

Generating Synthetic Data

Rauf Verdiev, Roman Kotovich, Vera Terenteva, Elizaveta Terekhova, Laura Avinyó

Project goal

- Generate synthetic data
 - HMM
 - GANs
- Analyze generated sequences
 - Zm
 - Decision tree
 - Shannon Entropy

Why did we do this?

Neural Networks

Training

Trained Network

Hidden Markov Models (HMM)

Hidden Markov Models (HMM)

1245132456324 P = E(1|T)*T(T|T)*E(2|T)*T(T|T)*...*E(3|T)*T(T|F)*E(2|F)*T(F|F)*...

3 1 5 2 5 6 3 2 4 1 5 6 6 P = E(3|T)*T(T|F)*E(1|F)*T(F|T)*E(5|T)*T(T|F)*E(2|F)*T(F|T)*...

We can generate some sequences!

Emission match = [1: {A=0.01; B=0.06; ...}, 2:{A=0.07; B=0.05; ...}, ..., 39:{A=0.01; B=0.09; ...}]

Insertion match = [1: {A=0.03; B=0.05; ...}, 2:{A=0.04; B=0.06; ...}, ..., 39:{A=0.07; B=0.05; ...}]

Transition = [1: { m->m: 0.92; m->i: 0.10; m->d: 0.11; i->m: 0.70; i->i: 0.20; d->m: 0.90; d->d: 0.01}, ...]

HOW WE CHECK DATA?

Pm

AVERAGE STD

HOW WE CHECK DATA?

Zm(a,b)

Pm(a,b)

Zm associate score

Pm(a,Rand(b))

AVERAGE

STD Pm(a,Rand(b))

How to grow a decision tree?

Accuracy, Precision and Recall

Shannon Entropy

The Shannon entropy can measure the uncertainty of a random process

Its lower values imply less uncertainty

For each column of multiple-sequence alignment (MSA) Shannon is calculated as:

$$s.e. = -\sum_{i=1}^{20} p(x_i) \log_{20} p(x_i)$$

 $p(x_i)$ - is the probability to find the amino acid *i* at the column of MSA

In terms of columns in MSA its low values represent highly conservative positions, whereas high entropy shows diversity at certain position

Project goal

- 1. Generate Synthetic data with the different methods
 - a. GANs
 - b. HMM
 - c. Random Baseline
- 2. Test how good or bad the data is:
 - a. ML discriminator -> Overall quality
 - b. Shannon's Entropy -> Functional
 - c. Zm -> 3D structure

Why did we do this?

Zm results on generated and real data

aminoacids

aminoacids

Accuracy - baseline

Accuracy - GAN

Accuracy - HMM

Recall - baseline

Recall - GAN

Recall - HMM

Precision - baseline

Precision - GAN

Precision - HMM

Shannon Entropy

So did we do well?

