Neurogenesis regulation in the posterior embryonic brain

Guillem Blanc*, Andrey Kolesnikov*, Enca Poveda*, Georgy Antonov, Adrià Voltes and Cristina Pujades School of Molecular and Theoretical Biology 2016

*These authors contributed equally to the work

INTRODUCTION

In zebrafish we can distinguish different parts in the brain. We have focused on the hindbrain also called rhombencephalon.

Hindbrain segmentation, hindbrain boundaries and neurogenesis

Hindbrain segmentation 127: CAAX:GFP rfng hoxb1a Hindbrain boundary population ngn Hindbrain proneural territor

AIMS

- Find out how neurogenesis is regulated within the hindbrain
- Analyze the spatiotemporal distribution of progenitor domains in the posterior brain.
- Determine the involvement of signaling pathways in

During embryogenesis it is transiently divided into 7 rhombomeres. Each rhombomere gives rise to different types of neurons.

progenitor regulation.

RESULTS

<u>Hypothesis</u>: We proposed that

Schip1 is involved in initiation of the Hippo pathway and

expression of *ccnd1* is regulated by Yap/Taz activity in the BCP.

Outcome: None of the genes are involved in the Hippo pathway as the obtained results do not indicate their expression in the BCP.

REFERENCES

Kiecker and Lumsden, 2005 Johnson and Halder, 2014

