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Introduction T
The evolutionary distance between biological sequences can be displayed on ool e
the multidimensional map called sequence space where each sequence is Z 00001

represented by an individual dot. The shape and the dimension of the protein
sequence space may contain information about the fundamental constraints on

the evolution of individual proteins.

We use the correlation dimension to approximate the dimensionality of a
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protein space. For instance, it may provide a way to track the epistatic effects in the evolution of individual
proteins or to estimate the rate of evolution within different phylogenetic groups.

How do we measure the correlation dimension of protein sequence space?

The number of pairs of points (g,,)
at a given distance € or closer to
each other are proportional to the
dimensionality of the space D.

We can use this proportionality to calculate the
dimensionality of any set of points. In the case

g ~¢

of protein sequence data we calculate the

pairwise distances from sequence alignments.

Multiple alignment of orthologous
proteins (from 391 vertebrates)
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To calculate the correlation dimension, we build a log-log plot of the number of pairs of sequences (In(N)) at a
given distance € or less against the distance € (blue dots, In(d)) and do a linear regression on it. The slope of
the obtained cumulative curve is the dimensionality value (k-value) for the sequence space of a given set of
orthologous proteins. The dimensionality is not necessarily an integer.

Why did we choose correlation dimension?

Among all existing measures of dimensionality we are considering the correlation and Minkowski dimensions.
Both of them are types of Fractal dimension and can be considered as separate cases of Renyi’s fractal

dimensionality formula.

Meanwhile most researchers use Minkowski dimension and

method called Box-counting method (further BCM)

Why didn’t we also use it?

1. Our data exists in multidimensional space (much more
than 3D) for which the calculation methods are not

developed yet

2. BCM requires a lot of computing memory and is based on

graph structures that's not easy to work with in an

N-dimensional space

3. BCM describes the dimensionality of a graph, that could be
constructed from our points, but not necessarily the space

in which these points exist

Nevertheless it would be interesting to calculate the
Minkowski dimension of our data and compare it with the

correlation dimension. So we want to suggest a theoretically
effective method for constructing and measuring

multidimensional fractal objects. We called this method
“Multidimensional Christmas tree method”. Here is the

outline;

1. Checking the Triangle rule for every possible

combination of sequences

2. Putting them in sets of 2D slices
3. Constructing multidimensional graph using this data and

simplifying it by eliminating all edges of the length >=¢
4. Building a fractal graph from this graph
5. Measuring the minimum amount of minimum-size
multidimensional spheres covering the obtained fractal
using the Minkowski dimension formula (1) in its

simplified form (2) (right panel).

Below you can see some visualisations of
the “Multidimensional Christmas tree”
method and explanations of formules
below, which describe measuring the
Minkowski dimension:

€- radius of the n-dimensional sphere; grid
cell size
D - dimensionality
P, - minimum number of n-dimensional
spheres
- scale (the ratio of the size of the
sungraph to the original graph)

log(N)

Results

1. Improving the function for dimension estimation

1.1. What part of a curve should we use for the dimension estimation?

To estimate correlation dimension in case of not

completely linear graphs, we have to choose an

interval to apply linear regression in.

The most linear part of the graph is the most

appropriate for regression. Calculating the first
and second derivative on simulated data we see 3
that on the first 6-8 points of the plot the linear ~4 1
regression would be the most accurate (right —6 1
figure). Though, this is not always the case for s

real protein families (bottom figures).
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Thus, the part of the curve with the highest slope gives the best fit overall. It was also previously
reported as a gold standard way to estimate the dimensionality (Boon et al. 2008). Yet for most
protein families the difference between the value obtained using the first ten points of the curve

An N-dimensional protein
sequence space can be simulated
by randomly placing some points
In an N-dimensional space
following a normal distribution.

3.1. Random subsampling

Simulations of normally distributed points in dimensions 1-7
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2. Dimensionality on a simulated set of random points in the space of a known dimension

Computed K-value for normally distributed points
in multidimensional spaces

8 y = 1.03x-0.16

R™2=0.998

Dimension

We performed data simulations to proof the validity of our method of dimensionality calculation (left).
Indeed, the estimated dimensionality occurred to be close to the dimension the points were simulated
in. The box-plot graph shows that the computed dimensionality in simulated spaces is very close to
the given dimensionality of the points (right). For higher given dimensionality, the calculated
dimensionality values are more disperse as we have a smaller number of points per dimension to play

with.

3. Robustness of dimensionality estimation for vertebrates

A sampling of multiple random subsets of sequences from alignments to perform calculations is a way to check robustness of the calculations.
Thus, box plots represent the variance in k-value between random subsamples with different sizes. The horizontal line represents the
dimensionality for the initial matrix. WWe see that the variance of the estimation decreases with the increasing subsample size.

and the value obtained for the region with the highest slope is not large:

Number of protein families
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1.2. Scale change and normalization
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The dimension estimation will be more precise if the points are equally spaced on the log
scale, instead of the linear scale.
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Simulation of points applying normalization
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Normalization by the total number of sequences
in the dataset allows us to more accurately
compare the dimensionality of orthogroups of

Simulation of points with equal spacing
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different size.
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D - dimension

g - number of pairs of points at a given distance or less
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€ - pairwise distance

N - total number of sequences (points)

SEC61G orthogroup RERGL orthogroup
z _ ' _
i k=0.093 k=1.81
Tl ‘o
]
. N
0.25 t 2 _‘_ ,
[} —._
) 3.50 ! t !
0.20 T ¢
(0]
S 2 . l L i : ‘
© o~ } —‘ ‘
> 015 > el = | O s W e e s e P
~ 2 - - B \ [ ] O e | = ——
H 3.00 =~ N
4
0.10 ¢ L
275 : ¢
0.05 ‘ ¢
il 250
0.00 ¢
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 50 60 70 80 90 100 110 120 130 140 150 160 170 180 19_0 200 210 220 230 240 250 260 270 280 290 300
Subsample size Subsample size
SEC61G dimension within phylogenetic groups RERGL dimension within phylogenetic groups
070 (. mamr2§|ia;gir:1:0-143 . a . . mammalia, dim =1.845
@ fish, dim =0.143 o0 ® oves.dim=1411 o0 ?® $ i 0 ' 600
@ amphibia, dim =0.124 @ fish, dim =1.59 { o ® O
/0 /0 o ¢ ' 0 -1.0 @ amphibia, dim =1.879 ° ® a/ °
~075 o8 000 o0
-15 ® ¢ 9 ([ )
v _ - = ° N B ¢
= o000 0808080808 - ¢ o84
-0 e 6 -2.0 ®
G |eeegebBecne / °® = Y o °r
o °/0 o o/ o o
- o Q -2.5 2 ® o °
@ ¢
iy $§$8 000000 ~
& X & s o # @
p‘ ® O ’ = [ ) o
. °
-0.90 e o
° [

-3.0 -2.5 -2.0 —1.5 -1.0 -0.5

log(Pairwise distance)

0.0

-3.0 =25 -2.0 —1.5 -1.0 -0.5 0.0

log(Pairwise distance)

LOC102725101 orthogroup

5.0

k =3.49

45 ¢

k-value

35

3.0

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330

Subsample size

LOC102725101 dimension within phylogenetic groups

. mammalia, dim =4.506
@ aves, dim =nan °® ([ . ®
. fish, dim =3.438 . ‘
amphibia, dim =nan 4
L o o
2 o
s o,
e
3 o [ |
o o &
Z - ®
~
o ..
O [ {
$ o 0
6 . . -
 J
7 . .
o000
s | @

-3.0 —2.5 -2.0 —1,5 -1.0 -0.5 0.0

log(Pairwise distance)

Then the matrices were subsampled according to the phylogenetic tree structure.
We separated proteins from fish, mammalia, amphibia, and birds and compared the
estimated dimensionalities. For this analysis we used the sequences from 199

The dimensionality estimates of the same protein in different classes of
organisms differ. This might be explained by biological or computational
reasons. In particular, amphibia group is the smallest one that may explain
higher errors in dimensionality estimation in this subsample in comparison
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