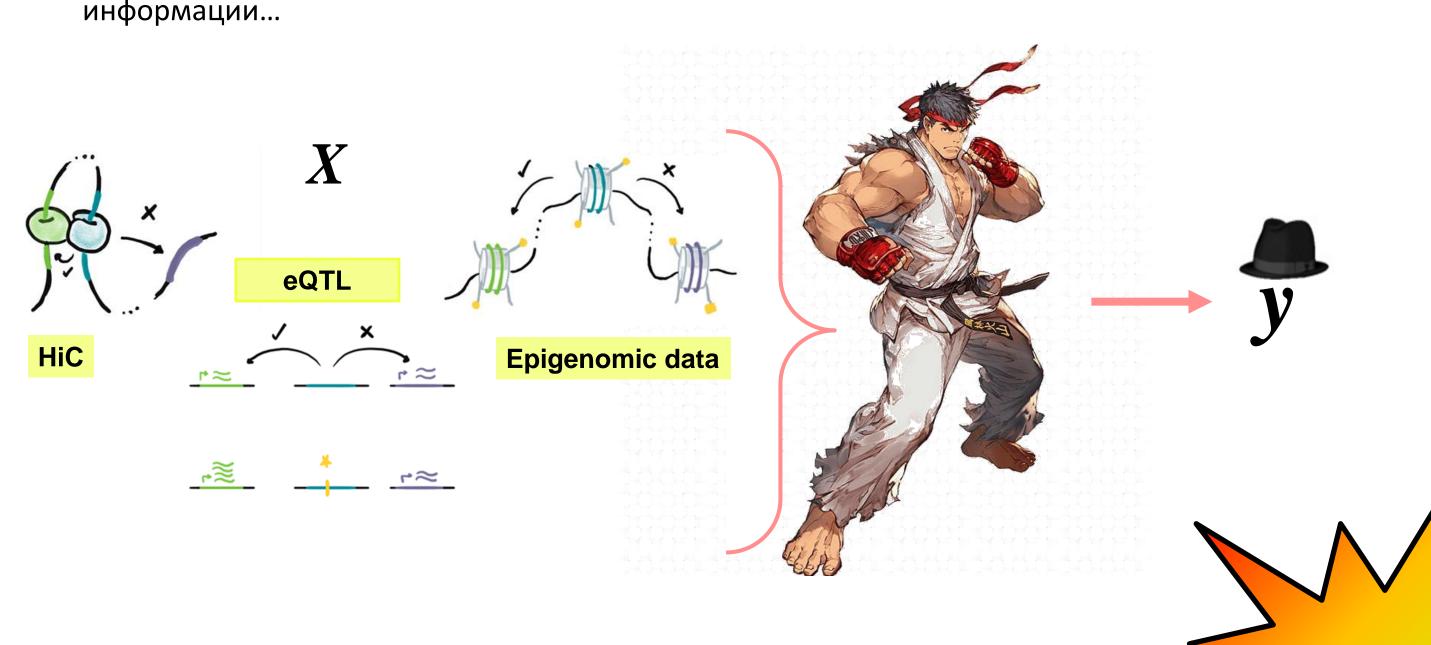
ANNA KALYGINA AND LAURA AVINYO



>> MODEL BATTLE

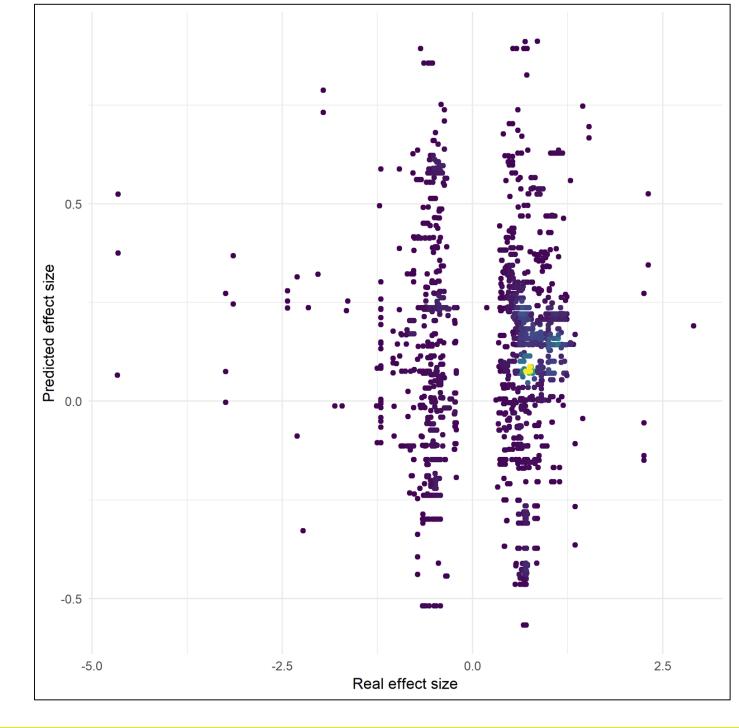
INTRODUCTION

- Enhancer promoter interactions are unknown!
- One way to predict such interactions is using models that would be trained using already know information...
- Нам неизвестны взаимодействия между энхансерами и промоторами!
- Для того чтобы предсказать эти интеракции (взаимодействия), необходимо использовать самообучающиеся модели, которые будут тренироваться за счет уже известной информации

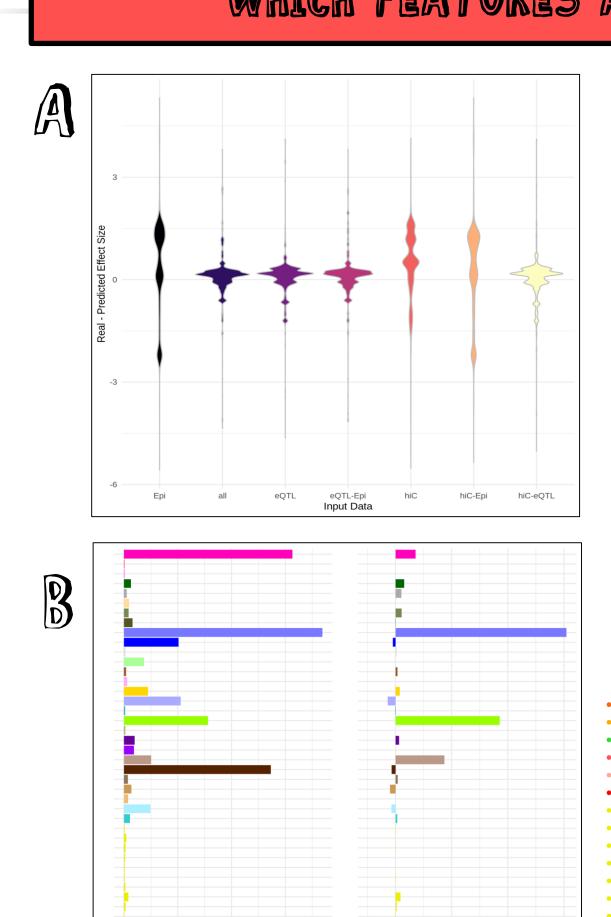
A. For some closely located enhancers and promoters, the prediction is terrible. B. The smaller the effect size, the better the prediction. C. For those enhancers and promotors that have a small nucleotide distance between each other predictions are better. However, there are more eCTLs at those short distances. A. Для некоторых възманодействия. B. Чем меньше прямоторов, близко расположенных друг к другу, модель плохо предсказывает взаимодействия между элементами, тем точнее предсказыние С. Для эльжансеров и промоторов, которые находятся на большом расстоянии друг от друга, модель предсказывает более точные значения. В

"Random" Forest

Meural Wet



Relationare in positive Coothors shaded


Real effect size

Relation between real eQTL value and predicted value. Most of the points are in the diagonal. Moreover, seems that both models predict better positive effects.

Соотношение между настоящими значениями взаимодействия энхансеров и промоторов и теми, что были предсказаны моделью. Большинство точек лежат на диагонали, однако, обе модели предсказывают больше положительных значений, чем это есть на самом деле

WHICH FEATURES ARE IMPORTANT?

Purity Importance

Error Importance

- A. Using all types of data (eQTL+ Epigenomic data+ HiC) for prediction, we get the error similar to that produced using only eQTL, eQTL+Epigenomic data, eQTL + HiC. That means the epigenomic data and HiC are not adding a lot of predicting power.
- are not adding a lot of predicting power.B. The tissues that are similar to our tissue of interest are more important for making predictions.
- А. Предсказания, для которых используются все типы информации (взаимодействия между элементами (eQTL), эпигеномные значения (Epi) и физические интеракции (HiC), имеют те же отклонения от реальных данных, что и предсказания, сделанные на основании только eQTL, eQTL+ Epi, eQTL + HiC. Из этого следует, что эпигеномная информация и физическое взаимодействие в меньшей степени участвуют в предсказании интеракций между энхансерами и
- Данные тканей, аналогичных нашей, наиболее значимы для создания точных предсказаний.

Adipose_Subcutaneous Adipose_Visceral_Omentum Brain_Spinal_cord_cervical_c-1 Nerve_Tibial Ovary Artery_Aorta Brain_Substantia_nigra Ovary Pancreas Artery_Coronary Artery_Tibial Brain_Anterior_cingulate_cortex_BA24 Brain_Anterior_cingulate_basal_ganglia Brain_Cerebellar_Hemisphere Brain_Cerebellum Brain_Cortex Heart_Atrial_Appendage Brain_Frontal_Cortex_BA9 Brain_Hippocampus Brain_Hypothalamus Brain_Nucleus_accumbens_basal_ganglia Brain_Nucleus_accumbens_basal_ganglia

CONCLUSIONS AND PERSPECTIVES

- 1. Predictions made by Random Forest are better than the predictions made by Neural Net.
- 2. There is a lot of variation across the chromosomes, that's why to improve the prediction we might apply individual approaches to each chromosome.
- 3. To make the predictions more accurate, we might try other neural networks that have different architectures. We could also use other input data, such as the sequences of the elements.
- 1. Предсказания, сделанные RandomForest, точнее, чем предсказания, выполненные нейронной сетью.
- 2. Для каждой хромосомы значимость различных параметров сильно варьируется, поэтому для качественных предсказаний необходим индивидуальный подход для всех хромосом.
- 3. Для того чтобы сделать предсказания более точными, следует экспериментировать с различными архитектурами нейронных сетей, а также добавить сиквенсы элементов для входной информации.