6T6F 191 SE6'ETT JoXTW™ Wy~ Aun
8+PLST 8869'601 TIST6TT S+9969'1 — L+9TT'T IPSS0 €L00T8 ST8Y'I8 SLLT'ETY Texjour
6+91S°€ TLS®'ETL 10¥9'69T £VE'8T8 P6LT 563 8S61'6€8 TI6T0 TP69LTI L8IF'STI 8EP6TIE souoxyo
8+9626'9 IL9L'EIT 1ThL0TT 1SOE'TIL 1SOE'TIL 1SOE'TIL LS8EO0 ¥LIO'S6 PLIO'S6 LSOT'THI uysourm
L869°TI 68VL'TIT 19TE'LL6I 86L'6SL 86L'6SL 86L'6SL PoPI6'S SY8TOSI SPRTO81 1ST6'9CE 1oydoxd
SN umn pewsnidg 1108 SUBL] PUPRJN SINOH PHPEJN JUNOD PUPEN YoO)SYT P[ODPIpU] EIpup[on o5v3deq [9PON

SINS9Y HAVIN 91 2I9BL

36

— — — — — — — — — 6CsY'E 0w rexrow
LSOS'ELI9 ISI6ET 888C€ 9561'€ 1619 861t'€ LSSS'8ILT LTELYT ITIVLT 8PLS'I euweySe]
— £208°1 — — — — — SYT0'e Sre0'e S8LC XeuLITA
§Teol €L6L'T 6SLI'TI 6569'C 6569'C 6569'C §TTol €LLT €LLT 6ELY'C SATEU” [EUOSEDS
L'001 LTLL'T 8610°01 6€81°C 6€81°C 6€81°C L°001 8YEET 8PEET T0T9T JISSE[OTUOJSOD
L69Y'66 1SL'1 8698 L689'€ L689°€ L689'€ EVLLOS L9E'€ L9€'€ 8666'C Surpoows [enuouodxa
6V1S'001 L9YL'T 9TL9'8 oL6I'E 9L61'E oL61'E 68VL'Y6 985TT 985T'C 6LC ewiLre
6066'SES 8I89T 9G8S'L €51T°e 8681°¢ 861CT'€ €886'88C SSIV'E 60SV'€ ILITT Juawow
8898°€6 SEE9T SEETY 9869'€ SE8L'E 6829 8TYS'8 SLYY'T LSYP'T TLIYT souoIyo
— PIEST €1€€0€ — — — L9Y'LLT6 ~ 86T9'ST 867981 SOI0T oy
SOLI'T86 PLI9T — 69STY LLSO'E LLSO'E LLSO'E SEILYTE TSSOT TSOT 986€'1 IAS
SP6E09Y 8ESOT SISLY L60T'€ L60T°€ L60T'€ ILEY'S0T S6LET S6LET 9861 182105 Wwopuel
OLLT'YOE SIVO'T T9ISH 9$56'C §Te0°€ L86'C P€9°0€T £r'e SOET'E 8KOEL'] uns|
— — — — — — — — — 6911 010}
€L9TYLL 61191 661'€ 86810 — PHLYET 60501 9788'C $698°C 8LSI'I rediow
ceesvee 16091 LEITE 8€L8'T 8€L8T 8€L8'C £955°81 $88LC $88LT S6LO'T zoxIuIdwn”Aun
TeEEC8YL 609 €5Te Y €86 vE86'E €86'€ — LL60'T LL60T LSOO’ ujdqey
$8L'8TL LETST 90L8'€ 2088°C 08T 2088'C — wsoTe wW0TE 76890 NAV'T
659C'76 89191 €958°C 6LY'C 6LY'C 6LY'C 170 L101'T LIOI'T ¥TI0T wysaun
7’668 86€8'T LTISTEI V6TL'T V6TL'T V6TL'T 6€870°0 9LECY OLEEY §96S'T 1oydoxd
BN Umn wewswds [0S CSUBLL PUPRN SINOH PR JUNOD PUPRN OOISYT PIODRIPUL vIpUIp[oD 35e3Teg [9POIN

SINSIY HSVINL -L1T SI9BL

37

76881

Qowr reowr

— — — — — — — — — vL16'0 010}
— 88€T b — — — S80L'€ SLL'O SLLO ST61'1 ey
£5€5°0 8EIY'T L¥T90 SEI6'T STyl 1796'1 L69TT 86€0°1 10111 TeTsT'l ewre[[3y|
— TIeee — — — — — 1S¥7°0 ISYT0 9LYS'I XeuweA
L8ET'0 9€6€T 9IEL0 6Ll Ov6L'1 Ov6L'1 - L091°0 L0910 TSH9'0 uydqe)
98660°0 €6E€T €OLI'T 60T 8¥OP'T 8E0P'T LVET'0 TT9TO woTo TSTT'l Juowous
¥S180°0 668€T 9T0L0 L8OE'T L8OE'T L8OE'T — £8YC°0 €8YC°0 SE8H'0 NAVT
LIELOO 89VET 8LYLO oLVl LYl OLVY'1 1€1°0 LOST'0 LOST'0 68180 IAS
TST90°0 TPET £9¥8°0 LOLE'T LOLE'T LOLE'T 989600 1€81°0 1€81°0 68L80 180105 Wwopues
86100 8SYET EVISO 9€TH'T 85T LTTY'T 6L01°0 TTLI'O PEITO 6VL8'0 uns|
£2610°0 €6EET L8TY'L 9105'1 9105'1 9105°1 €800 6LITO 6L1T0 LIEY'] 9ATEU” [euosEDs
¥6310°0 8STET 8ULY'I 9L0T'T 9L0T'T 9L0T'T 8SLYO'0 6T81°0 6810 L6SH'1 JISSE[O” UOJSOI
98100 PLTET L90E'T 808€'T 808€'T 808€'T 6VSY00 T80 810 SOPS'l euiLe
928100 €L€T 891 LL8S'T LL8S'T LL8S'T 96L£0°0 96ST0 96570 6659'1 Surpoows~[enusuodxd
1€€20°0 10S€T T0LY0 60€'T 60€'1 60€'T 650100 1S0T0 16070 91890 JoxTwown”Aun
SY9£0°0 €66€'T 8ITLO TITOPST — SH0L0T 66v000 SSOTO LEOTO TIL6'O rexjow
L9150°0 v0SET €010°1 VOLL'T 60L8'1 8I6L'1 S6Y000 ¥161°0 11610 L96°0 souoxyo
£L00°0 LTSET €190 LS6L'T L86I'T LS6L'T po0r6'l 8ELTO 8ELT0 699°0 wysown
L2910 SLIET €€6'1 1671 1671 1621 §-9T68T 11¥T0 1IvT0 €68Y'1 1oydoxd
SyNUmn pewsnds (10§ CSURI] PUPRN SINOH PUPPIN JUNOD PUPEN YooISYT - ploDuIpUl eIpu[p[oD 93esseq 19PON

SINSoY HSINY -81 °Iq8L

38

— — — — — — — — — 656V'9 Q0w reIow

— — — — — — — — — 87T6€°1 010}
POTT'T 69V’ SOIS'T £605°€ SLPY'C 1L85°€ 986S'€ T016C geere 6eTlE ewre[[Se|
TLETO 9v01'€ 1910C 2058'C 2058C 2058'C — SLLV'O SLLY'O TEL8'T NAVT
79L00°0 16V€'€ LLOT'T PS1S€ 979L’€ LISH'E 619100 €ISE0 6TPE'0 6LST'E souoIyo
86100°0 €786 L909'1 6097°C — 8€97°T 91100 T69€°0 LO9E'0 9S9t'1 rexow
SN U wewsndS [0S SURIL PUPRJN SINOH PUPRJN JUNOD PUPRIN YO0ISKT PlODEIpU] eIpulplop o5esSSeq [oPOIN

synsoy 21098 9muen) 6] 9[qeL

39

— — — — — — — — — SLY8'97 Powreow

— — — — — — — — — 8719 010}
VILS'b LOLTET TTT9'9 LETEST SPPSTT LSSEST SPPL'ST 906L'TI L6IL'ST STSEI eure[e
9120'] SOVLTT 669'8 LETH'TI LETHTI LETH'TI — 6501°C 6501'C SLVE'S NAVT
6L0S00 TTOTTI LEIT'S 895G H1 STIRY 9T Pl L900 pEEP'T 86€T LESHTI souoIyo
TLITO0 S9ES'TT 161879 76686 — €876°6 9TIS0'0 TLOY'T 8TLST VIV rexow
SN U wewsndS [0S SURIL PUPRJN SINOH PUPRJN JUNOD PUPRIN YO0ISKT PlODEIpU] eIpulplop o5esSSeq [oPOIN

S)NSOY 2100S [eAINU] PAYSIOA 0T 9IqBL

40

— — — — — — — — — 68v1'y Sow renow
— — — — — — — — — 6810 010)
€L9€°0 ¥8SST LOT9'0 L6LY'T 12L6°0 66€1'T 8S8'1 6160 6THO'T LLOT'T eure[e
12L80°0 169€C SLLO 8L6L0 8L6L°0 8L6L°0 — 1591°0 1S91°0 126€°1 NAVT
8¥00°0 LLYT ¥T9€T 71T zIgT 65€1°1 119000 S6€1°0 S9ET'0 €6I8°1 souoIyo
8810070 9THET YLESO 1889°0 — L6V’ 6V€00°0 PYET0 9IET'0 0650 rexow
SN U wewsndS [0S SURIL PUPRJN SINOH PUPRJN JUNOD PUPRIN YO0ISKT PlODEIpU] eIpulplop o5esSSeq [oPOIN

SINSSY SAYD -1¢C 2I9BL

41

F Additional Related Works

Classical time-series forecasting began with statistical models that exploit stochastic structure and
domain priors, including ARIMA and its Box—Jenkins methodology [59], exponential-smoothing
state-space ETS [60], the Theta method [61], and multivariate VAR models [62]. Deep learning
methods later advanced accuracy and scale by learning nonlinear temporal dependencies from large
corpora: DeepAR [63], N-BEATS [64], DLinear [15], TiDE [65], TFT [66], PatchTST [67], and
iTransformer [68]. Probabilistic forecasters further model predictive distributions, e.g., diffusion-
based TimeGrad [69], score-based CSDI for imputation and forecasting [70], and conditional-flow
GRU-NVP [71].

TSFMs. Inspired by NLP/vision pretraining, TSFMs train on heterogeneous corpora and evaluate
in zero/few-shot settings across domains and horizons. Representative models include Moirai [72],
Chronos [21], TimesFM [73], Lag-Llama [74], Timer [75], UniTS [76], TTM (Tiny Time Mixers)
[77], Moment [26], and multimodal VisionTS [78]. Collectively, they demonstrate strong zero-shot
point and probabilistic accuracy on diverse benchmarks while revealing open challenges at long
horizons (error accumulation) and at very high frequencies.

Public datasets and repositories. Public corpora have underpinned progress from statistical to
foundation-model eras. The M-competitions (M3 and M4) provided broad univariate benchmarks
across domains and frequencies [6, 7], followed by the retail-demand M5 competition [79]. The
Monash Time-Series Forecasting Archive curates a large, standardized repository spanning many
domains and sampling granularities [13]. Large-scale pretraining/evaluation collections include
LOTSA (released with Moirai) [72], the Chronos corpus with in-domain/zero-shot splits [21], and the
diverse univariate corpus aggregated in Lag-Llama [74]. Task-focused collections such as the LTSF
suite [15] (e.g., ETT datasets) and broader benchmarks like TFB [14] and ProbTS [80] assemble
datasets emphasizing horizon length, covariates, and probabilistic outputs.

Evaluation frameworks and benchmarks. Tooling and standardized evaluation have evolved in
parallel. Practitioner libraries such as Prophet [81] and sktime [82] offer classical and ML baselines
with unified interfaces, while GluonTS [83] and PyTorchTS [84] provide probabilistic deep-learning
pipelines. Benchmarking efforts including LTSF [15], BasicTS+ [?], TFB [14], and ProbTS [80]
compare statistical, deep, and (in some cases) foundation models, but differ in task taxonomies, splits,
and leakage controls. Standardized metrics such as MASE [85] and CRPS [86] enable cross-dataset
aggregation of point and probabilistic performance, yet consistent pretraining/evaluation protocols
and leakage-free large-scale corpora remain key needs for fair TSFM assessment.

The collective consequence of these issues is a research environment where it is difficult to distinguish
genuine methodological advances from circumstantial performance on a narrow, and potentially
contaminated, set of tasks. This is particularly damaging for the development of TSFMs. The
significant computational and financial resources required to pre-train these models demand a
rigorous, fair, and comprehensive evaluation framework to justify their development and guide future
research [32]. The current state of affairs falls short of this standard. Indeed, studies have shown that
existing TSFMs, often pre-trained on general-purpose academic datasets, can struggle to generalize
to the unique and challenging characteristics of specialized domains like observability data [87].

The field has thus reached an inflection point. Progress is no longer primarily limited by our ability to
design novel model architectures, but by our inability to reliably and fairly measure their performance.
Recognizing this crisis, recent efforts have focused on creating the next generation of evaluation
infrastructure. The development of large-scale, standardized benchmarks such as GIFT-Eval and
the domain-specific Benchmark of Observability Metrics (BOOM) represent a direct and necessary
response [27]. These initiatives introduce carefully curated and decontaminated pre-training and
evaluation sets, standardized protocols, and data that reflects the complexity of real-world applications.
They treat the benchmark not as a mere dataset, but as a carefully designed scientific instrument
[8]. This establishes a clear and urgent research gap: the critical need for a new, large-scale, and
meticulously curated public benchmark that can serve as a gold standard for evaluating the next
generation of time-series models. Such a contribution is not merely a prerequisite for future research;
it is a foundational scientific contribution in its own right, providing the essential infrastructure
required to move the field from an era of fragmented claims to one of robust, reproducible, and
generalizable progress [26].

42

Contemporary time-series data seldom conform to the idealized assumptions of stationarity and
linearity that underpin classical models. Instead, real-world data streams are characterized by a
confluence of complex, interacting properties that present formidable modeling challenges [30].

* Non-Linearity: Perhaps the most fundamental challenge is the prevalence of non-linear
relationships. Economic systems, biological processes, and energy grids are governed
by complex feedback loops and interactions that cannot be adequately captured by linear
models [27]. Traditional methods like Autoregressive Integrated Moving Average (ARIMA)
are, by their construction, limited in their ability to model such non-linear dynamics, which
is a primary reason for their performance ceiling on complex, real-world problems [30].

* Multi-Regime Behavior: Many time series exhibit structural breaks or distinct operational
regimes, where the underlying data-generating process changes over time [5]. Examples
include the shift between bull and bear markets in financial data or the different performance
characteristics of an industrial machine under varying loads and environmental conditions. A
single, global model often fails to capture this complex inner structure, leading to significant
predictive errors when the system transitions between regimes [88].

e Intermittency: As noted previously, intermittent demand patterns are characterized by a
high proportion of zero-valued observations, with non-zero demands occurring sporadically.
This dual source of randomness—in both the timing and the magnitude of events—violates
the assumptions of continuity and regular sampling inherent in many classical smoothing
and regression-based techniques [5].

» Heightened Volatility and Novel Data Sources: The modern data ecosystem is character-
ized by the emergence of new data sources that introduce unprecedented levels of volatility
and complexity [5]. The integration of renewable energy sources into power grids is a prime
example, creating load patterns with high-frequency noise and non-stationary behavior that
challenge traditional forecasting approaches. A parallel development is the explosion of
"observability data" generated by large-scale distributed software and cloud computing sys-
tems. This data, which includes metrics on CPU load, network latency, and application error
rates, is often characterized by extreme non-stationarity, high dimensionality (thousands of
correlated variables), heavy-tailed distributions, and sparsity, posing a unique and difficult
set of modeling challenges [5].

F.0.1 An Arms Race of Methodological Innovation

The progression of forecasting methodologies can be understood as a direct response to this escalating
data complexity. Each new paradigm has sought to overcome the limitations of its predecessors,
leading to the current diverse and powerful toolkit available to researchers and practitioners [5].

* The Classical Foundation: The field was built upon a foundation of statistical methods
developed primarily in the mid-20th century. Models such as ARIMA and its variants
[8], Holt-Winters Exponential Smoothing [5], and the Theta method [32] became the
workhorses of the discipline. These models excel at capturing and extrapolating clear
patterns of trend and seasonality from univariate time series. Their enduring appeal lies in
their statistical rigor, interpretability, and computational efficiency. However, their reliance
on strong assumptions about the underlying data-generating process, particularly linearity
and stationarity, fundamentally limits their applicability to the more complex data common
today [8].

* The Machine Learning Advance: The rise of machine learning in the late 20th and
early 21st centuries provided a new set of tools capable of addressing the challenge of
non-linearity. Non-parametric models like Support Vector Regression (SVR) [31] offered a
principled approach, grounded in statistical learning theory, to model non-linear relationships
in high-dimensional spaces via the "kernel trick" [27]. Concurrently, ensemble methods,
particularly those based on decision trees like Random Forest and Gradient Boosting
(e.g., XGBoost), proved to be exceptionally powerful and robust [30]. By combining
the predictions of many weak learners, these models can capture complex, non-linear
interactions and have consistently demonstrated state-of-the-art performance in a wide array
of forecasting competitions and applications.

* The Deep Learning Revolution: While machine learning ensembles excelled at capturing
complex feature interactions, they were not explicitly designed to model the long-range

43

temporal dependencies inherent in sequential data. This limitation was addressed by the
deep learning revolution. Recurrent Neural Networks (RNNs) , and more specifically archi-
tectures like Long Short-Term Memory (LSTM) networks, were developed with internal
memory mechanisms (gates) that allow them to capture and retain information over long
sequences [27]. Empirical studies have shown that on complex financial and economic
data, LSTMs can significantly outperform classical models like ARIMA by better modeling
non-linear temporal dynamics [5]. Following the success of LSTMs, Transformer-based
architectures, with their self-attention mechanism, have emerged as the next frontier, offer-
ing a powerful alternative for capturing dependencies across time without the sequential
processing limitations of RNNs [27].

This co-evolution of data challenges and modeling paradigms, summarized in Table 22, illustrates a
clear trajectory towards models of increasing complexity and representational power.

Table 22: The Co-evolution of Time-Series Challenges and Modeling Paradigms [5] [32] [8] [27]

[30].

Era Primary Data Chal- Dominant Model Key Models Inherent Limita-
lenge(s) Paradigm tions

Statistical Trends, Seasonality, Time-Domain Sta- ARIMA, Holt- Struggle with non-
Stationarity tistical Models Winters, Theta linearity and com-

plex dependencies
Machine Non-Linearity, Com- Non-parametric Ensemble Models Limited handling of
Learning plex Interactions (SVR, Random long-range temporal
Forest, XGBoost) dependencies

Deep Long-Range Depen- Recurrent, LSTMs, Trans- Data-hungry, com-

Learning dencies, Sequential Attention-based formers putationally inten-
Patterns Networks sive, task-specific

Foundation Heterogeneity, Scale, Large Pre-trained MOMENT, Reliance on mas-

Models Task Generalization Models TOTO, Chronos sive, curated

datasets; evaluation

bottleneck

However, this progression is not a simple linear march where newer, more complex models invariably
render older ones obsolete. Empirical evidence reveals a more nuanced reality, one that aligns with
the well-known "No Free Lunch" theorem in machine learning. While deep learning models like
LSTMs have been shown to decisively outperform ARIMA on certain complex datasets, recent
large-scale studies have also found that in zero-shot or limited-supervision settings, simpler statistical
methods often outperform sophisticated deep learning models [27]. Furthermore, in production
environments like large-scale observability systems, classical models remain prevalent due to the
operational infeasibility of training and maintaining millions of distinct, complex neural network
models [5]. This apparent contradiction is not a flaw in the research, but rather a reflection of a
fundamental truth: the performance of any given forecasting model is highly contingent on the
specific characteristics of the data, the length of the forecast horizon, the availability of computational
resources, and the degree of supervision. This recognition implies that the central problem in the
field is not merely the invention of more powerful algorithms, but the development of a deeper, more
systematic understanding of the complex performance landscape that governs the interaction between
data characteristics and model architectures [27].

F.1 The New Frontier: Pre-trained Foundation Models for Time Series

In response to the challenges of data heterogeneity and the high cost of developing task-specific
models, the field is currently undergoing another paradigm shift, mirroring recent transformations
in natural language processing and computer vision: the move towards large, pre-trained Time-
Series Foundation Models (TSFMs). This new frontier aims to leverage the power of large-scale,
self-supervised learning to create general-purpose models that can be adapted to a wide range of
downstream tasks with minimal fine-tuning [27].

44

The core premise of the foundation model paradigm is to pre-train a single, high-capacity model
(typically a Transformer) on a massive and diverse corpus of unlabeled data. This process allows
the model to learn a rich, generalizable representation of temporal patterns. Subsequently, this
pre-trained model can serve as a powerful building block for various downstream applications,
including long- and short-horizon forecasting, time-series classification, anomaly detection, and
missing value imputation. Models such as MOMENT, Chronos, and TOTO are at the vanguard of
this movement. They are designed to be effective "out-of-the-box," providing strong zero-shot or
few-shot performance without the need for extensive task-specific training [26] [25]. This approach
holds particular promise for domains like observability, where the sheer scale and diversity of time
series—often numbering in the millions or billions—make the traditional approach of training one
model per series operationally intractable [30].

The primary enabler of this paradigm, and simultaneously its greatest bottleneck, is the availability of
data. The success of foundation models in other domains was built on the existence of vast, cohesive,
and publicly accessible datasets like The Pile for text and ImageNet for vision [26]. The time-
series domain, by contrast, has historically been characterized by a fragmented landscape of smaller,
scattered, and task-specific public datasets [5]. This data scarcity has been a major impediment to
large-scale pre-training. To overcome this, pioneering research efforts have begun the monumental
task of data curation. The creators of MOMENT compiled The Time Series Pile, a large collection
of public repositories, while the TOTO model was pre-trained on a corpus containing a mixture of
public, synthetic, and large-scale proprietary observability data, resulting in a dataset 4 to 10 times
larger than those used for other leading TSFMs [25].

This focus on data curation signals a significant maturation of the field. In earlier eras, the primary
axis of innovation was model architecture—for example, the design of the gating mechanisms in
an LSTM or a novel attention variant in a Transformer [27]. The advent of the TSFM paradigm,
however, shifts the research bottleneck. While architectural innovation remains important, the most
critical and scientifically challenging work is now increasingly centered on the curation of massive,
diverse, and clean datasets, and on the development of robust frameworks for evaluating the models
trained on them. The value proposition of a new TSFM is now as much about the data it was trained
on and the benchmark it was tested against as it is about its internal architecture. This implies that
the most impactful contributions in this new era may not be designing a marginally better model,
but rather creating the foundational data and evaluation infrastructure that enables the entire field to
advance [8].

45

	Introduction
	Contributions

	Background
	TempusBench
	Next Directions and Conclusion
	Additional Mathematical Background
	Mathematical notation
	Mathematical Definitions
	Evaluation Metrics

	Result Aggregation Procedure
	Problem Setup
	Average Win Rate
	Skill Score
	Geometric Mean Rationale
	Implementation Details

	Additional results.
	Win Rate Results
	Point Forecast Metrics
	Probabilistic Forecast Metrics

	Skill Score Results
	Key Findings
	Top Performing Models
	Skill Score Insights
	Model-Specific Observations

	Forecasters
	Moirai
	Moirai-MoE
	TimesFM
	TimesFM-2.0
	Chronos
	TabPFN
	TabPFN-TS
	Tiny Time Mixers (TTM)
	Lag-Llama
	Toto
	MOMENT
	ARIMA
	Croston's Method
	Holt-Winters Exponential Smoothing
	Long Short-Term Memory (LSTM)
	Prophet
	Random Forest
	Seasonal Naive
	Support Vector Regression (SVR)
	Theta Method
	XGBoost

	Benchmark Tasks Included in TempusBench
	Synthetic Data: Cyclic Seasonality with Additive Trends
	Description
	Mathematical Formulation
	Adjustable Parameters

	Synthetic Data: Cyclic Seasonality with Multiplicative and Additive Trends
	Description
	Mathematical Formulation
	Adjustable Parameters

	Benchmark Evaluations
	Additional Related Works
	An Arms Race of Methodological Innovation
	The New Frontier: Pre-trained Foundation Models for Time Series

