Happy baby having dreams fights against the biofilms

A novel approach to the biofilm treatment

Clarence Lei B. Bautista, Fyodor Kagakin, Alina Kirichko, Matvey Nikelshparg, Mariia Novikova, Alina Palachanina

...and lakov Bogantcev

Candidate proteins that might affect the biofilm formation

Known major regulators that are involved in the biofilm formation

H-NS, CRP, Lrp, CsgD, OmpR, Fis, IHF, FNR

Candidate proteins that we selected based on our preliminary data

UxuR, YjjM, ExuR, Dps

UxuR and YjjM are slightly different in pathogenic EPEC and in Nissle 1917 strains

Sugars from the human gut

D-glucose

D-glucuronate (acid form)

D-galacturonate

Gulonic acid (acid and lactone forms)

Lactose

Galactose

Mannose

Acetate

Glycerol

Succinate

Maltose

_

Fructose

Sucrose

Tested candidate ligands


Sugars from breast milk

2'-fucosyl lactose

6'-sialyl lactose

Lacto-N-neotetraose

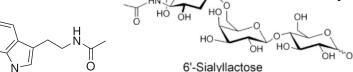
Sialic acid

Neuromediators

L-glutamic acid

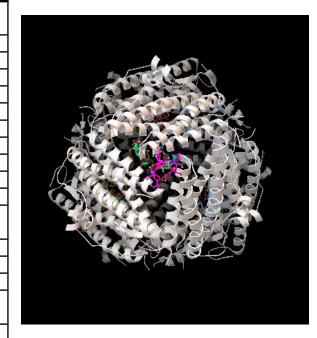
D-glutamic acid

Dopamine


hydrochloride

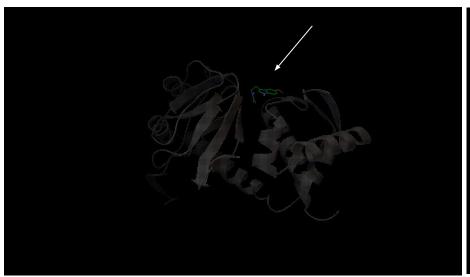
Serotonin

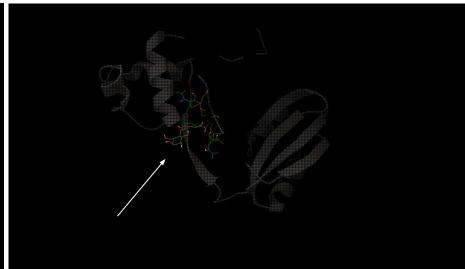
Melatonin


Adrenalin

Acetylcholine

PROTEIN	LIGAND	MINIMAL ENERGY (kcal/mol)
IHF	Lacto-N-neotetra ose	-8.0
	Fucosyl lactose	-8.0
	Lactose	-7.9
	Sialyl lactose	-7.9
	Maltose	-7.8
HNS	Sialyl lactose	-6.7
CsgD	Sialyl lactose	-7.3
	fructose	-6.6
	Serotonin	-6.5
	Melatonin	-6.4
	D-glucuronic acid	-6.2
	Lacto-N-neotetra	-6.8
	ose	
YjjM normal	Maltose	-6.4
	Sialyl lactose	-6.4
	Lactose	-6.2
YjjM EPEC	Lacto-N-neotetra ose	-7.8
	Sialyl lactose	-7.4
	Lactose	-6.3
	D-glucuronic acid	-6.2
UxuR normal	D-galacturonic acid	-6.1
UxuR EPEC	Melatonin	-6.0
	Serotonin	-5.8
	Maltose	-5.7

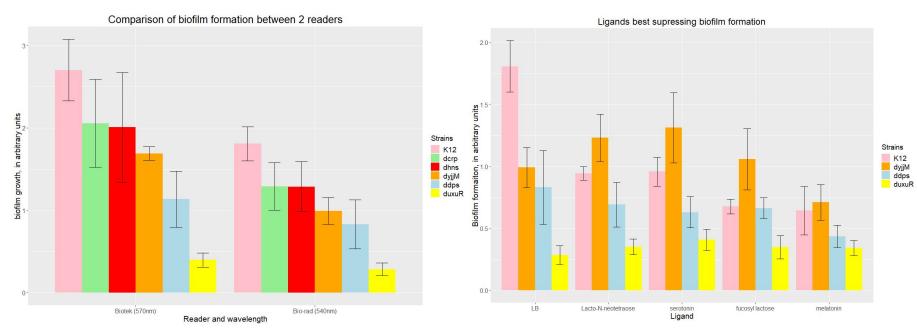

Docking results



Lacto-N-neotetraose binding the Intersubunit space of the Dps dodecamer with high free energy, might prevent dodecamer assembly or promote its disassembly

PROTEIN	LIGAND	MINIMAL ENERGY
TROTEIN	LIGAND	(kcal/mol)
Dps	Lacto-N-neotetrao	-9.0
	se	
	Sialyl lactose	-7.0
OmpR	Maltose	-6.3
	Lactose	-6.3
	Sucrose	-6.0
	Sialic acid	-5.8
	Melatonin	-5.5
Lrp	Lacto-N-neotetrao	-8.3
	se	
	Sialyl lactose	-7.1
	Lactose	-6.0
	Maltose	-6.0
	Melatonin	-6.0
	Serotonin	-6.0
FNR	Lactose	-7,1
	Sucrose	-6.9
	Maltose	-6.7
	Melatonin	-6.5
CRP	Lacto-N-neotetrao	-7.9
	se	
	Sucrose	-6.3
	Lactose	-6.4

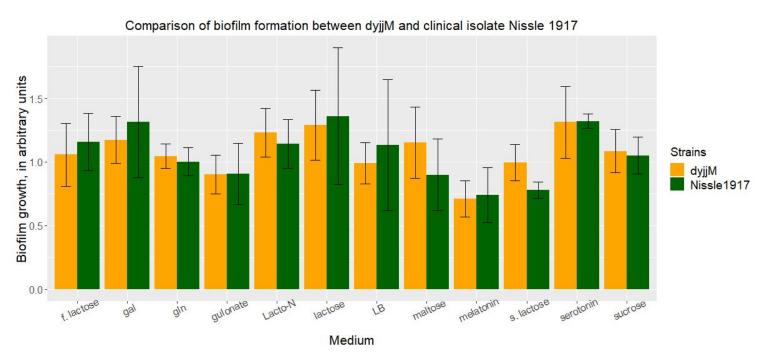
Some other nice results from docking


Melatonin in the FNR pocket

Lacto-N-neotetraose in the Lrp pocket

Observations:

- → almost the same ligands (sugars from breast milk, melatonin, serotonin and lactose) were found to be optimal for all tested regulators
- → Fis has no suitable ligands from the tested set


Ability of different *E. coli* strains to form biofilms and the effects of selected candidate ligands

- → UxuR is crucial for the biofilm formation
- → Dps is involved in the regulation of this process but not to the same extent
- → CRP and H-NS have almost no effect

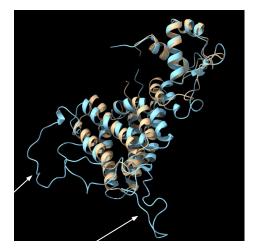
→ Sugars from the breast milk, melatonin and serotonin are the most prospective candidates for further tests

YjjM might be a key player in modulation of the biofilm formation

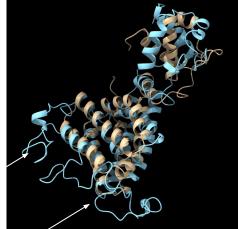
- → The ability of Nissle 1917 where YjjM is mutated to form biofilms is equal to the K-12 strain with deleted yjjM.
- → No effect of any candidate ligand was detected meaning that functional YjjM is necessary for the biofilm regulation

What happened to YjjM in the clinical isolates?

EPEC5_nucleotides_PRJNA528578:E4 K12 reference

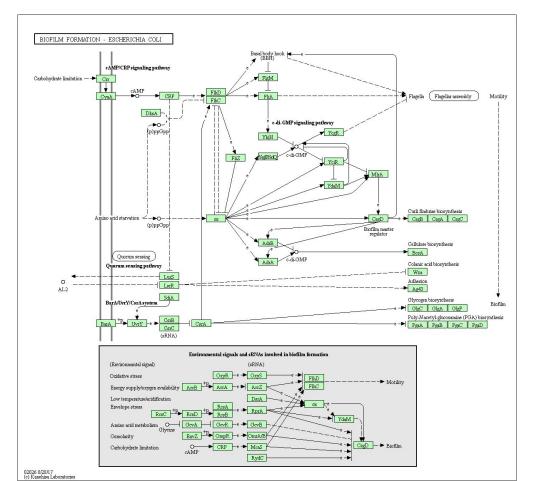

EPEC5_nucleotides_PRJNA528578:E4 K12 reference

EPEC5_nucleotides_PRJNA528578:E4 K12 reference

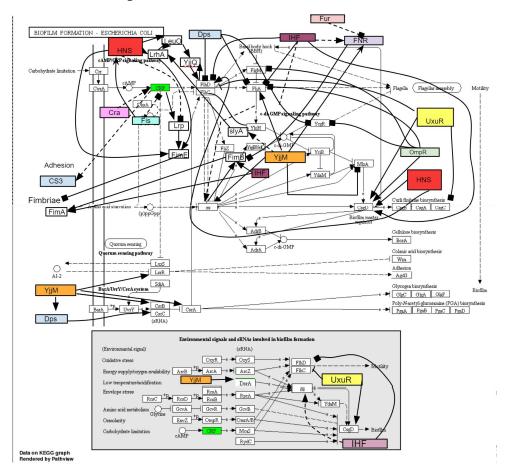

EPEC5_nucleotides_PRJNA528578:E4 K12 reference

EPEC5_nucleotides_PRJNA528578:E4 K12 reference VSPVVVREYLLKFGRYNLIQSEKRGQWSMKQFDQSYAEQLFELREMLETHSLQHFLNLPD VSPVVVREYLLKFGRYNLIHSEKRGQWSMKQFDQSYAEQLFELREMLETHSLQHFLNLPD

HFHYQWDESDLKQRNIIAVDEHMTILSALICRSDLDAMTALRNHLDTAKQSMIRSISQHH HFHYQWDESDLKQRNIIAVDEHMTILSALICRSDLDATLALRNHLNSAKQSMIRSINENT Substitutions broke the alpha spirals leading to significant structural rearrangements



Predicted 3D-structures of YjjM from clinical isolates (teal) and from K-12 (beige), after several rounds of molecular dynamics at 80 ns


Flexible parts forming big pockets are marked with arrows

8000 ns m.d.

Regulation of the biofilm formation was like this

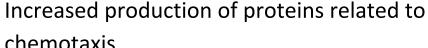
...and after 8 days in the lab became this!

E. coli strain

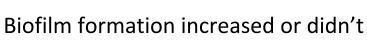
 Δhns , Δcrp

 Δ ompR, Δ yjjM, Δ uxuR, Δ exuR, Δ dps

Biofilm formation is reduced


Increased flagella formation

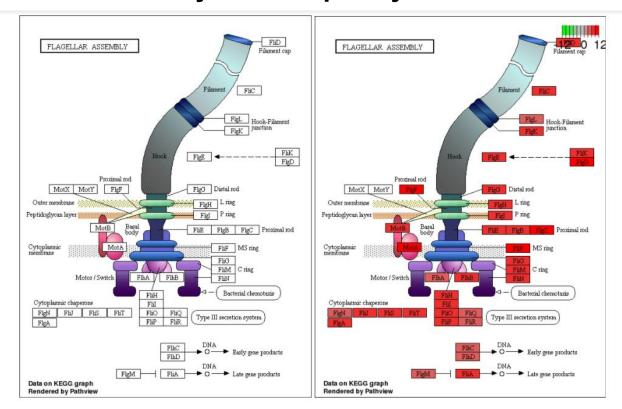
change.


motility

chemotaxis.

to chemotaxis.

Effects on the biofilm formation and



Decreased production of proteins related

Effects of selected regulators on flagella assembly as revealed by RNA-seq analysis

Comparison of transcriptomic data of WT strain to $\triangle crp$ on glucose (left) and $\triangle uxuR$ on glucose (right). The same flagella upregulation shown in the right can be said for the strains: $\Delta yjjM$ on glucuronate and glucose, $\Delta uxuR$ on glucuronate, $\Delta exuR$ on glucuronate and glucose, $\Delta oxpR$, and $\Delta dxpR$ at 4 hours. Meanwhile, the strains: $\Delta yijM$ on gulonate, $\Delta cxpR$ on glucuronate, and ΔhxR have the same expression profile as the left diagram.

Conclusions

(1) Best (and previously unknown) ligands that significantly decrease biofilm formation in the *E. coli* strains: **serotonin**, **melatonin** and **breast milk sugars** (fucosyl-lactose and lacto-N-neotetraose)

(2) Studied transcriptional factors (OmpR, Dps, Yjjm, ExuR, UxuR, CRP, HNS) all turned out to be involved in regulation of biofilm formation / opposite processes (e.g. motility). **YjjM, Dps** and **UxuR** seem to be the most important (nobody knew of this either).

Acknowledgements

Funding

Patience

Molecular dynamics

General support

Bacterial bakery lab: Anya Rybina, Vanya Randoshkin Anya Kaznadzey, Masha Tutukina