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Methods

Neural network architecture:

● Convolutional layers, Multi-Head Attention, Bidirectional 

LSTM

● Relu activation

● Dropoff regularisation
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Abstract

Is it possible to predict particular synonymous mutation, based on 
adjacent 100 nucleotides?

We used convolutional neural network to find patterns that 
determine synonymous evolution (in particular position). We found 
two entities that determine direction of synonymous substitution: it is 
the state of the next codon and the states of 3rd codon positions in 
the whole alignment. Surprisingly, the model trained on one amino 
acid, works great for some other amino acids.

Data

Fig.2: Example plots show the dependence of the predicted codon probability (unit 
color) on the point mutations (rows) in the original sequence. For this figure we used 4 
random contexts of Phenylalanine (F).

Fig.5: Average effect of mutations for each 
position in a context. The figure shows that 
4 positions in advance (45-48) and 
especially 4 positions just after (52-55) are 
the most important for codon 
predictability, and that 3rd positions in 
along the entire length of a context are 
more important than 1st and 2nd.
Large points depict 3rd positions in codons.

Fig.6: Uncertainty level of the neural 
network (x-axis) vs. variability of 
Glutamine encoding codon (y-axis). The 
more variability the codon has, the more 
uncertain neural network is. The results 
show the significant (p-value < 0,05) 
correlation. However, such correlation is 
detected only for Glutamine (Q). 

Fig.1: Cross evaluation of various models. Models seem to work equally well for various amino acids even if not trained 
on them. The figure shows that models for amino acids D, F, and Y get good results on each other’s datasets, as well as 
models for K and Q. This is a consequence of the fact that in the first three datasets, we analyzed T/C variants and in the 
last two, we took A/G variants (see the Genetic Code). But also, we can see that inversion of predictions of models 
allows us to get good results on groups with different 3rd position variants. That means that models may have learned 
similar patterns.
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Fig.3: Average changes in probabilities of prediction 
of the TTC codon (F) after  replacing the original 
nucleotide (y-axis) with a mutant one (x-axis). The 
probability of correct codon prediction is higher when 
A or T mutated to C or G, than vice versa. For TTT, on 
the contrary, mutations from A or T to C or G reduce 
predictability power.

Table 0: Train and test datasets. The 
datasets consist of the non-overlapping 
non-homologous nucleotide sequences 
of +-48 nt around the codon of interest. 
All the sequences were cut from the 
protein coding genes  of bacteria. Every 
dataset was balanced to have equal 
number of contexts for each codon. 
Baseline accuracy was estimated by 
NaiveBayes.

Fig.0: Genetic code. The 
considered amino acids and their 
codons are marked in yellow.

Results

Conclusions

● For F, Y, Q, K, D we got models that work better 
than the Bayesian baseline, which considers all 
context positions independent. However, the 
resulting accuracy is only ~5% higher than the 
baseline hence needs further improvement.

● Our models seem to work equally well for 
various datasets even if not trained on them. 

● The most important entities for choosing 
synonymous variant are the state of the next 
codon and the states of 3rd codon positions in 
the whole sequence.

● At first sight, the possible nucleotide pairing in 
RNA secondary structure  with the codon of 
interest doesn't have significant influence on 
choosing synonymous variant (Data not shown).

● Average prediction confidence for TTC over TTT 
rises if adenines and thymines around the site of 
interest  are replaced by guanines or cytosines.

Fig. 4: Logo for the one 
of important 
convolutional filters. 

aa train_size test_size baseline_accuracy

E 182132 19914 0.61

K 161506 17788 0.65

F 172562 19032 0.69

D 189290 20784 0.63

Y 146258 15820 0.63

H 120546 13352 0.64

Q 136860 15048 0.69

N 161642 17946 0.65

C 62256 6970 0.66


