Combinatorics and epigenetics of TAD boundaries in embryogenesis

Time series for DNA-DNA interactions

Dmitry Skvortsov, Anna Kalygina, Nikolay Bykov, Sasha Galitsyna

Background information

The three-dimensional structure of the chromatin drastically changes at early stages of embryogenesis by compartmentalizing and forming new spatial interactions, such as Topologically Associated Domains (TADs). TADs "mature" over time and according to their dynamic behaviour we group TADs into different clusters.

Materials and methods

For annotation of TADs we used Hi-C data for Drosophila melanogaster, Danio rerio and Homo sapiens from

Results of the data comparison

We compared the results of the methods using J-index and found that they give similar results. Then we compared data from different sources.

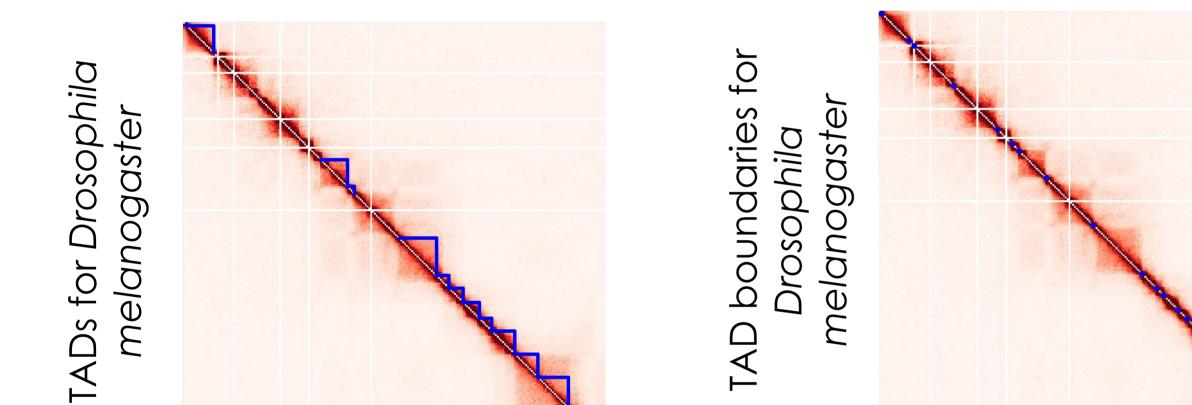
Data comparison by clusters using **J-index**:

hug_2017 og_2018	cluste	r 0, 383	cluste	r 1, 557	cluste	r 2, 554
cluster 0, 504	0.130	0.200	0.112	0.198	0.053	0.093
cluster 1, 470	0.102	0.201	0.075	0.145	0.042	0.081
cluster 2, 302	0.004	0.011	0.026	0.054	0.041	0.084

wi_2021 ka_2018	cluster	0, 845	cluste	r 1, 466	cluster	r 2, 436
cluster 0, 845	0.040	0.079	0.001	0.004	0.089	0.166
cluster 1, 59	0.064	0.109	0.006	0.006	0.058	0.116
cluster 2, 1275	0.075	0.118	0.010	0.016	0.041	0.083

Data comparison using logarithm of observed over expected J-index:

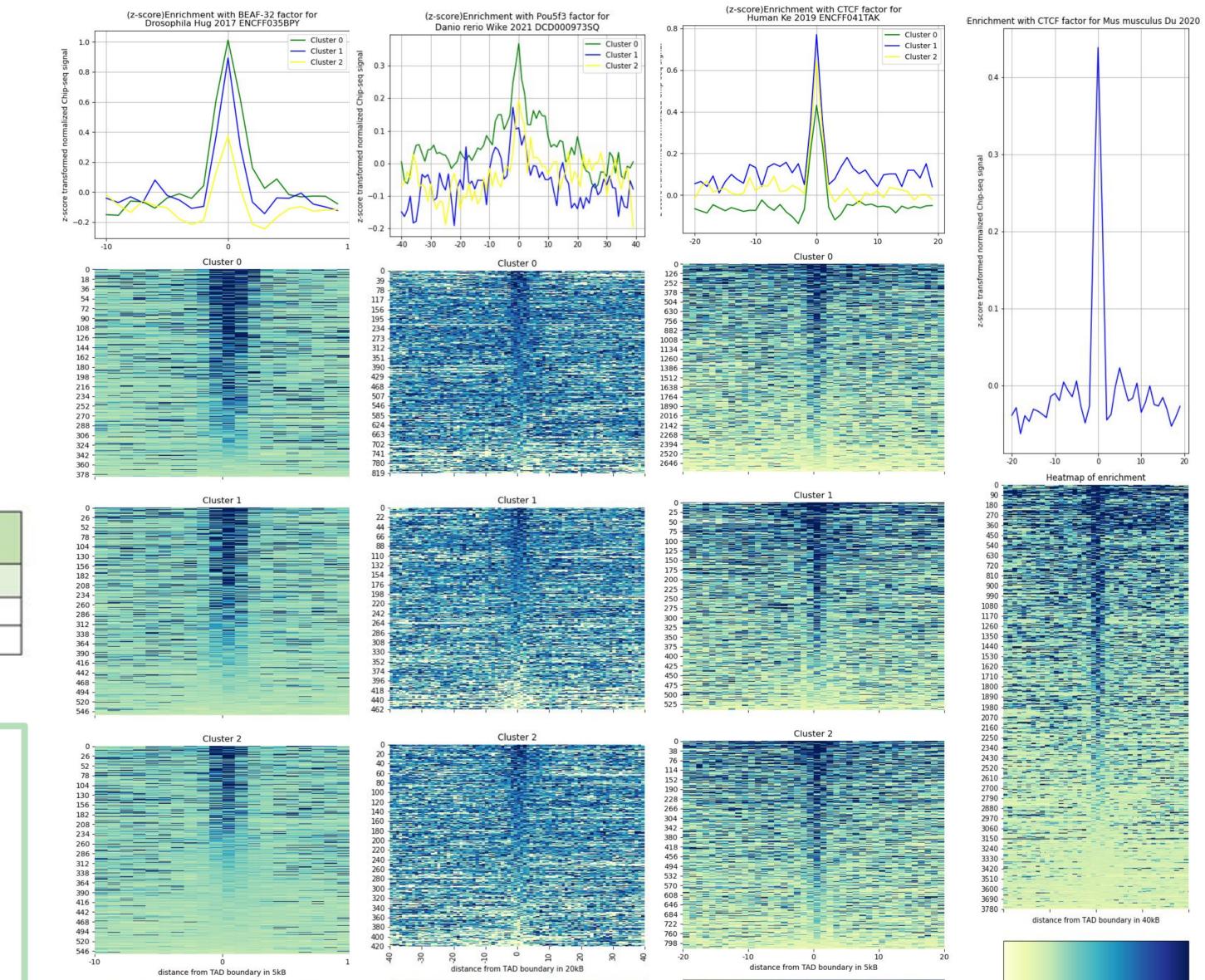
hug_2017	cluster 0, 383	cluster 1, 557	cluster 2, 554	
----------	----------------	----------------	----------------	--


different papers:

Organism	Paper	Resolution (number of Kb corresponding to one pixel)	
Drosophila	Hug et al., 2017 (hug_2017)	5 Kb	
melanogaster	Ogiyama et al., 2018 (og_2018)	5 Kb	
Danio rerio	Kaaij et al., 2018 (ka_2018)	20 Kb	
Danio reno	Wike et al., 2021 (wi_2021)	20 Kb	
Homo sapiens	Ke et al., 2019	40 Kb	
Mus musculus	Du et al., 2020	40 Kb	

Comparison of methodologies and materials

We annotated boundaries of TADs. For that, we used HiChew in "TAD calling" and "TAD boundaries calling" modes:


og_2018				ka
cluster 0, 504	4.0	3.5	2.4	(
cluster 0, 470	3.7	3.0	2.1	
cluster 0, 302	-0.5	1.8	3.1	С

54	wi_2021 ka_2018	cluster 0, 845	cluster 1, 466	cluster 2, 436
	cluster 0, 845	2.9	-1.8	4.5
	cluster 1, 59	6.2	2.8	6.1
	cluster 2, 1275	3.2	0.9	3.0

Interpretation: amber color reflects strong correspondence of clusters while blue suggests that there is rather no similarity at all. For example, based on JI, cluster 1 in ka_2018 contains boundaries from both cluster 0 and 2 in wi_2021. However, log of observed over expected is more reliable since it takes into account that Cluster 1 is very small. For fruit fly, cluster 0 corresponds to cluster 0.

Epigenetic analysis

Dynamics of TAD formation is associated with different epigenetic factors, such as insulator proteins, embryonic transcription factors and histone modifications.

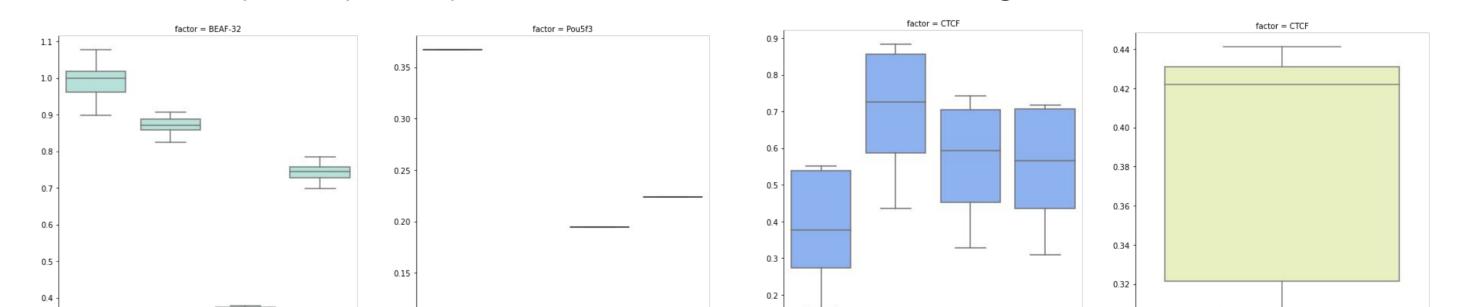
Comparison of TAD boundaries from different papers using J-index:

	Fruit Flies	Danio rerio
Jaccard index, delta 1	0.49	0.35
Jaccard index, delta 0	0.24	0.17
Expected Jaccard index	0.03	0.02

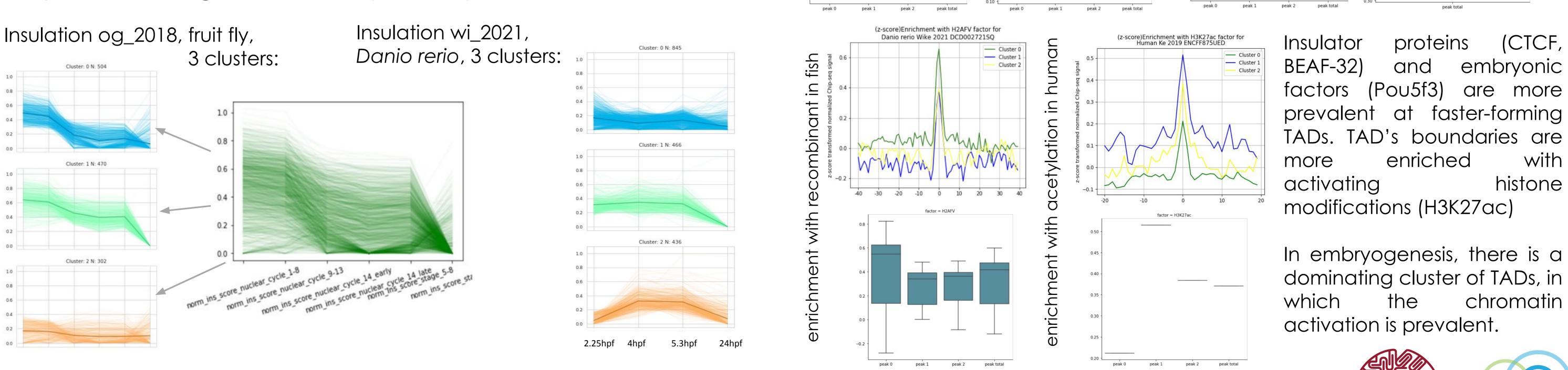
Comparison of TAD boundaries obtained by different modes using J-index:

organism	Fru	it fly	Danio rerio	
delta	og_2018	hug_2017	ka_2018	wi_2021
0	0.17	0.18	0.10	0.09
1	0.44	0.51	0.26	0.26

Jaccard index definition:


Calculation of the expected Jaccard index for two random clusters in chromatin (EJ):

$() \qquad E = \sum_{i=1}^{M_2} i \cdot \frac{C_{N-M_1}^{M_2-i} \cdot C_{M_1}^i}{C_N^{M_2}}$ $J(A, B) = \frac{|A \cap B|}{|A \cup B|} \qquad EJ = \frac{E}{M_1 + M_2 - E}$


Delta is a distance measured in bins, by which the boundary can deviate from its position in another dataset - *it is accounted in J-index*. It reflects uncertainties in Hi-C data and boundaries calling

We then focused on boundaries calling mode and annotated temporal changes of boundaries. For this, we found insulation score for the different stages of embryogenesis and then divided all boundaries into

Stackup and profile plots show the enrichment of the region with the factor

groups according to their temporal dynamics.

Insulation score measures depletion of the contacts between TADs

KINATION SMTB

1 00 -0 75 -0 50 -0 25 0 00 0 25 0 50 0 75

Petrovax