

Laboratory of Rational

Drug-Design

...or

How to make drugs online (fast)

Polina Avdiunina Lomonosov MSU

Peter Vlasov Institute of Science and Technology (IST) Austria

Ilya Senatorov Helmholtz Institute for Pharmaceutical Research

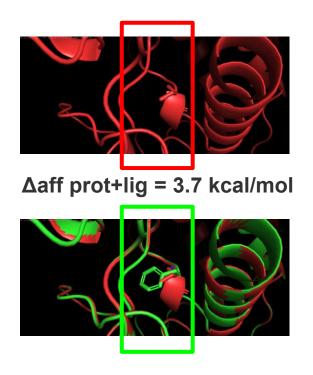
Saarland (HIPS) Germany

Sofia Buyanova Institute of Science and Technology (IST) Austria

Ilya Mazein

SPBSU

"Application" of the RationalDrugDesign Lab:


Several proteins, where mutations change interaction with low-molecular compounds, will be selected as "targets" to investigate...

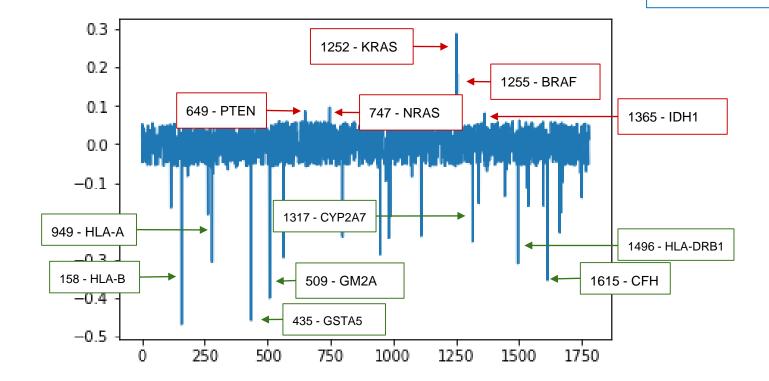
- ...how the course of biochemical processes would change, if there were modifications in the encoding genes ?
- ...how the "external pressure" (e.g. when cancer develops , the variants that accelerate the growth of the tumor and reduce the "feedback" of cancer cells to the immune response\medications are fixed) influences the accumulation of these changes ?

Mutations in binding sites can dramatically change protein-ligand interactions

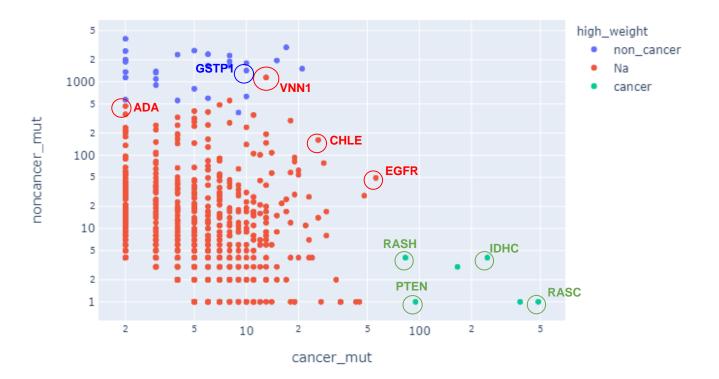
MPO p.Ser406Phe (PDB id 5QJ3)

We can:

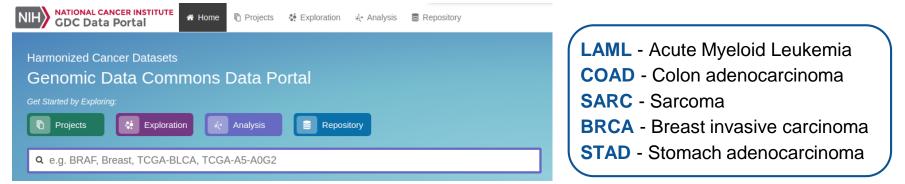
- estimate the binding energy of the protein-ligand complex (ΔG_native) using computational methods (molecular docking)
- predict the structure of an altered protein for each mutation in the active site
- re-estimate the binding energy of the protein-ligand complex for the mutant structure (ΔG_mutant)
- compare the binding energies of the ligand "before" and "after" mutation (ΔGG_native_vs_mutant) - to evaluate the mutation effect


Gene statistics by cancer/ non-cancer substitutions

Polina Avdjunina

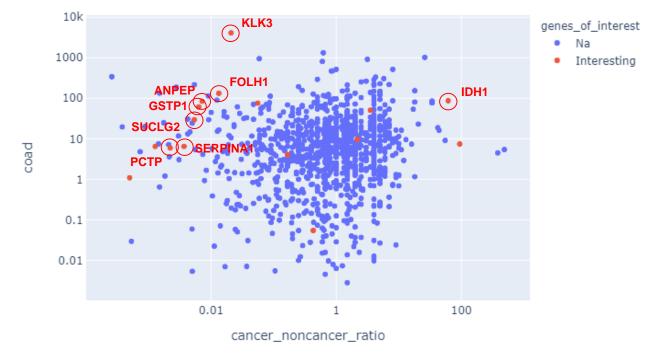

ENSG0000000003			noncancer_mut	oncancer_partner	cancer_ratio1	noncancer_ratio1	Entry	Entry name
	0	0	0	0	0	0	O43657	TSN6_HUMAN
ENSG0000000005	0	0	0	0	0	0	Q9H2S6	TNMD_HUMAN
ENSG0000000419	0	0	0	0	0	0	O60762	DPM1_HUMAN
ENSG0000000457	0	0	0	0	0	0	Q8IZE3	PACE1_HUMAN
ENSG0000000460	0	0	0	0	0	0	Q9NSG2	CA112_HUMAN
ENSG0000000938	0	67	0	52	0	0	P09769	FGR_HUMAN
ENSG0000000971	6	6	2282	1	0.002621231979	0.996941896	P08603	CFAH_HUMAN
ENSG0000001036	0	26	0	79	0	0	Q9BTY2	FUCO2_HUMAN

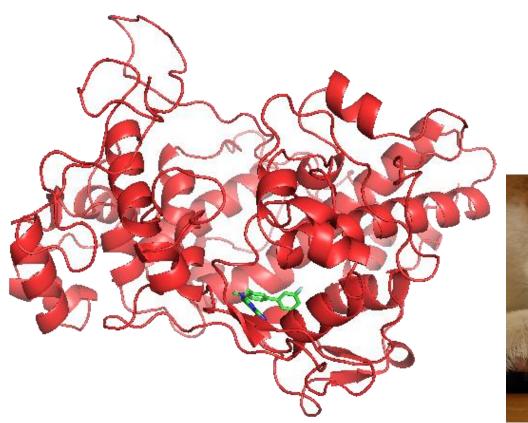
Results of "weighing" genes and mutations in cancer/ non-cancer using a neural network



Ilya Mazein

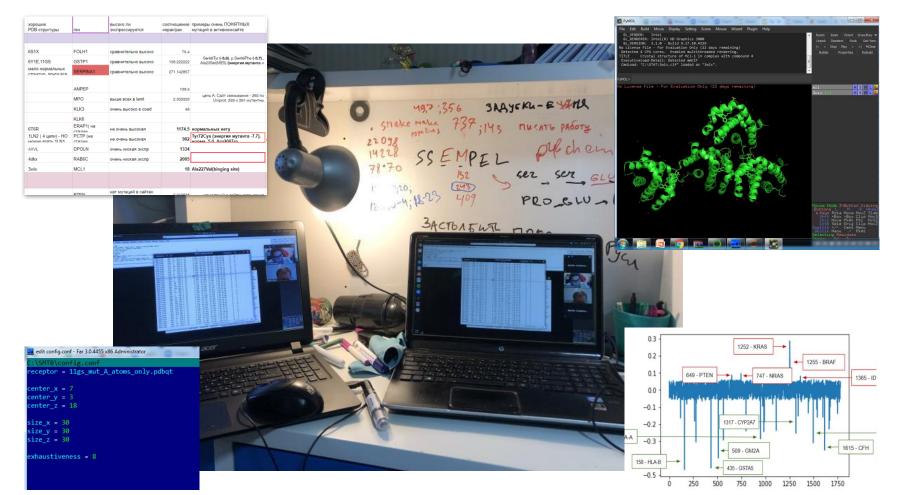
Cancer and noncancer mutation ratio in proteins (potential targets are labeled)


Expression data


The Cancer Genome Atlas (TCGA), a landmark cancer genomics program, molecularly characterized over 20,000 primary cancer and matched normal samples spanning 33 cancer types.

0	laml	coad	sarc	brca	stad
ENSG0000242268	0.5995147415	0.006248980119	0.09526469736	0.04709657817	0.04507780221
ENSG0000270112	0.04120642704	0.006292379457	0.006890074374	0.009918158787	0.007855314444
ENSG0000167578	4.909340557	3.157504208	3.963034007	3.429264724	3.511829221
ENSG0000273842	0.006839131779	0.0006457108529	0.01034013262	0.003800154148	0.01969620953
ENSG0000078237	3.225871504	2.221692368	3.283359889	3.606900554	5.311345814

Cancer and noncancer mutation ratio VS gene expression in colon cancer (COAD) (potential targets are labeled)

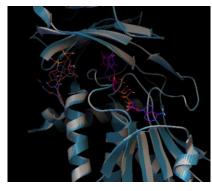

Methods of molecular docking and modelling

Docking is like that, just not with dogs, but with molecules. Everything to optimize energy costs

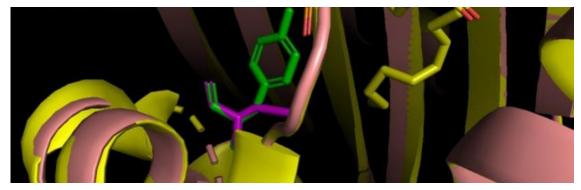
That is how our working process looked like

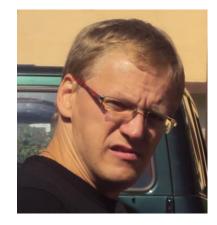
11

Visualization of mutation frequency (in binding site)

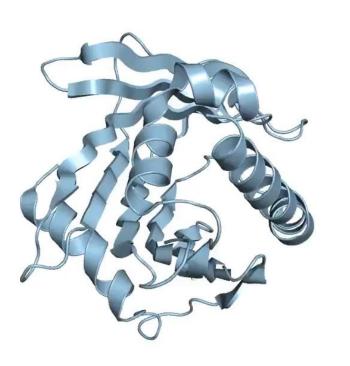

Receptor: phosphatidylcholine transfer protein Ligand : 1,2-dilinoleoyl sn-glycero-3phosphocholine

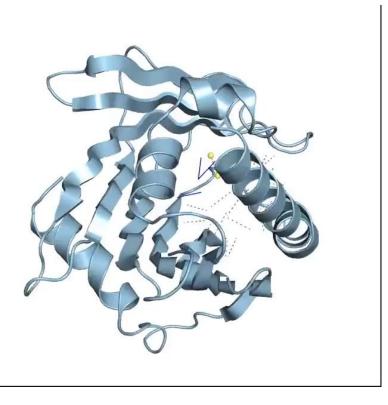
our Holy Graal


Criteria:

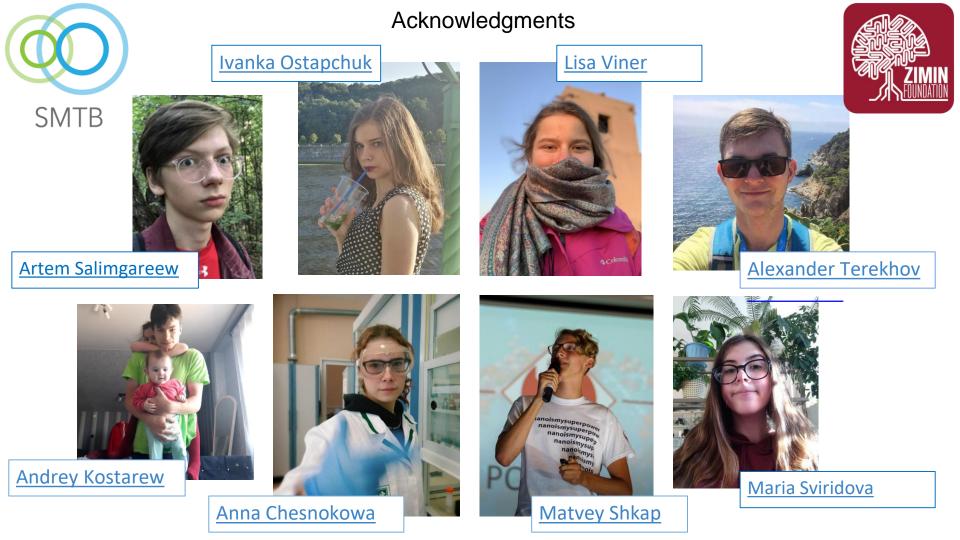

- Mutation from a protein that is rarely mutated in cancer
- This protein is highly expressed in cancer
- This mutation disrupts interaction protein-ligand
- This mutation is frequently mentioned in GNOMAD

D-amino acid oxydase, Asp46Glu




Phosphatidylcholine transfer protein, Tyr72Cys

Example of specific mutation in binding sites



Receptor: phosphatidylcholine transfer protein **Ligand:** 1,2-dilinoleoyl -sn-glycero-3-phosphocholine **Mutation:** Tyr72Cys

RationalDrugDesign laboratory results:

- For the analysis, proteins that were previously prioritized by the neural network were selected, as well as the ones that are highly expressed in cancer and have significant differences in the number of mutations in tumor and healthy tissues
- Structures of selected proteins with the most interesting mutations were modeled (SwissModel)
- Interaction of the selected proteins with their ligands were modeled (Vina AutoDock)
- A comparison of free energies of ligand binding in normal and mutated binding sites was made - and mutations that adversely affect the ability of a protein to bind to a ligand were identified

Laboratory of Rational

Drug-Design

...or

How to make drugs online (fast)