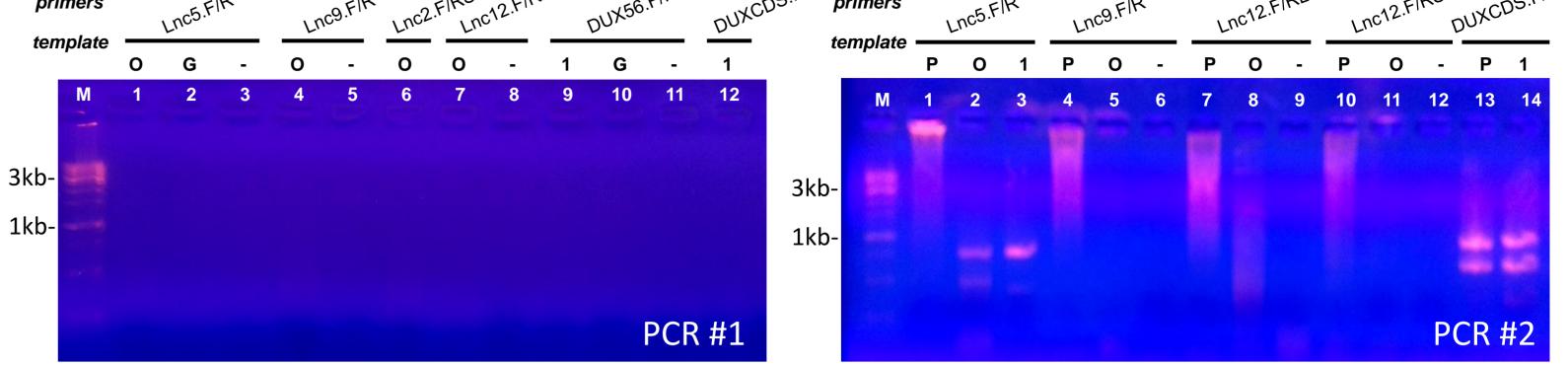

Cloning cDNA from oocytes & zygotes

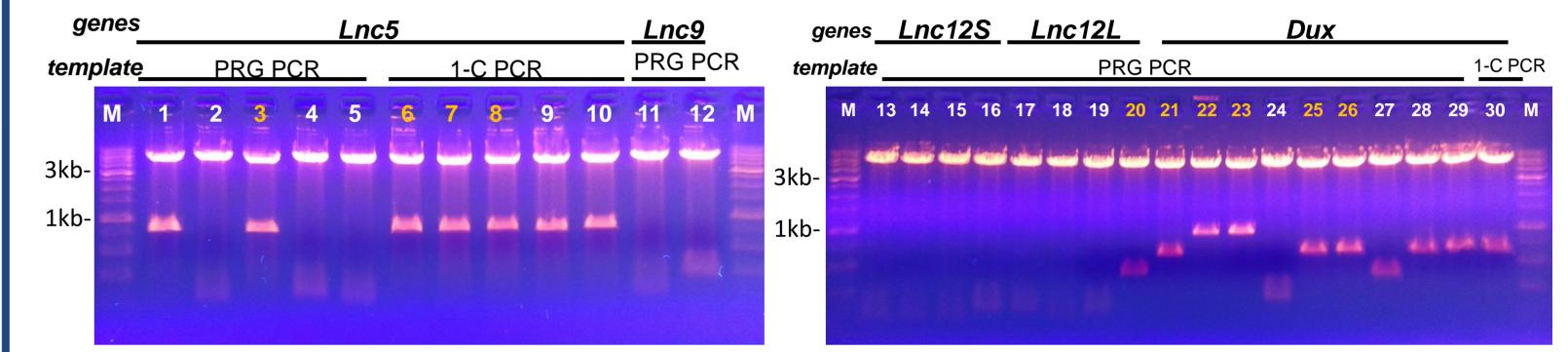

Elizaveta Gubanova, Mariona Latorre, Darja Lepekhina, Marc Masramon, Ilya Popadin

Júlia Canet-Pons, Olga Glazynova, Natalya Markelova, Sergey Shumeyko, Petr Svoboda

ABSTRACT

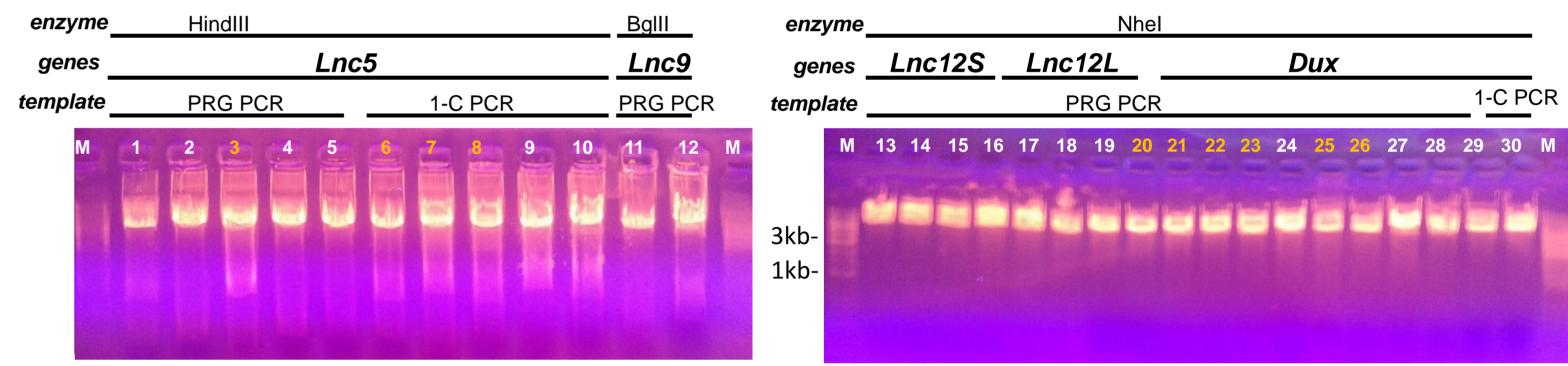
The theme of our laboratory were genes functioning in the early embryonic development. The control of gene expression during mammal oocyte-to-embryo transition (OET) is a fascinating but poorly understood process. Last year, next generation sequencing revealed many candidate genes which might participate in OET. Among them, four genes, which are active in oocytes and zygotes were selected for functional analysis prior to the school. Three of them are oocytespecific LncRNA (*Lnc5*, *Lnc9* and *Lnc12*) selected during a bioinformatics survey of the maternal transcriptome. The last is Dux, a

 primers
 Lnc9.FIR
 Lnc2.FIRS
 DUX56.FIR
 DUX56.FIR
 DUXCDS.FIR
 Lnc9.FIR
 Lnc12.FIRS
 Lnc12.FIRS
 DUXCDS.FIR

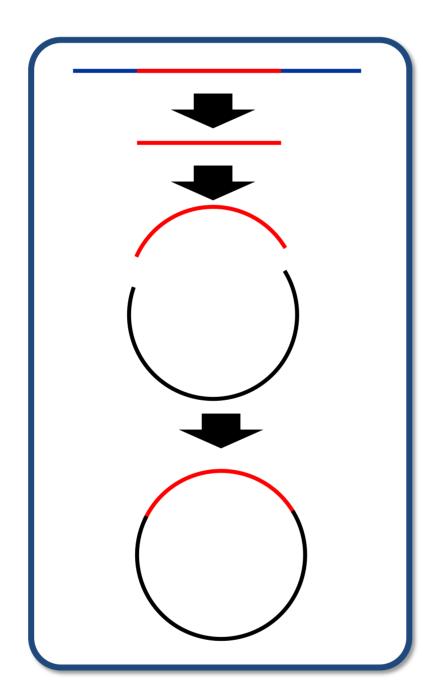


Template abbreviations: O – ovary cDNA, 1 – 1-cell cDNA, G – mouse genomic DNA, P – diluted PCR product from Prague (100x), PCR program: 36 cycles, denaturation 94°C 30 sec, annealing 56°C 30 sec, extension 72°C 2 min. Resolved in 1% agarose gel, 100V, ~ 45 min. PCR#1 did not work because the final dNTP concentration was accidentally 10x higher (2µM) than recommended (200 nM).

protein-coding gene which might be involved in the early phase of the zygotic genome activation. In order to study function of the selected genes, it is necessary to clone their cDNA, which will be used in further experiments. Accordingly, the project involved the production of recombinant DNA in bacteria using genetic engineering techniques. First, we used the polymerase chain reaction (PCR) to amplify selected genes. Obtained PCR products were inserted into pcDNA3.1/CT-GFP-TOPO plasmid using GFP Fusion TOPO TA Expression Kit. Produced plasmid DNA was quantified and tested for the presence (and orientation) of inserts by a digestion with restriction enzymes. Overall, we successfully cloned *Lnc5* cDNA and several cDNA fragments which need further characterization. Since the pcDNA3.1/CT-GFP-TOPO plasmid contains the coding sequence of green fluorescent protein (GFP), we could transform it into a living cell to observe the expression of protein-coding genes (Dux). But unfortunately, the time and conditions did not allow us to do so. In the future, the results of our study will be used to study the functions of selected genes in the laboratory in Prague.


ANALYSIS OF INSERTS IN pcDNA3.1/CT-GFP-TOPO

Restriction digest with BstXI – estimating insert size


Restriction digest with Bstxl for 2 hours at 37°C, 1% agarose gel, 100 V, ~45 min.

Restriction digest – examining insert orientation

Restriction digest with indicated enzymes for 2 hours at 37°C, 1% agarose gel, 100 V, ~45 min.

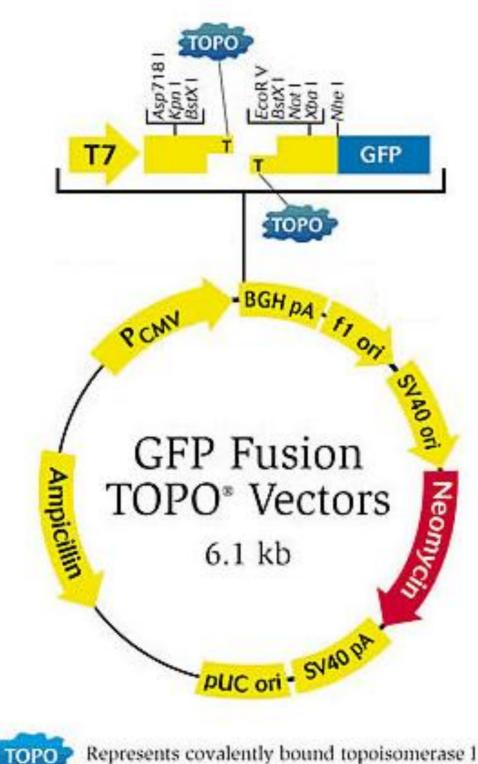
PROJECT WORKFLOW

OVERVIEW OF ALL OBTAINED CLONES

Assembling transcript models of genes

Estimating PCR product size Amplification of cDNA (PCR)

Analysis of PCR products (electrophoresis)



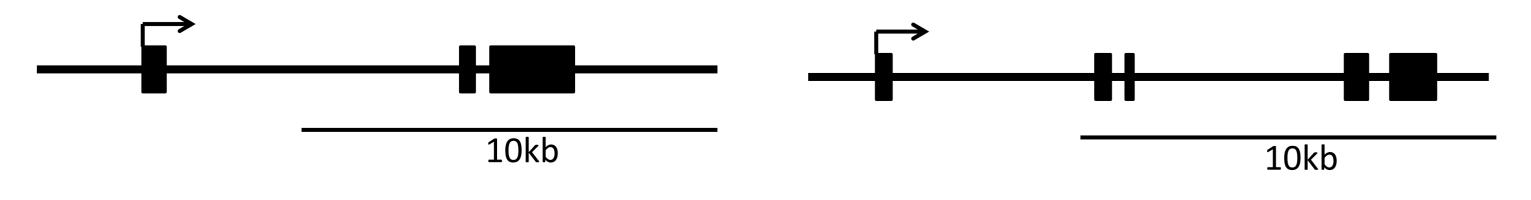
Selection of products for cloning Insertion of PCR products into vectors Transformation of bacteria

Selection of colonies & liquid culture

DNA isolation DNA quantification Restriction digest analysis pcDNA3.1/CT-GFP-TOPO*

clone	conc. (ng/uL)	A260/280	PCR primers	Insert (bp)		
				Expected	Observed	Conclusion
1	316,7	1,91	Lnc5.F/R	737	~750	Lnc5 antisense
2	266',1	1,93	Lnc5.F/R	737	<250	Unknown
3	272,6	1,9	Lnc5.F/R	737	~750	Lnc5 sense
4	235,2	1,9	Lnc5.F/R	737	<250	Unknown
5	292,4	1,82	Lnc5.F/R	737	<250	Unknown
6	333,6	1,88	Lnc5.F/R	737	~750	Lnc5 antisense
7	177,1	1,89	Lnc5.F/R	737	~750	Lnc5 sense
8	184,0	1,89	Lnc5.F/R	737	~750	Lnc5 antisense
9	215,9	1,90	Lnc5.F/R	737	~750	Lnc5 sense
10	266,6	1,90	Lnc5.F/R	737	~750	Lnc5 sense
11	202,9	1,87	Lnc9.F/R	1845	<250	Unknown
12	229,7	1,86	Lnc9.F/R	1845	<250	Unknown
13	277,6	1,89	Lnc12.F/RS	583	<250	Unknown
14	388,5	1,74	Lnc12.F/RS	583	<250	Unknown
15	241,2	1,77	Lnc12.F/RS	583	<250	Unknown
16	354,3	1,88	Lnc12.F/RL	1686	<250	Unknown
17	315,6	1,81	Lnc12.F/RL	1686	<250	Unknown
18	206,2	1,81	Lnc12.F/RL	1686	<250	Unknown
19	321,8	1,89	Lnc12.F/RL	1686	<250	Unknown
20	311,3	1,83	Lnc12.F/RL	1686	~500	Unknown
21	262,7	1,91	DuxCDS.F/R	2041/2091	~700	Unknown
22	304,9	1,90	DuxCDS.F/R	2041/2091	~1000	Unknown
23	388,1	1,81	DuxCDS.F/R	2041/2091	~1000	Unknown
24	383,6	1,86	DuxCDS.F/R	2041/2091	<250	Unknown
25	370,5	1,84	DuxCDS.F/R	2041/2091	~600	Unknown
26	212,0	1,90	DuxCDS.F/R	2041/2091	~600	Unknown
27	224.6	1.07		2041/2004	400	

Sending DNA to Prague


DuxCDS.F/R 334,6 1,87 ~400 27 2041/2091 Unknown 223,6 DuxCDS.F/R 2041/2091 28 1,85 ~600 Unknown 29 196,2 1,93 DuxCDS.F/R 2041/2091 ~600 Unknown DuxCDS.F/R 1,92 30 192,5 2041/2091 ~600 Unknown

GENES OF INTEREST

Lnc5 chr5:150,687,800-150,724,284

Lnc12 chrX:7,617,568-7,658,006

Dux chrX:7,617,568-7,658,006

Lnc9 chr19:57,567,753-57,591,144

Skb

SUMMARY

- Lnc5 cDNA was successfully cloned in both directions.
- Lnc9, Lnc12, Dux cDNAs were not cloned because of suboptimal

conditions for cDNA amplification by PCR.

- One has to focus while pipetting (all the time, actually).
- It is important to control all possible experimental conditions.
- Nucleotides & voltage really matter!