Evolution of glyoxylate cycle-specific enzymes

Sofia Bichurina, Anastasiya Golubeva, Petr Ekaterinochkin, Ekaterina Ignatova, Ivan Kozin, Maria Kulbachnaya, Nikita Litvyakov, Tatiana Murakhovskaya, Ekaterina Maksimova, Fyodor Kondrashov

Glyoxylate cycle

Is an anabolic pathway that is used to synthesize succinate from acetyl-CoA.

Thanks to GS acetate can be used as a precursor for synthesis of various organic compounds.

For example, it is used in lipid-rich seeds to initiate growth at a time when the plant does not photosynthesize, so the lipids can be turned to sugars.

Isocitrate lyase (ICL)

The glyoxylate cycle has two specific enzymes, Isocitrate lyase and malate synthase.

Isocitrate lyase turns isocitrate into succinate and glyoxylate.

Malate synthase turns glyozylate and acetyl-CoA into malate.

To study the evolution of the glyoxylate cycle it makes sense to focus on these two key enzymes.

Malate synthase (MS)

Our work focused on looking for evidence of horizontal gene transfer of ICL and MS using a much larger dataset of these two enzymes from completely sequenced genomes..

Methods

We used **BLAST** to search for ILC & MS in: Bacteria, Archaea and Eukaryotes. Search was recursive, starting from E. coli (IC1L: MHO05562 MSa: MHO05561).

Muscle as implemented in MEGA:

Alignment and building the 1st phylogenetic tree by Maximum Likelihood method.

MrBayes:

The second tree-construction in command line interface with default settings.

Mesquite:

Data visualization from MrBayes in a more convenient way.

malate synthase [Phycisphaeraceae bacterium]

Sequence ID: MAE64273.1 Length: 627 Number of Matches: 1

Range 1	L: 6 to (527 Ger	Pept C	Fraphics						VN	lext	Match	▲ Previ
Score 899 bit	s(2324	Expect	Method Compo	sitional	matrix	< adjust	Ident 427/	ities 622(69%)	Positiv 514/	/es 622(829	%)	Gaps 0/622	(0%)
Query	5	SIIIRD	NLKEQ		EEVLL		FNKS	VKHLMNER		DRHTNS	KRJ	EFYD	64
Sbjct	6	ALQIQD	RLODT	PDVLT	EDALRA	LDALA	PLNDVI	RREMMAAR	IQRRR	RRAAEG	ERJ	TFLD	P 65
Query	65	ESLIPO	SSIKV		RFEGS	IPHDLO		OGTGPAAK	PNASL	ESSIRN	AA	ALLS	§ 124
Sbjct	66	DEIIPP	TTLTV	RAARDGI	DFDGSE	IPDDL	RQWI	QGTGPGAK	PRAEL	RSSIRN	VAY	ALLS	3 125
Query	125	ADGWMF	DGEDAL	GOIAS	ISLDNO	RNLKL	IAKD	PVFLKVAE	QVAAE	MNRWSE	GFL	GOEI	/ 184
Sbjct	126	ADGWMF	DGEDAI	GQVST	4SLDN 4SLDNL	RNLKL	AIDRD	TMFLEVAE	QVAAE	MNRWGE	PFF	GRPI	/ 185
Query	185	KDWKSQ	LDFTT	IFRCR	GLHLDD	RHIRD	ADGVA	LAASIADL	CLYVV	NNYRQL	RKS	GSSI	/ 244
Sbjct	186	ENWRSC	LDFTT	(IYRVR	GLHLDD	ORHVRKO	GDGKGI	FSASIVDS	VLYVV	NN+R+L	QAD	GASI	245
Query	245	LYLPKI	QTAGE/	ALWNS	ILSALE	DHLGL	NGTI	KVYLLVEQ	LEATY	OLMEIR	AVL	GKHF	/ 304
Sbjct	246	LYLPKI	QTADE/	ALFND:	+L+ALE	RHLGL	AVGTI	KVY+LVEQ KVYVLVEQ	VEASF	QLMEIR	AAL	APHE	/ 305
Query	305	GYNTGR	WDYINS	VSDAM	AWDKG	INPNI	SVTM	TYGYMRNY	EDRVR	RAVNTP	DIN	IGNCA:	E 364
Sbjct	306	GHNTGP GFNTGP	WDYINS	V+DAM/	aw++ F Awnrdf	-+NPNI- VNPNI	F++ M DAIVM	TYGYMR+Y TYGYMRHY	EDRVR	RAVNTP	DRN	IG CA-	⊦ _ 365

Species/Abbrv																	
1. MBT17576.1 malate synthase G Dehalococcoidia bacterium	L	s	Е	D	D	F	w	м	s	L	Е	Ν	T.	٧	D	Е	F
2. MBU27748.1 malate synthase G Flavobacteriales bacterium	1	s	Е	D	н	F	w	т	s	L	Е	Ν	I.	I.	к	Е	F
3. MSU49663.1 malate synthase G Opitutus sp.\	ī	А	Ρ	Е	к	F	w	А	т	L	А	۷	L	v	R	Е	L
4. MTI33903.1 malate synthase G Luteivirga sdotyamensis\	٧	Е	Q	D	А	F	w	А	G	L	А	А	T.	٧	Е	D	L
5. CAA6820408.1 Malate synthase G (EC uncultured Thiotricha	V	Е	А	D	к	F	w	А	G	L	Е	G	I.	۷	Ν	D	L
6. HCC99932.1 TPA: malate synthase G Planctomycetaceae ba	L	D	Ρ	D	А	v	w	т	А	F	G	А	T.	٧	Е	т	L
7. HEV57096.1 TPA: malate synthase G Phycisphaerales bacter	Т	D	Ρ	G	А	F	w	н	А	L	А	D	L	н	R	G	F
8. MAL98640.1 malate synthase G Alteromonadaceae bacteriu	v	D	к	Е	Q	F	w	т	G	L	D	т	L	V	н	D	L
9. MBK68909.1 malate synthase G Legionellales bacterium	I.	s	т	к	к	F	w	Е	G	F	D	R	٧	т	н	Е	L
10. MBP08944.1 malate synthase G Acidiferrobacteraceae bact	V	Ρ	٧	D	Т	F	w	н	s	F	А	А	I.	٧	D	Е	L
11. MSO48278.1 malate synthase G Thermoleophilia bacterium	v	D	т	D	R	F	F	T	G	L	s	Е	м	T.	н	R	F
12. MSO48278.1 malate synthase G Thermoleophilia bacterium	٧	D	т	D	R	F	F	Т	G	L	s	Е	м	I.	н	R	F
13. MVZ89370.1 malate synthase G Microbacter sp. ANSKLABC	V	D	Ρ	D	А	F	w	А	G	А	s	Е	T.	F	т	Е	L
14. NCA68620.1 malate synthase G Sphingobacteriia bacterium	T.	D	Ρ	D	Q	L	w	Q	S	F	G	Е	м	v	R	E	L

ICL and MS that were found

	ICL1	ICLz	ICLh	MSa	MSg	MSi	MSh	MSd
Eukaryotes	+	+	-	+	+	+	-	-
Bacteria	+	-	-	+	-	-	-	+
Archaea	-	-	+	-	-	-	÷	-

1. ICLz, MSg and MSi were rarely found in eukaryotes. ICL1 and MSa were much more frequent.

2.Many eukaryotes did not have both enzymes.

3.Enzyme ICL1 and MSa were frequently found in bacteria.

4. Archaea rarely had these enzymes.

Contamination

Contamination can occur during sequencing. For instance, sometimes bacterial DNA fragment can be found in a sequence of the sample organism.

We battled with it during BLAST-stage, excluding suspicious sequences, such as:

- From incompleted genomes
- Short and poor alignments
- Weirdly perfect alignments

We used reverse-BLAST & pairwise comparison methods to distinguish contamination. Yet some contaminations likely got into the final chart.

Example of contamination

Bacteria

- Eukaryotes

In this tree you can see that most eukaryotes are separated from bacteria, but one organism is near.. Looks like horizontal gene transfer. But checking pairwise alignments confirms that it is contamination the sequences are just too similar. Thus, no horizontal gene transfer was found.

Score 768 bit	ts(1982	Expect 2) 0.0	Method Compositional	matrix adjust.	Identities 368/524(70%)	Positives 429/524(81%)	Gap 3/5	s 24(0%
Query	9	HVRAVKE	KLGGTWGAIR	PEDAARMMVQNRI	HTGLDIAKYTAAI	MRKDMAEYDADSS	KY	66
Sbjct	7	H++A+ E	LAGKNPNWAAIN	PEYAARM +QNRI PEYAARMRLQNRI	FKSGLDIAFYTAAI	MRRDMAEYD D+S	+γ RY	66
Query	67	TQSLGCW	HGFIAQQKMIAN	KKYFGTTSKRYI	YLSGWMVAALRSEF	GPLPDQSMHEKTS	VP	126
Sbjct	67	TQSLGCW	HGFIAQQK+IA HGFIAQQKLIAI	KK+ +I KRY+' KKHQKSTEKRYL'	YLSGWM+AALRSEF YLSGWMIAALRSEF	GPLPDQSMHEKTA GPLPDQSMHEKTA	VP VP	126
Query	127	KLIAEIY	TFLRQADAKELN	DLFRALQKAEQA	GDSAKAAEIISQID	NFESHVVPIIADI	DA	186
Sbjct	127	ALIGEIY	FLRQAD +EL+ DFLRQADTRELD	LF AL KA A	GETREETALLAQIE	GFQTHVVPIIADI	DA DA	186
Query	187	GFGNEEA	TYLLTKQMIEAG	ACAIQIENQVSD	AKQCGHQAGKVTVP	HEDFLAKINAVRY	AF	246
Sbjct	187	GFGN EA	TYLL K+MIEAG	AC IQIENQVSD ACCIQIENQVSD	KQCGHQ GKVTVP EKQCGHQDGKVTVP	H DFLAKINAVRY	AF AF	246
Query	247	LELGVDE	GVIVARTDSEGA	DLTQKIPVSKEK	GDLASQYISYLDTK	EIDISEASDDEIL	IK	306
Sbjct	247	LELGVD+ LELGVDD	GVIVARTDS GA GVIVARTDSLGA	GLTKQIAVSEKP	GDL QY +LD GDLGDQYNRFLDCD	EI +E + E+L EIHPAELQNGEVL	I IS	306
Query	307	RDGKLHR	PTRLASGLYQFR	EGTQHDRVVLDC	/TSLQNGADMIWIE	TPTPDVAGIAGFV	ND	366
Sbjct	307	RDGKL R RDGKLLR	P RLASGL+QF+ PKRLASGLFQFQ	+G+ DR VLDC- KGSGEDRCVLDC	+TSLQNGADMIWIE ITSLQNGADMIWIE	T P + I G + TEKPHIGQIKGML	+ DR	366
Query	367	IKKQVPN	AKLVYNNSPSFN	WTLNFRQQAYDRI	WAEGKDVSGYDRA	KLMSAEYDNSELA	AD	426
Sbjct	367	I++ VPN IREVVPN	AKLVYNNSPSFN AKLVYNNSPSFN	WTLNFRQQ +D I WTLNFRQQVFDAI	N AEG+D++ Y R NQAEGRDLAAYQRD	LMSAEYD +EL ALMSAEYDETELG	KV	426
Query	427	ADEKIRT	FQADAAREAGVF	HHLITLPTYHTA	ALSTHELAKGYFGE	EGMLAYVAGVQRK	EI	486
Sbjct	427	AD KI++ ADAKIQS	FQ DA+R+AGVF FQRDASRDAGVF	HHLITLPTYHTA/ HHLITLPTYHTA/	ALST L++GYFG ALSTDMLSRGYFGS	+ MLAYV GVQR+ DAMLAYVKGVQRQ	EI EI	486
Query	487	RGGIACV	KHQAMAGSDIGD	DHKEIFAGENALI	KAGDASKNTMNQF	530		
Sbjct	487	R GIACV RRGIACV	KHQ MAGSDIGD KHQNMAGSDIGD	+HKE FAG ALI NHKEYFAGVAALI	<pre>KA NTM+QF KAS-GKDNTMHQF</pre>	529		

Conclusion

- 1. We found two new forms ICL and three new forms MSa
- 2. We found that most of eukaryotic enzymes glyacid cycle clusterize with archaeal. In indicates common ancestor and subsequent loss in many clades of eukaryotes.
- 3. Some cases are similar to both horizontal transfer and contamination.
- 4. Sometimes existence glyacid cycle not proven to contain enzymes

What else can you work on?

- 1. Increasing the accuracy of tree alignment.
- 2. Prove existence glyoxylate cycle experimentally and reads articles about studied cases.
- 3. Study the patterns of the combination of isoforms in different organisms.
- 4. Correct results after appearance new data about living organisms.