

У бактериальных эндосимбионтов

Голая рибосома ІІ

С. Шерстнева , А. Залевский, С. Гарушянц S. Sherstneva*, A. Zalevsky, S. Garushyants

Naked ribosome II

насекомых, а также других бактерий, которые имеют очень маленький размер генома, может быть утерян ряд рибосомных белков. Типичная рибосома прокариот состоит из трех

Цели

Введение

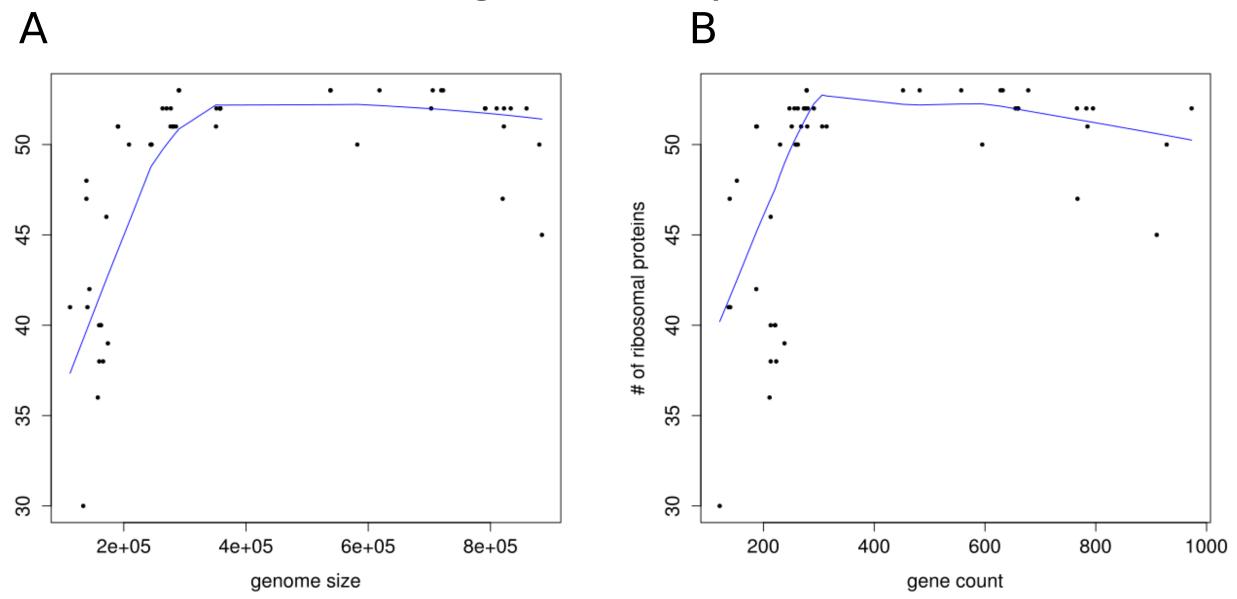
- Определить состав рибосомальных белков у бактерий с малыми геномами (<1Mb).
- Найти закономерности исчезновения и сохранения белков в зависимости от размера генома.
- Проанализировать оперонные перестройки, связанные с исчезновением рибосомных белков.

Материалы и методы

► Геномы бактерий – Genbank

pPHK: 16S, 23S и 5S — и 54 белков: 21

белок малой субъединицы и 33 -


большой субъединицы.

- ► Построение деревьев FigTree
- ► НММ-профили рибосомных белков –
- ▶ Pfam
- ► Выравнивание pPHK MUSCLE
- ► Построение графиков R Studio
- ▶ Обработка данных язык Perl

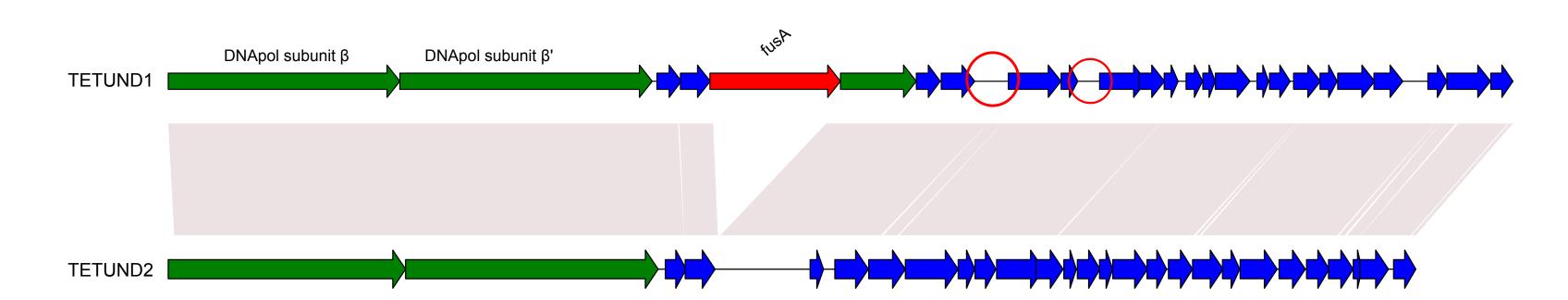
enomenom se (bpm enomenom se (bpm enomenom se (bpm se

Рис. 1. Белковый состав рибосом

Fig.1. Protein composition of the ribosomes

Рис. 2. Зависимости количества рибосомных белков от размера генома (А) и от количества генов в геноме (В) бактерии

Fig.2. Dependence of the number of ribosomal proteins on the genome size (A) and gene count (B)


Abstract

Bacterial endosimbionts of insects and other bacteria, possessing tiny genomes, may lack a number of ribosomal proteins. A typical ribosome is comprized of 16S, 23S and 5S rRNAs, and 21 and 33 proteins from the small and large subunits respectively. Aims: To characterize operon rearrangments and possible loss of ribosomal proteins.

Conclusions: Bacteria with tiny genomes demonstrate frequent gene loss; bacteria with long genomes (>200 Kb) retain almost all ribosomal proteins; all bacteria have 18 universal ribosomal proteins that are crucial for the ribosome functioning; closely related organisms with tiny genomes may have different rearrangments and losses of genes encoding ribosomal proteins.

Выводы

- Чем короче геном бактерии, тем больше пропадает рибосомных белков Бактерии с геномом длиннее ~200 kb сохраняют практически все
- рибосомные белки
- 18 рибосомных белков сохраняются у всех изученных бактерий и
- являются необходимыми для существования рибосомы Даже у близкородственных организмов с крошечными геномами
- наблюдаются перестройки и потери генов в рибосомных оперонах

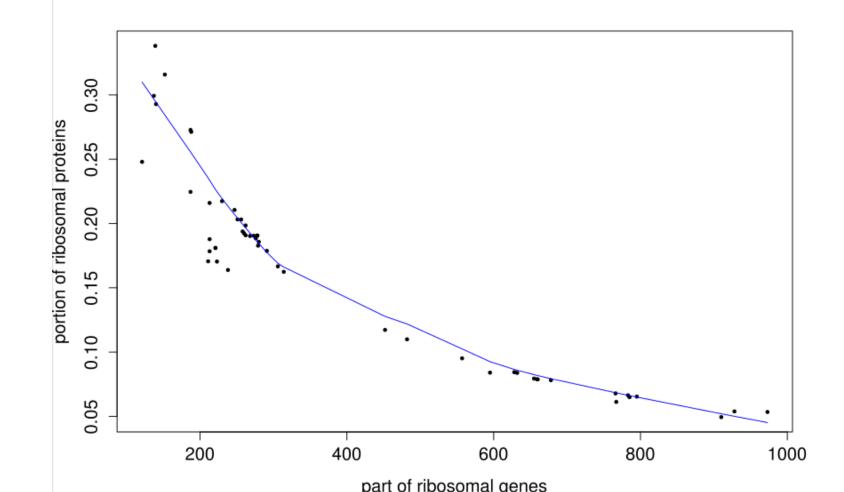


Рис. 5. Пример оперонной перестройки и потери генов в рибосомальном опероне двух штаммов Candidatus Hodgkinia cicadicola: fusA кодирует фактор элонгации

Fig.5. Example of operon rearrangment and gene loss in ortologous ribosomal operons in two strains of Candidatus Hodgkinia cicadicola: gene fusA encodes elongation factor EF-2

S15. Регуляция

translation initiation

Regulation of

инициация трансляции

S21. Инициация трансляции **Translation initiation** L1. Посттранскрипционна регуляция рибосомных генов **Posttranscriptional regulation**

of ribosomal genes Рибосомный туннель Ribosomal tunnel

> L23. Участвует в фолдинге, связывается с ТФ Participates in folding, binds

Рис. 3. Филогенетическое дерево бактерий, построенное по 16S pPHK Fig.3. Phylogenetic tree of bacterial species reconstructed by 16S L29. Связывается с ТФ Binds TF