SpecForge User Guide

SpecForge is an Al-powered formal specification authoring tool based on Lilo, a domain specific
language designed for specifying temporal systems.

This guide covers installation, the Lilo specification language, the Python SDK, and using Lilo with
VSCode.

To get started, see setting up, releases are available from the releases page.
Other versions of this guide:

e |In PDF format.
e Injapanese. (COHA RICIZEAXBROHD £7.)

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up.html
https://imiron.io/specforge/releases/
https://storage.googleapis.com/specforge-releases/v0.5.6/lilo-language-guide-0.5.6-en.pdf
file:///home/runner/work/specforge/specforge/docs/external/en/book/ja/index.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/ja/index.html

Setting up SpecForge
The SpecForge suite consists of a few components:

e The SpecForge Server which is the backend server which the other components connect to. It
can be run via Docker or as an executable.

e The SpecForge VSCode Extension which provides Lilo Language support in VSCode for editing
and managing specifications, as well as rendering interactive visualizations.

e The SpecForge Python SDK which provides an API for interacting with the SpecForge server
from Python code. This can be used to communicate and exchange specifications or data with
the SpecForge server from Python scripts or Jupyter notebooks.

All necessary files can be obtained from the SpecForge releases page.

Quick Start

Follow these steps to get started quickly:

1. Install dependencies z3 and rsvg-converter (see OS-specific instructions; rsvg-converter is
optional)

2. Download and extract the SpecForge executable for your operating system

. Configure your license (place license.json inthe appropriate location for your OS)

. (Optional) Configure LLM provider by setting environment variables (e.g.,
SPECFORGE_LLM_PROVIDER=openai, OPENAI_API_KEY=...)-see LLM Provider Configuration

. Start the SpecForge server: ./specforge serve (Or .\specforge.exe serve on Windows)

. Install the VSCode Extension (see docs)

. Create a directory for your project and place your .lilo files directly in it

. Open the directory in VSCode and start writing specifications

A W

00 N o un

Note: The lilo.toml project configuration file is optional. For initial setup, you can skip it and place
your specification and data files directly in the project root. See Project Configuration for details on
when and how to use 1lilo.toml.

Detailed Setup Instructions

Choose your platform for detailed setup instructions:

e Windows - Complete setup guide for Windows

e macOS - Complete setup guide for macOS (Apple Silicon)
e Linux - Complete setup guide for Linux

¢ Docker - Using Docker instead of the executable

https://imiron.io/specforge/releases/
https://imiron.io/specforge/releases/
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-windows.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-macos.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-linux.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-docker.html

Setting up SpecForge on Windows

This guide will walk you through setting up SpecForge on Windows.

1. Installation

MSI Installer (Recommended)

Download specforge-x.y.z-Windows-X64-en-US.msi from the SpecForge releases page and run the
installer.

The MSI installer will:

e Install SpecForge to C:\Program Files\Imiron\SpecForge\
e Add SpecForge to your system PATH automatically
¢ Include all required dependencies (Z3, rsvg-convert)

Standalone Executable

Download specforge-x.y.z-Windows-X64.zip from the SpecForge releases page and extractitto a
directory of your choice.

Note: With this method, you need to manually install dependencies.

The SpecForge executable requires Z3 and rsvg-converter (optional) to be installed on your system.

Using Chocolatey (Recommended)

Open PowerShell as Administrator and run:
choco install z3 rsvg-convert

If you don't have Chocolatey, you can install it from chocolatey.org.

Manual Installation

If you prefer not to use a package manager, download Z3 directly from the Z3 releases page and add
it to your PATH.

2. Configure Your License

The SpecForge server requires a valid license file to start. If you don't have a license, please contact
the SpecForge team or request a trial license.

Place your license.json file in one of the following locations (the first match is used):
1. Standard Configuration Directory (recommended):

O %APPDATA%\specforge\license.json
o Typically: C:\Users\YourUsername\AppData\Roaming\specforge\license.json

2. Environment Variable (for custom locations):

https://imiron.io/specforge/releases/
https://imiron.io/specforge/releases/
https://chocolatey.org/
https://github.com/Z3Prover/z3/releases
https://forms.gle/w487KwqyX6hHrCeh9

$env:SPECFORGE_LICENSE_FILE="C:\path\to\license.json"
3. Current Directory: .\license.json
Create the directory if it doesn't exist. You can do this in PowerShell:

New-Item -ItemType Directory -Force -Path "$env:APPDATA\specforge"
Copy-Item "C:\path\to\your\license.json" "$env:APPDATA\specforge\license.json"

3. Configure LLM Provider (Optional)

To use LLM-based features such as natural-language spec generation and error explanation,
configure an LLM provider by setting environment variables before starting the server.

For OpenAl (recommended):

$env:SPECFORGE_LLM_PROVIDER="openai"
$env:SPECFORGE_LLM_MODEL="gpt-5-nano-2025-08-07"
$env:OPENAI_API_KEY="your-api-key-here"

Get an API key from platform.openai.com/api-keys.

For other providers (Gemini, Ollama), see the LLM Provider Configuration guide.

4. Start the Server
If you used the MSI installer, run from any directory:

specforge serve

If you used the standalone executable, navigate to the directory where you extracted the SpecForge
executable and run:

.\specforge.exe serve

The server will start on http://localhost:8080 . You can verify it's running by navigating to
http://localhost:8080/health, which should show version information.

Note: The server will exitimmediately if the license is missing or invalid. If you encounter
startup issues, verify your license configuration.

5. Install the VSCode Extension

Install the SpecForge VSCode extension from the Visual Studio Marketplace or see the VSCode
Extension setup guide.

Next Steps

e VSCode Extension - Learn about the VSCode extension features
e Python SDK - Set up the Python SDK for programmatic access

e A Whirlwind Tour - Take a tour of SpecForge capabilities

e Project Configuration - Learn about lilo.toml configuration

https://platform.openai.com/api-keys
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
http://localhost:8080/health
vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html

Setting up SpecForge on macOS

This guide will walk you through setting up SpecForge on macOS using the standalone executable.

1. Download the Executable

Download specforge-x.y.z-macOS-ARM64.tar.bz2 from the SpecForge releases page and extract it
to a directory of your choice.

2. Install Dependencies

The SpecForge executable requires Z3 to be installed. Install it using Homebrew:
brew install z3

If you don't have Homebrew, install it from brew.sh.

3. Configure Your License

The SpecForge server requires a valid license file to start. If you don't have a license, please contact
the SpecForge team or request a trial license.

Place your license.json file in one of the following locations (the first match is used):
1. Standard Configuration Directory (recommended):
o ~/.config/specforge/license.json

2. Environment Variable (for custom locations):
export SPECFORGE_LICENSE_FILE=/path/to/license.json
3. Current Directory: ./license.json
Create the directory if it doesn't exist:

mkdir -p ~/.config/specforge
cp /path/to/your/license.json ~/.config/specforge/

4. Configure LLM Provider (Optional)

To use LLM-based features such as natural-language spec generation and error explanation,
configure an LLM provider by setting environment variables before starting the server.

For OpenAl (recommended):

export SPECFORGE_LLM_PROVIDER=openai
export SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07
export OPENAI_API_KEY=your-api-key-here

Get an API key from platform.openai.com/api-keys.

For other providers (Gemini, Ollama), see the LLM Provider Configuration guide.

https://imiron.io/specforge/releases/
https://brew.sh/
https://forms.gle/w487KwqyX6hHrCeh9
https://platform.openai.com/api-keys
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html

5. Start the Server

Navigate to the directory where you extracted the SpecForge executable and run:
./specforge serve

The server will start on http://localhost:8686 . You can verify it's running by navigating to
http://localhost:8080/health, which should show version information.

Note: The server will exitimmediately if the license is missing or invalid. If you encounter
startup issues, verify your license configuration.

Allowing Execution of the Downloaded SpecForge Binary

The MacOS Gatekeeper may display an alert preventing you from executing the downloaded binary,
because it was downloaded from a third-party source.

To whitelist the specforge executable, run the following command.
xattr -d com.apple.quarantine path/to/specforge

Alternatively, you can do so from the System Settings GUI by following these steps.

1. Open System Settings, and go to 'Privacy & Security'
2. In the security section, you should see "'specforge" was blocked to protect your Mac.'
3. Click 'Open Anyway'.

http://localhost:8080/health
https://support.apple.com/en-us/102445

[oce

Q Search

Desktop & Dock
g Displays
Y spotlight

k) Wallpaper

9 Notifications

Sound
Focus

B Screen Time

g Lock Screen

(@ Privacy & Security

B Users & Groups

@ Internet Accounts
@ Game Center
» iCloud

@ Wallet & Apple Pay

=) Keyboard

) Trackpad

\z) Printers & Scanners

? Apple Intelligence & Siri

) Touch ID & Password

< Privacy & Security

@ Screen & System Audio Recording

Wy Speech Recognition
Sensitive Content Warning
@ Blocked Contacts

@ Analytics & Improvements

m Apple Advertising

E‘ Apple Intelligence Report

Security

Allow applications from

“specforge” was blocked to protect your Mac.

App Store & Known Developers

Allow Anyway

Off

~
v

Apple could not verify “specforge” is free of malware that may harm your Mac or

compromise your privacy.

ey FileVault
& Accessories
0 Lockdown Mode

m Background Security Improvements

Ask for new accessories

Advanced...

On

?

v

6. Install the VSCode Extension

Install the SpecForge VSCode extension from the Visual Studio Marketplace or see the VSCode

Extension setup guide.

Next Steps

e VSCode Extension - Learn about the VSCode extension features

Python SDK - Set up the Python SDK for programmatic access

e A Whirlwind Tour - Take a tour of SpecForge capabilities

Project Configuration - Learn about 11ilo.toml configuration

vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html

Setting up SpecForge on Linux

This guide will walk you through setting up SpecForge on Linux using the standalone executable.

1. Download the Executable

Download specforge-x.y.z-Linux-X64.tar.bz2 from the SpecForge releases page and extract it to
a directory of your choice.

2. Install Dependencies

The SpecForge executable requires Z3 to be installed. Use your distribution's package manager:

Ubuntu/Debian:

sudo apt install z3
Fedora/RHEL:

sudo dnf install z3
Arch Linux:

sudo pacman -S z3

3. Configure Your License

The SpecForge server requires a valid license file to start. If you don't have a license, please contact
the SpecForge team or request a trial license.

Place your 1license.json file in one of the following locations (the first match is used):

1. Standard Configuration Directory (recommended):
o ~/.config/specforge/license.json

2. Environment Variable (for custom locations):
export SPECFORGE_LICENSE_FILE=/path/to/license.json
3. Current Directory: ./license.json
Create the directory if it doesn't exist:

mkdir -p ~/.config/specforge
cp /path/to/your/license.json ~/.config/specforge/

4. Configure LLM Provider (Optional)

To use LLM-based features such as natural-language spec generation and error explanation,
configure an LLM provider by setting environment variables before starting the server.

For OpenAl (recommended):

https://imiron.io/specforge/releases/
https://forms.gle/w487KwqyX6hHrCeh9

export SPECFORGE_LLM_PROVIDER=openai
export SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07
export OPENAI_API_KEY=your-api-key-here

Get an API key from platform.openai.com/api-keys.

For other providers (Gemini, Ollama), see the LLM Provider Configuration guide.

5. Start the Server
Navigate to the directory where you extracted the SpecForge executable and run:

./specforge serve

The server will start on http://localhost:8080 . You can verify it's running by navigating to
http://localhost:8080/health, which should show version information.

Note: The server will exit immediately if the license is missing or invalid. If you encounter
startup issues, verify your license configuration.

6. Install the VSCode Extension

Install the SpecForge VSCode extension from the Visual Studio Marketplace or see the VSCode
Extension setup guide.

Next Steps

VSCode Extension - Learn about the VSCode extension features
e Python SDK - Set up the Python SDK for programmatic access

e A Whirlwind Tour - Take a tour of SpecForge capabilities

e Project Configuration - Learn about 1ilo.toml configuration

https://platform.openai.com/api-keys
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
http://localhost:8080/health
vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html

Setting up SpecForge with Docker

This guide will walk you through setting up SpecForge using Docker instead of the standalone
executable.

Prerequisites

Before starting the server, you must obtain and configure a valid license. If you don't have a license,
please contact the SpecForge team or request a trial license.

1. Obtain the Docker Compose File

The SpecForge Server is distributed as a Docker Image via GHCR (GitHub Container Registry). The
recommended way to run the Docker Image is through Docker Compose.

Download the latest docker-compose-x.y.z.yml file from the SpecForge releases page.

2. Configure Your License

The SpecForge server requires a valid license file. You need to make the license file available to the
Docker container.

1. Place your license.json file in a new directory. Using /home/user/.config/specforge/ isa
common practice.

2. Modify the following lines in your docker-compose-x.y.z.yml file to point to your license file:

- type: bind

source: path/to/.config/specforge/ # place your license.json file here on the
host machine

target: /app/specforgeconfig/ # config directory inside the container (do not
modify this)

read_only: true

Note: It is not recommended to run docker as root (i.e. with sudo). But if you do, note
that paths with ~/ would be understood by the system as /root/, not your home
directory. So it's best to use absolute paths (without ~).

3. Configure LLM Provider (Optional)

To use LLM-based features such as natural-language spec generation and error explanation,
configure an LLM provider by modifying environment variables in your docker-compose.yml file
before starting the server.

For OpenAl (recommended):

- SPECFORGE_LLM_PROVIDER=openai
- SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07
~ OPENAI_API_KEY=${OPENAI_API_KEY}

Get an API key from platform.openai.com/api-keys.

https://forms.gle/w487KwqyX6hHrCeh9
https://imiron.io/specforge/releases/
https://docs.docker.com/engine/install/linux-postinstall/
https://platform.openai.com/api-keys

You can insert API keys directly in the file, but using environment variables is better for security.

For other providers (Gemini, Ollama) and detailed configuration options, see the LLM Provider
Configuration guide.

4. Start the Server

Run the following command, replacing /path/to/docker-compose-x.y.z.yml with the actual path to
your downloaded file:

docker compose -f /path/to/docker-compose-x.y.z.yml up --abort-on-container-exit

The flag --abort-on-container-exit is recommended so that the container fails fast on
startup errors.

You can verify that the server is up by navigating to http://localhost:8080/health, which should
show version information.

Note: The server will exit immediately if the license is missing or invalid. If you encounter
startup issues, verify your license configuration.

5. Install the VSCode Extension

Install the SpecForge VSCode extension from the Visual Studio Marketplace or see the VSCode
Extension setup guide.

Updating the Docker Image

From time to time, new versions of the SpecForge Server are released. To use the latest version, you
can either:

1. Use the updated docker-compose file from the releases page, or

2. Set the image field to latest in your Docker Compose file:
image: ghcr.io/imiron-io/specforge/specforge-backend:latest
Then pull the latest image:

docker compose -f /path/to/docker-compose.yml pull

Next Steps

e VSCode Extension - Learn about the VSCode extension features
Python SDK - Set up the Python SDK for programmatic access

e A Whirlwind Tour - Take a tour of SpecForge capabilities

e Project Configuration - Learn about 1ilo.toml configuration

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
http://localhost:8080/health
vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
https://imiron.io/specforge/releases/
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html

LLM Provider Configuration

SpecForge includes LLM-based features such as natural-language based spec generation and error
explanation. To use these features, you need to configure an LLM provider.

Supported Providers

SpecForge currently supports three LLM providers:

e OpenAl - Cloud-based API (recommended for most users)
e Gemini - Google's cloud-based API
e Ollama - Run models locally on your machine

Configuration Methods

For Executable (Windows, macOS, Linux)

Set the following environment variables before starting the SpecForge server:

OpenAl

Linux / macOS

export SPECFORGE_LLM_PROVIDER=openai

export SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07
export OPENAI_API_KEY=your-api-key-here

Windows PowerShell
$env:SPECFORGE_LLM_PROVIDER="openai"
$env:SPECFORGE_LLM_MODEL="gpt-5-nano-2025-08-07"
$env:OPENAI_API_KEY="your-api-key-here"

Get an API key from platform.openai.com/api-keys.

Gemini

Linux / macOS

export SPECFORGE_LLM_PROVIDER=gemini

export SPECFORGE_LLM_MODEL=gemini-2.5-flash
export GEMINI_API_KEY=your-api-key-here

Windows PowerShell
$env:SPECFORGE_LLM_PROVIDER="gemini"
$env:SPECFORGE_LLM_MODEL="gemini-2.5-flash"
$env:GEMINI_API_KEY="your-api-key-here"

Get an API key from ai.google.dev/gemini-api/docs/api-key.

Ollama

First, install and run Ollama from docs.ollama.com/quickstart.

Then set the environment variables:

https://platform.openai.com/api-keys
https://ai.google.dev/gemini-api/docs/api-key
https://docs.ollama.com/quickstart

Linux / macOS

export SPECFORGE_LLM_PROVIDER=ollama

export SPECFORGE_LLM_MODEL=your-model-name # e.g., llama3.2, mistral
export OLLAMA_API_BASE=http://127.0.0.1:11434

Windows PowerShell

$env:SPECFORGE_LLM_PROVIDER="ollama"
$env:SPECFORGE_LLM_MODEL="your-model-name" # e.g., llama3.2, mistral
$env:OLLAMA_API_BASE="http://127.0.0.1:11434"

Change oLLAMA_API_BASE if your Ollama server is running on a different machine.

For Docker

Modify the environment variables in your docker-compose.yml file:

- SPECFORGE_LLM_PROVIDER=openai # other options: ollama, gemini

- SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07 # choose the appropriate model for your
provider

One of the following, depending on SPECFORGE_LLM_PROVIDER:

- OPENAI_API_KEY=${OPENAI_API_KEY}

- GEMINI_API_KEY=${GEMINI_API_KEY}

- OLLAMA_API_BASE=http://127.0.0.1:11434 # change if your ollama server is running
remotely

You can insert API keys directly in the file:

- SPECFORGE_LLM_PROVIDER=gemini
- GEMINI_API_KEY=abcl123XYZ # no string quotes

However, it is better to use environment variables for security.

Default Models

If you don't set the SPECFORGE_LLM_MODEL variable:

e OpenAl: Defaults to gpt-5-nano-2025-08-07
e Gemini: Defaults to gemini-2.5-flash
¢ Ollama: You must specify a model (no default)

Without LLM Configuration

Without an appropriate LLM provider configuration, LLM-based SpecForge features will be
unavailable. The rest of SpecForge will continue to work normally.

VSCode Extension

The Lilo Language Extension for VSCode provides

e Syntax Highlighting, Typechecking and Autocompletion for .1lilo files
e Satisfiability and Redundancy checking for specifications
e Support for visualizing monitoring results in Python notebooks

Installation

The SpecForge VSCode extension can be installed in two ways:

From the VSCode Marketplace

Install the extension directly from the Visual Studio Marketplace or search for "SpecForge" in
VSCode's extensions tab (Ctrl+Shift+X or Cmd+Shift+X).

From VSIX File
Alternatively, you can install from a VSIX file (included in releases):

e Open VSCode's extensions tab (Ctrl+Shift+X or Cmd+Shift+X), click on the three dots at the top
right, and select Install from VSIX...

e Open VSCode's command palette (Ctrl+Shift+P or Cmd+Shift+P), type Extensions: Install
from VSIX...,and selectthe .vsix file

Important: Ensure the extension version matches your SpecForge server version. Version
mismatches may cause compatibility issues.

Usage and Configuration

e For the extension to work, the SpecForge server must be running (see Setting up SpecForge).
e The URI corresponding to the server can be configured if necessary using the extension
settings. Do not add a trailing slash at the end of this URL.

Once the extension is installed and the server is running, it should automatically be working on
.lilo files, and in relevant Python notebooks.

https://marketplace.visualstudio.com/items?itemName=imiron.specforge
https://imiron.io/specforge/releases/
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up.html
vscode://settings/specforge.apiBaseUrl
vscode://settings/specforge.apiBaseUrl

Setting up the Python SDK

The Python SDK is a python library which can be used to interact with SpecForge tools
programmatically from within Python programs, including notebooks.

The Python SDK is packaged as a wheel file with the name specforge_sdk-x.x.x-py3-none-any.whl .

Refer to the SpecForge Python SDK guide for an overview of the SDK features and capabilities.

A Sample Walkthrough

The Python SDK can be installed directly using pip, or defined as a dependency via a build
envionment such as poetry or uv.

We discuss below how such an environment can be setup using uv . If you prefer to use a different
build system, the workflow should be similar.

1. Install uv on your operating system. See the uv installation guide for more details.
2. Create a new project directory and navigate into it. Populate it with a pyproject.toml file.
3. Declare the dependencies in the pyproject.toml file.

o The wheel file for the Python SDK can be declared as a local dependency. Ensure that a
correct path to the wheel file is provided.

o Features of SpecForge, such as the interactive monitor, can be used as a part of Python
Notebooks. To do so, you may want to include jupyterlab as a dependency as well.

o Libraries such as numpy, pandas and matplotlib are frequently included for data
processing and visualization.

o Hereis an example pyproject.toml file:

[project]
name = "sample-project"
version = "0.1.0"

description = "Sample Project for Testing SpecForge SDK"
authors = [{ name = "Imiron Developers", email = "info@imiron.io" }]
readme = "README.md"
requires-python = ">=3,12"
dependencies = [
"jupyterlab>=4.4.5",
"pandas>=2.3.1",
"matplotlib>=3.10.3",
"numpy>=2.3.2",

"specforge-sdk",

[tool.uv.sources]

specforge_sdk = { path = "lib/specforge_sdk-0.5.6-py3-none-any.whl" }

4.Run uv sync . This should create a .venv directory which would have the appropriate
dependencies (including the correct version of python) installed.

5.Run source .venv/bin/activate to use the Shell Hook with access to python . You can
confirm that this has been configured correctly as follows.

$ source .venv/bin/activate
(falsification-examples) $ which python
/path/to/project/falsification/.venv/bin/python

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
https://docs.astral.sh/uv/getting-started/installation/

6. Now, you can browse the example notebooks. Make sure that your notebook is connected to
the kernel in the .venv . This is usually configured automatically, but can also be done
manually. To do so, run jupyter server and copy and paste the server URL in the kernel
settings in the VSCode notebook viewer.

Project Configuration

Lilo projects can use an optional lilo.toml configuration file at the project root.

For getting started, you can skip this configuration entirely and simply place your .litlo
specification files and data files directly in the root of your project. SpecForge will work with sensible
defaults.

When you do use lilo.toml, if the file or any of its fields are missing, sensible defaults apply. The
Python SDK and the VS Code extension read this file and apply the semantics accordingly.

The configuration file is useful for:

e Setting a project name and custom source path (default: project root or src/)

e Customizing language behavior (interval mode, freeze)

Adjusting diagnostics settings (consistency, redundancy, optimize, unused defs) and their
timeouts

e Registering system_falsifier entries for falsification analysis

Below are the schema and defaults, followed by a complete example.

Schema and defaults
Top-level keys and their defaults when omitted:
® project

o name (string).
= Default: ",
= On init: set to the provided name; otherwise to the name of the project root
directory.
o source (path string). Default: "src/"

e Tlanguage

o dnterval.mode (string). Supported: "static" . Default: "static"
o freeze.enabled (bool). Default: true

® diagnostics

o consistency.enabled (bool). Default: true

o consistency.timeouts.named (seconds, float). Default: 0.5
o consistency.timeouts.system (seconds, float). Default: 1.0
o redundancy.enabled (bool). Default: true

o redundancy.timeouts.named (Seconds, float). Default: 0.5

o redundancy.timeouts.system (seconds, float). Default: 1.0
o optimize.enabled (bool). Default; true
o unused_defs.enabled (bool). Default: true

e [[system_falsifier]] (array of tables, optional)

o Each entry: name (string), system (string), script (string)
o If absent or empty, the key is omitted from the file and treated as an empty list

Default file:

[project]
name = ""
source = "src/"

Example lilo.toml

An example project with overrides.

[project]
name = "my-specs"
source = "src/"

[language]
freeze.enabled = true
interval.mode = "static"

[diagnostics.consistency]
enabled = true

[diagnostics.consistency.timeouts]
named = 5.0
system = 10.0

[diagnostics.optimize]
enabled = true

[diagnostics.redundancy]
enabled = false

[diagnostics.unused_defs]
enabled = false

[[system_falsifier]]

name = "Psitaliro ClimateControl Falsifier"
system = "climate_control"

script = "falsifiers/falsify_climate_control.py"

[[system_falsifier]]

name = "Psitaliro ALKS falisifier"
system = "lane_keeping"

script = "falsifiers/alks.py"

A Whirlwind Tour

This section is a quick introduction to SpecForge's main capabilities through a hands-on example.
We'll explore how to write specifications in the Lilo language and analyze them using SpecForge's
VSCode extension.

The Lilo Language: A Brief Introduction

Lilo is an expression-based temporal specification language designed for hybrid systems. Here are
the key concepts:

Primitive Types: Bool, Int, Float, and String

Operators: Standard arithmetic (+, -, =, /), comparisons (==, <, >, etc.), and logical operators
(&&, ||, =>)

Temporal Operators: Lilo's distinguishing feature is its rich set of temporal logic operators:

o always ¢: ¢ istrue at all future times
e eventually ¢: ¢ istrue at some future time
® past ¢: ¢ was true at some past time
® historically ¢: ¢ was true at all past times

These operators can be qualified with time intervals, e.g., eventually[e, 10] ¢ means ¢ becomes
true within 10 time units. More operators are available.

Systems: Lilo specifications are organized into systems that group together:

® signals: Time-varying input values (e.g., signal temperature: Float)

e params: Non-temporal parameters that are not time-varying (e.g., param max_temp: Float)
e type s: Custom types for structured data

e def initions: Reusable definitions and helper functions

e spec ifications: Requirements that should hold for the system

A system file begins with a system declaration like system temperature_control and contains all
the declarations for that system.

For a comprehensive guide to the language, see the Lilo Language chapter.

Running Example

We'll use a temperature control system as our running example. This example project is available in
the releases. The system monitors temperature and humidity sensors, with specifications ensuring
values remain within safe ranges:

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/lilo-language.html#operators
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/lilo-intro.html
https://imiron.io/specforge/releases/

system temperature_sensor

// Temperature Monitoring specifications
// This spec defines safety requirements for a temperature sensor system

import util use { in_bounds }

signal temperature: Float
signal humidity: Float

param min_temperature: Float
param max_temperature: Float

#[disable(redundancy)]
spec temperature_in_bounds = in_bounds(temperature, min_temperature, max_temperature)

spec always_in_bounds = always temperature_in_bounds

// Humidity should be reasonable when temperature is in normal range
spec humidity_correlation = always (

(temperature >= 15.0 && temperature <= 35.0) =>

(humidity >= 20.0 && humidity <= 80.0)
)

// Emergency condition - temperature exceeds critical thresholds
spec emergency_condition = temperature < 5.0 || temperature > 45.0

// Recovery specification - after emergency, system should stabilize
spec recovery_spec = always (

emergency_condition =>

eventually[0, 10] (temperature >= 15.0 && temperature <= 35.0)
)

The VSCode extension provides support for writing Lilo code, syntax highlighting, type-checking,
warnings, spec satisfiability, etc.:

The signal 'pressure' is not used by any spec

View Problem (\CF8) No quick fixes available

ressure:

humidity: Float

param min_temperature: Float
param max_temperature: Float

#[disable(redundancy)]
® satisfiable
temperature_in_bounds = in_bounds(temperature, min_temperature, max_temperature)

@ satisfiable |
always_in_bounds = always temperature_in_bounds

Spec Analysis

Once you've written specifications for your system, the SpecForge VSCode extension provides
various analysis capabilities:

¢ Monitor: Check whether recorded system behavior satisfies specifications

o Exemplify: Generate example traces that satisfy specifications

¢ Falsify: Search for counterexamples that violate specifications, relative to some model
e Export: Convert specifications to other formats (.json, .1lilo, etc.)

¢ Animate: Visualize specification behavior over time

This can be done directly from within VSCode, or from within in a Jupyter notebook using the Python
SDK. We will perform analyses directly in VSCode here. The VSCode guide details all features in
greater depth.

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html

Monitoring

Monitoring checks whether actual system behavior, recorded in a data file, satisfies your
specifications. You provide recorded trace data, and SpecForge evaluates a specification against it.

Navigate to the spec selection screen, and click the Analyse button for the spec you want to
monitor.

LILO: SPEC STATUS = temperature_monitoring.lilo

Specifications Refresh = temperature_monitoring.lilo >
Consistent system

[util.lilo

[temperature_monitoring.lilo . . .
import util use { in_bounds }

temperature_in_bounds Analyse
temperature: Float

oyl

'~ monitor-humidity_correlation humidity: Float

humidity_correlation Anw/se

emergency_condition Analyse
param min_temperature: Float

recovery_spec Analyse
param max_temperature: Float

always_in_bounds Analyse

#[disable(redundancy)]
® satisfiable
temperature_in_bounds = in_bounds(t¢

satisfiable |

always_in_bounds = always temperatu

®@ satisfiable |
humidity correlation = always (

After selecting a data file from the dropdown menu, click Run Analysis . The resultis an analysis
monitoring tree for the specification:

= temperature_monitoring.lilo = Lilo Spec Analysis X
Analyzing spec: humidity_correlation

Monitor v Run Analysis Save Analysis
Data File

sensor_data.csv

» Show advanced options

0.0

B temperature >= 15.0 && temperature <= 35.0 => humidity >= 20.0 & humidity <= 80.0

0.0 3.3 6.7 10.0

B temperature >= 15.0 & temperature <= 35.0

0.0 3.3

B temperature >= 15.0

25.0|

3.3

humidity >= 20.0 & humidity <= 80.0

The result for the whole specification is shown at the top. Below this, you can drill down into sub-
expressions of the specification, to understand what makes the spec true or false at any given time.
Hovering over any of the signals will show a popup with an explanation of the result at that point in
time, and will highlight relevant segments of sub-expression result signals.

An analysis can be saved. To do so, click the save Analysis button, and choose a location to save
the analysis. You can then navigate to this analysis file and open it again in VSCode. The analysis will
also show up in the specification status menu, under the relevant spec.

LILO: SPEC STATUS = temperature_monitoring.lilo = Lilo Spec Analysis

Specifications Refresh analyses > = monitor-recovery-2025-11-16.analysis.sf

0 utillito Analyzing spec: recovery_spec

temperature_monitoring.lilo Monitor ~ Run Analysis

temperature_in_bounds Analyse Data File

humidity_correlation Analyse
sensor_data.csv

* monitor-humidity_correlation
emergency_condition Analyse » Show advanced options
recovery_spec Analyse

« monitor-recovery-2028-11-16

always_in_bounds Analyse

Exemplification

The Exemplify analysis generates example traces that demonstrate satisfying behavior. This is
useful for:

e Understanding what valid system behavior looks like
e Testing other components with realistic data
e Creating animations

£ temperature_monitoring.lilo = Lilo Spec Analysis X

Analyzing spec: humidity_correlation
Exempliy v~ Run Analysis Save Analysis

» Show advanced options

—

8 always (temperature >= 15.0 & temperature <= 35.0 => humidity >= 20.0 & humidity <= 80.0)

—lf T 5] e S I |
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

B temperature >= 15.0 && temperature <= 35.0 => humidity >= 20.0 && humidity <= 80.0

true T T T T \

0.0 10.0 20. 30.0

B temperature >= 15.0 & temperature <= 35.0

[false
0.0 10.0 20.0

B temperature >= 15.0

B temperature <= 35.0

46.2‘

15.0
0.0 10.0 20.0

B humidity >= 20.0 & humidity <= 80.0

true; I I I I I
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

B humidity >= 20.0

If the exemplified data does not behave as expected, the specification might be wrong and need to
be corrected. Exemplification can thus be used as an aid when authoring specifications.

Falsification

If a model for the system is available, falsification can be used to see if the model behaves as
expected, that is, according to specification.

First a falsifier must be registered in 1ilo.toml, e.g.

name = "automatic-transmission"
source = '"spec"

[[system_falsifier]]

name = "AT Falsifier"
system = "transmission"
script = "transmission.py"

Once this is done, the falsifier will show up in the Falsify analysis menu. If a falsifying signal is
found, the monitoring tree is show, to help understand how the model went wrong:

Analyzing spec: AT6a

Falsify ~
Falsifier: AT Falsifier v = Run Falsification
Falsifying Trace Found

A counterexample was found that violates the specification.

Spec is because the antecedent is the consequent is

& false
0.0 0.4 0.9

B always[0.0, 30.0] rpm < 3000.0

B rpm < 3000.

3000

0.0
0.0 0.4 e

B always[0.0, 4.0] speed < 35.0

' false
0.0 - 0.9

B speed < 35.

3181

35.0|
0.0

Export

Export converts your specifications to other formats, to be used in other tools. For example, if you
want to export your specification to JSON format, choose .json asthe Export type.

Analyzing spec: humidity correlation

Export v~ Run Analysis Save Analysis
¥ Show advanced options

Export type Record Encoding

.json Preserve records

Record Encoding (for config)

Preserve records

System Parameters

Input JSON

{4

"contents": [
"Always",

"end":
"start":
"contents": 0,
"tag": “Lit"

Next Steps

This tour covered the basics of what SpecForge can do. The following chapters dive deeper into:

e The full Lilo language (Lilo Language)
e System definitions and composition (Systems)
e The Python SDK for programmatic access (Python SDK)

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/lilo-language.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/lilo-systems.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html

Lilo Language

Lilo is a formal specification language designed for describing, verifying and monitoring the behavior

of complex, time-dependent systems.

Lilo allows you to:

e Write expressions using a familiar syntax with powerful temporal operators for defining

properties over time.
¢ Define data structures using records to model your system's data.

e Structure your specifications using systems.

Types and Expressions

Lilo is an expression-based language. This means that most constructs, from simple arithmetic to
complex temporal properties, are expressions that evaluate to a time-series value. This section
details the fundamental building blocks of Lilo expressions.

Comments
Comment blocks start with /« and end with /. Everything between these markers is ignored.
A line comment start with //, and indicates that the rest of the line is a comment.

Docstrings start with /// instead of //, and attach documentation to various language elements.

Primitive types
Lilo is a typed language. The primitive types are:

® Bool:Boolean values. These are written true and false.

e Int:Integervalues, e.g. 42.

e Float Floating pointvalues, e.g. 42.3.

e String: Text strings, written between double-quotes, e.g. "hello world" .

Type errors are signaled to the user like this:

def x: Float = 1.02
def n: Int = 42

def example = x + n

The code blocks in this documentation page can be edited, for example try changing the type of n
to Float to fix the type error.

Units of Measure

Lilo supports units of measure for Float values. Units are written in angle brackets <...>
immediately after a literal.

Basic Units
A simple unit is written as an identifier inside angle brackets:

1.0<cm>
100.0<km/h>

Compound Units

Units can be combined using operators. The literal 1 represents a dimensionless unit:
60.0<1/s>
e Ratio(/):

15.0<m/s>

e Product (*):
50.0<m*m>
e Exponentiation (»):

100.0<m"2>

9.81<m*xs”r-2>

Operator Precedence and Associativity

Unit operators follow standard mathematical precedence rules:

1. Exponentiation (A) has the highest precedence and binds tightly to the immediately
preceding unit.
2. Product (x) and ratio (/) have equal precedence and associate left-to-right.

This means m/sxkg is interpreted as (m/s)xkg, and mxsA-2 means mx(sA-2) , NOt (mxs)A-2.

Parentheses for Grouping
Parentheses can be used to override the default precedence and associativity:

1.0<1/(kgxm)>

Operators

Lilo uses the following operators, listed in order of precedence (from highest to lowest).
¢ Prefix negation: -x is the additive inverse of x,and !x is the negation of x.
e Multiplication and division: x * y, x / y.
e Addition and subtraction: x + y and x - y.

e Numeric comparisons:

: equality

!=: non-equality

>=: greater than or equals

<= less than or equals

> : greater than (strict)

<:less than (strict) Comparisons can be chained, in a consistent direction. E.g. 0 < x <=
10 means the same thingas @ < x & x <= 10.

o
o
o
o
o
o

e Temporal operators

always ¢: ¢ istrue at all times in the future.

eventually ¢: ¢ istrue at some pointin the future.

past ¢: ¢ was true at some time in the past.

historically ¢: ¢ was true at all times in the past.

will_change ¢: ¢ changes value at some point in the future.

did_change ¢: ¢ changed value at some point in the past.

¢ since y: ¢ istrue atall points in the past, from some point where ¢ was true.
¢ until ¢: ¢ istrue atall pointsin the future until ¢ becomes true.

next ¢: ¢ istrue at the next (discrete) time point.

o
o
o
o
o
o
o
o
o
o previous ¢: ¢ istrue atthe previous (discrete) time point.

Temporal operators can be qualified with intervals:

[e]

always [a, b] ¢: ¢ istrue atall times between a and b time units in the future.
eventually [a, b] ¢: ¢ istrue at some point between a and b time units in the
future.

o ¢ until [a, b] ¢: ¢ istrue atall points between now and some point between a and
b time units in the future until y becomes true.

Similar interval qualifications apply to other temporal operators.

One can use +infinity inintervals: [0, +infinity] .

o

o

[e]

e Conjunction: x & y,both x and y are true.
e Disjunction: x || y,oneof x or y istrue.
e Implication and equivalence:

o x => y:if x istrue, then y must also be true.
o x <=> y: x istrueifandonly y is true.

Note that prefix operators cannot be chained. So one must write -(-x) , or !(next ¢) .

Built-in functions
There are built-in functions:

e float will produce a Float froman Int:

def n: Int = 42

def x: Float = float(n)

e time will return the current time of the signal.

Conditional Expressions

Conditional expressions allow a specification to evaluate to different values based on a boolean
condition. They use the 4f - then - else syntax.

if x > 0 then "positive" else "non-positive"

A key feature of Lilo is that if/ then/ else is an expression, not a statement. This means it always
evaluates to a value, and thus the else branch is mandatory.

The expression in the if clause must evaluate to a Bool.The then and else branches must
produce values of a compatible type. For example, if the then branch evaluates to an Int, the
else branch must also evaluate to an Int.

Conditionals can be used anywhere an expression is expected, and can be nested to handle more
complex logic.

// Avoid division by zero
def safe_ratio(numerator: Float, denominator: Float): Float =

if denominator != 0.0 then
numerator / denominator
else

0.0 // Return a default value

// Nested conditional
def describe_temp(temp: Float): String =
if temp > 30.0
then "hot"
else if temp < 10.0
then "cold"
else
"moderate"

Note that if _ then _ else _ is pointwise, meaning that the condition applies to all points in time,
independently.

Records

Records are composite data types that group together named values, called fields. They are essential
for modeling structured data within your specifications.

The Lilo language supports anonymous, structurally typed, extensible records.

Construction and Type

You can construct a record value by providing a comma-separated list of field = value pairs
enclosed in curly braces. The type of the record is inferred from the field names and the types of
their corresponding values.

For example, the following expression creates a record with two fields: foo of type Int and bar of
type String.

{ foo = 42, bar = "hello" }

The resulting value has the structural type { foo: Int, bar: String }.The order of fieldsin a
constructor does not matter.

You can also declare a named record type using a type declaration, which is highly recommended
for clarity and reuse.

/// Represents a point in a 2D coordinate system.
type Point = { x: Float, y: Float }

// Construct a value of type Point
def origin: Point = { x = 0.0, y = 0.0 }
Field punning

When you already have a name in scope that should be copied into a record, you can pun the field
by omitting the explicit assignment. A pun such as { foo } is shorthand for { foo = foo }.

def foo: Int = 42
def bar: String = "hello"

def record_with_puns = { foo, bar }

Punning works anywhere record fields are listed, including in record literals and updates. Each pun
expands to a regular field = value pair during typechecking.

Path field construction

Nested records can be created or extended in one step by assigning to a dotted path. Each segment
before the final field refers to an enclosing record, and the compiler will merge the pieces together.

type Engine = { status: { throttle: Int, fault: Bool } }

def default_engine: Engine =
{ status.throttle = 0, status.fault = false }

The order of path assignments does not matter; the paths are merged into the final record. A dotted
path cannot be combined with punning; write { status.throttle = throttle } instead of {
status.throttle } when you need the path form.

Record updates with with

Use { base with fields } to copy an existing record and override specific fields. Updates respect
the same syntax rules as record construction: you can mix regular assignments, puns, and dotted
paths.

type Engine = { status: { throttle: Int, fault: Bool } }

def base: Engine =
{ status.throttle = 0, status.fault = false }

def warmed_up: Engine =
{ base with status.throttle = 70 }

def acknowledged: Engine =
{ warmed_up with status.fault = false }

All updated fields must already exist in the base record. Path updates let you rewrite deeply nested
pieces without rebuilding the entire structure.

Projection

To access the value of a field within a record, you use the dot (.) syntax. If p is a record that has a
field named x, then p.x is the expression that accesses this value.
type Point = { x: Float, y: Float }

def ds_on_x_axis(p: Point): Bool =
p.y == 0.0

Records can be nested, and projection can be chained.

type Point = { x: Float, y: Float }
type Circle = { center: Point, radius: Float }

def ds_unit_circle_at_origin(c: Circle): Bool =
c.center.x == 0.0 && c.center.y == 0.0 && c.radius == 1.0

Local Bindings

Local bindings allow you to assign a name to an expression, which can then be used in a subsequent
expression. This is accomplished using the 1et keyword and is invaluable for improving the clarity,
structure, and efficiency of your specifications.

A local binding takes the form let name = expressionl; expression2. This binds the result of
expressionl to name.The binding name is only visible within expression2, which is the scope of
the binding.

The primary purposes of let bindings are:

1. Readability: Breaking down a complex expression into smaller, named parts makes the logic
easier to follow.

2. Re-use: If a sub-expression is used multiple times, binding it to a name avoids repetition and
potential re-computation.

Consider the following formula for calculating the area of a triangle's circumcircle from its side
lengths a, b,and c:

def circumcircle(a: Float, b: Float, c: Float): Float =
(axbxc) [/ sqrt((a + b +c) x (b + c-a) x (c+a-Db) x (a+b-c))

Using let bindings makes the logic much clearer:

def circumcircle(a: Float, b: Float, c: Float): Float =
let pi = 3.14;
let s = (a+b +c) / 2.0
let area = sqrt(s x (s - a) x (s = b) x (s - ¢c));
let circumradius = (a * b *x ¢c) / (4.0 x area);
circumradius * circumradius * pi

The type of the bound variable (s, area, circumradius)is automatically inferred from the
expression it is assigned. You can also chain multiple let bindings to build up a computation step-
by-step.

Systems

Ultimately Lilo is used to specify systems. A system groups together declarations for the temporal
input signals, the (non-temporal) parameters and the specifications. A system also includes auxiliary
definitions.

A system file should start with a system declaration, e.g.:
system Engine

The name of the system should match the file name.

Type declarations

A new type is declared with the type keyword. To define a new record type Point:
type Point = { x: Float, y: Float }

We can then use Point as a type anywhere else in the file.

Signals

The time varying values of the system are called signals. They are declared with the signal keyword.
E.g.

signal x: Float

signal y: Float

signal speed: Float
signal rain_sensor: Bool
signal wipers_on: Bool

The definitions and specifications of a system can freely refer to the system's signals.

A signal can be of any type that does not contain function types, i.e. a combination of primitive types
and records.

System Parameters

Variables of a system which are constant over time are called system parameters. They are declared
with the param keyword. E.g.:

param temp_threshold: Float
param max_errors: Int

The definitions and specifications of a system can freely refer to the system's parameters. Note that
system parameters must be provided upfront before monitoring can begin. For exemplification,

system parameters are optional. That is, they can be provided, in which case the example must
conform to them, or otherwise the exemplification process will try to find values that work.

Definitions
A definition is declared with the def keyword:
def foo: Int = 42

A definition can depend on parameters:

def foo(x: Float) = x + 42
One can also specify the return type of a definition:
def foo(x: Float): Float = x + 42

The type annotations on parameters and the return type are both optional, if they are not provided
they are inferred. It is recommended to always specify these types as a form of documentation.

The parameters of a definition can also be be record types, for instance:

type S = { x: Float, y: Float }

def foo(s: S) = eventually [0,1] s.x > s.y
Definitions can be used in other definitions, e.g.:

type S = { x: Float, y: Float }
def more_x_than_y(s: S) = s.x > s.y

def foo(s: S) = eventually [0,1] more_x_than_y(s)

Definitions can be specified in any order, as long as this doesn't create any circular dependencies.

Definitions can freely use any of the signals of the system, without having to declare them as
parameters.

Specifications

A spec says something that should be true of the system. They can use all the signalsand defs
of the system. They are declared using the spec keyword. They are much like def s except:

e The return type is always Bool (and doesn't need to be specified)
¢ They cannot have parameters.

Example:

signal speed: Float
def above_min = 0 <= speed
def below_max = speed <= 100

spec valid_speed =
always (above_min && below_max)

Modules

Lilo language supports modules. A module starts with a module declaration, and contains definitions
(much like a system):

module Util
def add(x: Float, y: Float) = x + y

pub def calc(x: Float) = add(x, x)

The name of the module must match the file name. For example, a module declared as module
Util must be defined in a file named Util.lilo.

A module can only contain def sand types.

Those definitions which should be accessible from other modules should be parked as pub, which
means "public”.

To use a module, one needs to import it, e.g. import Util.The pub lic definitions from util are
then available to be used, with qualified names, e.g.:

import Util

def foo(x: Float) = Util::calc(x) + 42
One can import a module qualified with an alias, for example:

import Util as U

def foo(x: Float) = U::calc(x) + 42
To use symbols without a qualifier, use the use keyword:

import Util use { calc }

def foo(x: Float) = calc(x) + 42

Static Analysis

System code goes though some code quality checks.

Consistency Checking

Specs are checked for consistency. A warning is produced if specs may be unsatisfiable:

signal x: Float
spec main = always (x > 0 && x < 0)
This means that the specification is problematic, because it is impossible that any system satisfies

this specification.

Inconsistencies between specs are also reported to the user:

signal x: Float

spec always_positive = always (x > 0)
spec always_negative = always (x < 0)

In this case each of the specs are satisfiable on their own, but taken together they cannot be
satisfied by any system.

Redundancy Checking

If one spec is redundant, because implied by other specs of the system, this is also detected:

signal x: Float

spec positive_becomes_negative = always (x > © => eventually x < 0)

spec sometimes_positive = eventually x > 0

spec sometimes_negative = eventually x < 0
In this case we warn the user that the spec sometimes_negative is redundant, because this
property is already implied by the combination of positive_becomes_negative and
sometimes_positive . Indeed sometimes_positive implies that there is some pointin time where x

> 0, and using positivie_becomes_negative we conclude that therefore there must be some point
in time after thanwhen x < 0.

Additional Features

Attributes

In addition to docstrings (which begin with ///), Lilo definitions, specs, params and signals can be
annotated with attributes. They must immediately precede the item they annotate.

The attributes are used to convey metadata about items they annotate which is used by the tooling
(notably the VSCode extension).

#[key = "value", fn(arg), flag]
spec foo = true

e Suppressing unused variable warnings: #[disable(unused)]
o Using this attribute on a definition, param or signal will suppress warnings about it being
unused.
o Specs or public definitions are always considered used.
e Timeout for Static Analyses
o To override the default timeout for static analyses, a timeout can be specified in
seconds.
o They can be specified individually #[timeout(satisfiability = 20, redundancy = 30)]
o Or together #[timeout(10)] which sets both to 10 seconds.
¢ Disabling static analyses
o Use #[disable(satisfiability)] or #[disable(redundancy)] to disable specific static
analyses on a definition.

Default Values for Parameters

When specifying a system, parameters can optionally be given a default value. The intent of such a
default value is to indicate that the parameter is expected to be instantiated with the default value in
a typical use case.

param temperature: Float = 25.0
Default values should not be used to declare constants. For them, use a def instead.
def pi: Float = 3.14159

e When monitoring, parameters with default values can be omitted from the input. If omitted,
the default value is used. They can also be explicitly provided, in which case the provided value
is used.

e When exporting a formula, parameters with a default value will be substituted with the default
value before the export.

¢ When exemplifying, the exemplifier will require the solver to fix the parameter to the default
value.

When running an analysis such as export or exemplification, one can provide the JSON null value
for a field in the config. This has the effect of requesting SpecForge to ignore the default value for
the parameter.

system main

signal p: Int
param bound: Int = 1

spec foo = p > 1 && p < bound

e Exemplification
o With params = {} :Unsatisfiable (the default value of bound is used)
o With params = { "bound": null } : Satisfiable (the solver is free to choose a value of
bound that satisfies the constraints)
e Export
o With params = {},result: p > 1 & p < 1
o With params = { "bound": 100 },result: p > 1 && p < 100
o With params = { "bound": null },resultt p > 1 & p < bound

Note that the JSON null value cannot be used as a default value as a part of the Lilo program.

Spec Stubs

The user may create a spec stub, a spec without a body. Such a stub may still have a docstring and
attributes. This can be used as a placeholder, and is interpreted as true by the Lilo tooling.

The VSCode extension will display a codelens to generate an implementation for the stub based on
the docstring using an LLM (if configured).

/// The system should always eventually recover from errors.
spec error_recovery

Conventions

Some languages require that certain classes of names be capitalized or not, to distinguish them. Lilo
is flexible, so that it can match the naming conventions of the system it is being used to specify. That
said, here are the conventions that we use in the examples:

e Module and systems are lowercase snake_case. So e.g. climate_control rather than
ClimateControl.

¢ Important: The name of a module or system must match the file name it is defined in. For
example, module climate_control Or system climate_control must be defined in a file
named climate_control.lilo.

e Names of signals, params, defs, specs, arguments and record field names are lowercase
and snake_case. So e.g. signal wind_speed rather than signal WindSpeed or signal
windSpeed .

e Types, including user defined ones, should be capitalized and CamelCase. E.g.

type Plane = {
wind_speed: Float,
ground_speed: Float

https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Camel_case

VSCode Extension

The SpecForge VSCode extension provides a comprehensive development environment for writing
and analyzing Lilo specifications. It combines language support, interactive analysis tools, and
visualization capabilities in a unified interface.

See the VSCode extension installation guide to get setup.

Overview

The extension provides:

e Language Support: Syntax highlighting, type-checking, and autocompletion via a Language
Server Protocol (LSP) implementation

¢ Diagnostics: Real-time checking for type errors, unused definitions, and optimization
suggestions

¢ Code Lenses: Interactive analysis tools embedded directly in your code

e Spec Status Pane: A dedicated sidebar for navigating specifications and saved analyses

e Spec Analysis Pane: Interactive GUI for spec monitoring, exemplification, falsification, etc.

¢ Notebook Integration: Support for visualizing SpecForge results in Jupyter notebooks

e LLM Features: Al-powered spec generation and diagnostic explanations

Configuration

The extension requires the SpecForge server to be running. Configure the server connection in
VSCode settings:

e API Base URL: The URI for the SpecForge server (default: http://localhost:8086)

o Accessvia Settings » Extensions > SpecForge - Api Base Url
o Or use the setting ID: specforge.apiBaseUrl

e Enable Preview Features: Enable experimental features including the Spec Status sidebar

o Accessvia Settings » Extensions > SpecForge » Enable Preview Features

o Or use the setting ID: specforge.enablePreviewFeatures

Language Features

Parsing and Type Checking

The extension performs real-time checking as you write specifications. Errors will be underlined.
Hovering over the affected code will show the error:

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html

= main.lilo1 @ = Lilo Spec Analysis

£ main.lilo > ...
"0il and Gas': Int
‘Coal': Int
‘Solar’: Int

This expression is expected of type Int but has type Float; Type Float is inconsistent with
Int.

View Problem (CF8) No quick fixes available
20 night => Solar == 0.2

daytimeSolarDominance = !night => eventually [@, 5] (Solar > Wind)
peakDemandPeriod = peakHours => float(Consumption) > 1.2 % avgConsumption
lessConsumptionOnWeekend = weekend => !aboveAvgConsumption

The extension will check for syntax errors, type errors, etc.

Document Outline

The extension provides a hierarchical outline of your specification file:

*0il and Gas': Int
“Coal’: Int
“Solar’: Int
“Biomass': Int

v OUTLINE

al
sp noSolarAtNigh
night => Solar

faboveAvgConsumption
s Mix)- Explain ¥
spec surplusAtnght = night => haveSurplus
14 sfiable
@ noSolarAtNight b pec frequentlyNight = eventually [0, 12] night
® daytlmeSo\arDomlnance spec daytime...

) peakDel daytimeSolarDominance (function)
def solarDominant = (Solar > Wind && Solar > Hydroelectric)
jef windDominant = (\Jlnd > Solcn & Wind > Hydroelectric)
SEEENE A seMix)- Explain ¥
) frequ i I i eventually [0, 5] (always [@, 2] windDominant)
4

&) lessConsumption

() surplusAtNight

m1ddaySolarPeak = midday => eventually [0, 5] (always [0, 2] solarDominant)

e Open the "Outline" view in VSCode's Explorer sidebar

See all specs, definitions, signals, and parameters at a glance
Click any symbol to jump to its definition

e The outline updates automatically

Diagnostics
The extension performs various checks automatically and provides feedback.

‘Solar’: Int
‘Biomass’: Int

night_time: Bool

satisfiable |
no_solar_at_night =
night _time == true => Solar ==

Hovering over a diagnostic will reveal the message.

*Solar’: Int
‘Biomass’: Int

night_time: Bool

Consider rewriting this as: night_time

View Problem (_F8) No quick fixes available
night_tihe == true => Solar ==

Diagnostics include:

e Warnings for unused signals, params, def s, etc.
e Optimization suggestions.
e Warnings about using time-dependent expression in intervals (if so configured).

Code Lenses

Code lenses are interactive buttons that appear above specifications in your code, offering
information and possibly actions.

Satisfiability Checking
Above each specification, you'll see a code lens indicating whether the spec is satisfiable:
@ satisfiable |

middaySolarPeak =
midday => eventually [@, 5] (always [@, 2] solarDominant)

Here is a spec that SpecForge has detected might be unsatisfiable:

solarDominant = (Solar > Wind && Solar > Hydroelectric)
windDominant = (Wind > Solar && Wind > Hydroelectric)
Possibly Unsatisfiable - Explain ¥ |

solarPeak =
eventually [@, 5] (always [@, 2] (solarDominant && windDominant))

The user can ask for an explanation:

solarDominant = (Solar > Wind && Solar > Hydroelectric)

windDominant = (Wind > Solar && Wind > Hydroelectric)

Possibly Unsatisfiable - Explain ¥ |
solarPeak =
eventually [@, 5] (always [@, 2] (solarDominant && windDominant))

If SpecForge could not decide the satisfiability, it is possible to relaunch the analysis with a longer
timeout.

Redundancy

If the system detects that a spec might be redundant, a warning is show as a code lens:

@ satisfiable | A Possibly Redundant (noSolarAtNight, diverseMix)- Explain ¥
nighttimeWindDominance = night => eventually [@, 5] (always [0, 2] windDominant)

In this case, SpecForge is indicating that the spec is implied by the specifications noSolarAtNight
and diverseMix, and is therefore not necessary. By clicking Explain, an explanation for the
redundancy is produced:

® satisfiable | A ‘h L}
nighttimewWindD®inance = night => eventually [@, 5] (always [@, 2] windDominant)

W satisfiable | Because at night Solar is forced to 0 by
ECCEFPOILITECRR S QEERER 22 G noSolarAtNight and diverseMix ensures Wind and
@ satisfiable | Hydroelectric are nonzero, the WindDominant
solarToWindTransition = solarDomi condition (Wind > Solar and Wind > Hydroelectric)
becomes entailed during the night, making
nighttimeWindDominance redundant.
moreRenewable = renewable > nonrer

® satisfiable | Source: SpecForge
diverseMix = (Nuclear > @) && (W

Ln39,Col1 Spaces:2 UTF-8 LF {) Lo &

Spec stubs

If a spec does not have a body, it is a spec stub. In this case a code lens offers to generate the
specification using Al.

‘+ Generate with LLM
nighttimeWindDominance

Clicking Generate with LLM will produce a definition for the specification, that works with the
current system. If the spec is too ambiguous, or if there is some other obstacle to generation, an
error message will be shown.

Spec Status Pane

To access the spec status panel, click the SpecForge icon on the left hand side of VSCode:

pyproject.toml
B romania.csv

B sampled.csv

v OUTLINE

v {} energy system

% hour signal : Int

‘E Spec;orge signal : Int
h 7 weekday signal : String

% Consumption signal : Int
% Production signal : Int
£ Nuclear signal : Int

{7 Wind signal : Int

% Hydroelectric signal : Int

signal “Nuclear’: Int
signal ‘Wind': Int

signal ‘Hydroelectric': Int
signal “0il and Gas': Int
signal ‘Coal’: Int

signal “Solar™: Int

signal “Biomass': Int

@ satisfiable | A Possibly Redundant (solarPe
spec noSolarAtNight =
night => Solar ==

@ satisfiable | A Possibly Redundant (solarPe
spec daytimeSolarDominance = !n

The sidebar lists all the specification files and the specs that are defined:

SPECFORGE: EASY ANALYSIS

Specifications

[energy.lilo

frequentlyNight Analyse
daytimeSolarDominance Analyse
noSolarAtNight Analyse
diverseMix Analyse
nighttimeWindDominance Analyse
solarPeak Analyse
solarToWindTransition Analyse

lessConsumptionOnWeekend Analyse

demandSpikeMitigation An:“se

surplusAtNight Analyse
peakDemandPeriod Analyse
frequentlyMoreRenewable Analyse
renewableAndSurplus Analyse

renewableDominanceStability Analyse

X £ Lilo Spec Analysis

® Consistent system
system energy

signal hour: Int

ISJ.gnal weekday: String
signal “Consumption®: Int
signal ‘Production’: Int

signal ‘Nuclear': Int
signal ‘Wind': Int

signal ‘Hydroelectric': Int
signal "0il and Gas': Int
signal “Coal*: Int

signal ‘“Solar': Int

signal ‘Biomass': Int

®@ satisfiable |
spec noSolarAtNight =
night => Solar == @

®@ satisfiable |
spec daytimeSolarDominance = !night => eventually [0
@ satisfiable |
spec peakDemandPeriod = peakHours => float(Consumpti

Clicking Analyze nextto a spec will bring you to a spec analysis window. You can use this to launch
various spec analysis tasks: monitoring, exemplification, export, animation and falsification.

For example, to monitor a specification, select Monitor from the dropdown, and choose a data file

to monitor, and click Run Analysis.

energy.lilo = Lilo Spec Analysis X

Analyzing spec: renewableDominanceStability

Monitor v = Run Analysis = Save Analysis

Data File
Project file path

romania.csv
» Show advanced options

<> Full Range v Drill Down

@ Signal [FEE3

T true I
3836.4 4795.6

The result of the analysis is shown. The blue areas represent the times where the specification is
true. For large data files, only the boolean result is shown. To better understand why a specification
is false at some point, select a point and click Drill Down .

&> FullRange v Drill Down

& signal

i false T
3836.4 4795.6

v I
innannuni W &false
4243.0 4260.7 4278.3

2 [(EEEEE renewable > nonrenewable

5181
‘ EYZEN) ‘

[| 3071.0
ZIQSJO

4243.0 4260.7 4278.3
=& moreRenewable until !haveSurplus

i s false
4243.0 4260.7 4278.3

=] renewable > nonrenewable

5151‘

3743.0 ‘
| 3071.0

ZlBBJB

4243.0 4278.3

& !haveSurplus

The drill-down has chosen a small enough segment of the full data source in order to present the
debugging tree. This will show a tree of monitoring result for the whole specification. Each node can
be collapsed or expanded. Hovering on the timeline will also highlight relevant regions in sub-
expression result timelines. Hovering on a timeline will display an explanation of why the result is
true or false at that point in time, for that sub-expression.

A spec analysis such as this can be saved by clicking on the save Analysis button.

= energy.lilo = Lilo Spec Analysis X

Analyzing spec: renewableDominanceStability

Monitor v~ Run Analysis & Save Analysis

Data File
Project file path

romania.csv

Choose a location in your project to save the analysis.

Saved analyses will show up in the spec status side panel, underneath the relevant spec.

solarPeak Analyse
solarToWindTransition Analyse
lessConsumptionOnWeekend Analyse
demandSpikeMitigation Analyse
surplusAtNight Analyse
peakDemandPeriod Analyse
frequentlyMoreRenewable Analyse
renewableAndSurplus Analyse

renewableDominanceStability Analyse

'Y wind-dominance-problem

Analysis Types

The GUI supports five types of analysis:

1. Monitor

Check whether recorded system behavior satisfies your specification.
Inputs:

¢ Signal Data: CSV, JSON, or JSONL file containing time-series data
o CSV: Column headers must match signal names
o JSON/JSONL: Objects with keys matching signal names

e Parameters: |SON object with parameter values

e Options: Monitoring configuration (see Monitoring Options)

Output:

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html#monitoring-options

e Monitoring tree showing spec satisfaction over time
e Drill-down into sub-expressions
¢ Visualization of signal values

Example:

{
"min_temperature": 10.0,
"max_temperature": 30.0

}

2. Exemplify

Generate example traces that satisfy your specification.
Inputs:

¢ Number of Points: How many time time points to generate (default: 10)

¢ Timeout: Maximum time to spend generating (default: 5 seconds)

¢ Also Monitor: Whether to also show monitoring tree for the generated trace
¢ Assumptions: Additional constraints to satisfy (array of spec expressions)

Output:

e Generated signal data as time-series
e Optional monitoring tree if "Also Monitor" is enabled
e CSV/JSON export of generated data

Use Cases:

Understanding what valid behavior looks like
e Testing other components with realistic data
e Creating test fixtures

Validating your specification makes sense

3. Falsify
Search for counterexamples that violate your specification using an external model.

Prerequisites:

¢ Afalsification script must be registered in lilo.toml:

[[system_falsifier]]

name = "Temperature Model"
system = "temperature_control"
script = "falsifiers/temperature.py"

Falsification Script Protocol:
Your script receives these command-line arguments:

e —-system:The system name

e --spec: The specification name

e --options :JSON string with options

e —-params :JSON string with parameter values
e ——project-dir : Path to the project root

The script should:

1. Simulate the system according to the specification
2. Search for a trace that violates the spec
3. Output JSON in the correct format with either success or failure.

Inputs:

¢ Falsifier: Select from configured falsifiers (dropdown)
e Timeout: Maximum time for falsification (default: 240 seconds)
e Parameters: |SON object with parameter values

Output:

¢ If counterexample found:
1. Falsification result showing the failing trace
2. Automatic monitoring of the counterexample
3. Visualization of where/how the spec fails

¢ If no counterexample found: Success message

Make sure your script is executable:

chmod +x falsifiers/temperature.py

4. Export
Convert your specification to other formats.

Export Formats:

e Lilo: Exportas .lilo format with optional transformations
¢ JSON: Machine-readable JSON representation

Inputs:

e Export Type: Select the target format
e Parameters: Parameter values (if needed for export)

Output:

e Exported specification in the selected format
e Can be saved to afile

Use Cases:

¢ Integrating with other tools
e Documentation generation
¢ Archiving specifications

5. Animate
Create animations showing specification behavior over time.

Inputs:

e SVG Template: Path to SVG file with placeholders
e Signal Data: CSV, JSON, or JSONL file with time-series data

Output:

e Frame-by-frame SVG images showing system evolution
e Can be combined into an animated visualization

SVG Template Format:

Your SVG template should include data- attributes for signal values, e.g.:

<svg
xmlns="http://www.w3.0rg/2000/svg"
width="100"
height="100"
viewBox="0 0 40 40"
role="1img"
aria-label="Transformed ball"

<rect width="100%" height="100%" fill="white" />
<g transform="translate(0,50) scale(1,-1)">
<circle cx="20" data-cy="temperature" cy="0" r="3" fill="black" stroke="white" />
</g>
</svg>

In this example, the <cicle> elements cy attribute will be animated by the value of the
temperature signal, thanks to the data-cy="temperature" attribute.

Monitoring Options
When running Monitor or Falsify analyses, you can configure these options:

¢ Time Bounds: Restrict monitoring to a specific time range
e Sampling: Adjust temporal resolution

Signal Filtering: Monitor only specific signals

(Additional options may be available)

Working with Results

Monitoring Tree

The monitoring tree shows:

e Root: Overall spec result (true/false/unknown)

¢ Sub-expressions: Drill down into why the spec is true or false

¢ Timeline: Hover over any expression to see when it's true/false
¢ Highlighting: Relevant segments are highlighted when hovering

<> Full Range v Drill Down

& Signal

4243.0 4260.7 4278.3

(= renewable > nonrenewable

5181
‘ 3743.0 ‘

f \ 3071.0
2198JB

4243.0 4260.7 4278.3
& moreRenewable until !haveSurplus

o h 5 false
4243.0 4260.7 4278.3

2 (EEETE renewable > nonrenewable

EYZEN) ‘
| 3071.0

5151‘
I

ZIQSJD
4243.0 4278.3

& !haveSurplus

false
4278.3

Loading Saved Analyses

Open asaved .analysis.sf fileto:

e See the original configuration

e Re-run the analysis with the same settings
¢ Modify parameters and run again

e Export results

The Analysis Editor provides the same interface as the main analysis GUI, but pre-populated with
your saved configuration.

An analysis is a file, if you modify the analysis, you should save it.

Jupyter Notebook Integration

The extension includes a notebook renderer for displaying SpecForge results in Jupyter notebooks.

Activation
The renderer automatically activates for:

e Jupyter notebooks (.ipynb files)
¢ VSCode Interactive Python windows

Usage with Python SDK

When using the SpecForge Python SDK, results are automatically rendered:

from specforge import SpecForge

sf = SpecForge()
result = sf.monitor(
spec_file="temperature_control.lilo",
definition="always_in_bounds",
data="sensor_logs.csv",
params={"min_temperature": 10.0, "max_temperature'": 30.0}

)

result is automatically rendered 1in the notebook
result

Snippets

The extension provides Python code snippets for common SpecForge operations (monitor,
exemplify, export). Type the snippet name and press Tab to insert and navigate through
placeholders.

Troubleshooting

Extension Not Working
Check the SpecForge server:

e Ensure the server is running (see Setting up SpecForge)
o Verify the APl base URL in settings matches your server

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up.html

e Check the server logs for errors
Restart the language server:

e Run SpecForge: Restart Language Server from the command palette
e Check the "Output" panel (View - Output) and select "SpecForge" from the dropdown

Diagnostics Not Appearing
Trigger a refresh:

e Save the file (Ctrl+S / Cmd+S)
e Close and reopen the file
e Restart the language server

Check server connection:

e Look at the status bar for connection status
e Verify the server is reachable at the configured URL

Code Lenses Not Showing
Check configuration:

e Ensure code lenses are enabled in VSCode: Editor > Code Lens
e Save the file to trigger code lens computation

Check for errors:

e Look for parse or type errors that prevent analysis
e Fix any red squiggles in your code

Analysis GUI Not Loading
Check webview:

e Open the Developer Tools: Help > Toggle Developer Tools
e Look for errors in the Console tab
e Check if the webview iframe loaded

Check server connection:

e Verify the APl base URL is correct
e Testthe URL in a browser (should show a JSON response)

Falsification Script Errors
Verify script setup:

e Check the script path in 1ilo.toml
e Ensure the script is executable: chmod +x script.py
e Test the script manually with example arguments

Check script output:

e The script must output valid JSON
e Use the correct result format (see Falsify)
e Check script logs for error messages

Common issues:

e ENOENT : Script file not found (check path)

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html#3-falsify

e EACCES : Script not executable (run chmod +x)
e Parse error: Invalid JSON output (check script output format)

SpecForge Python SDK

The SpecForge python SDK is used for interacting with the SpecForge API, enabling formal
specification monitoring, animation, export, and exemplification.

Refer to the Setting up the Python SDK guide for instructions on installing and configuring the SDK in
a Python environment.

Quick Start

from specforge_sdk import SpecForgeClient

Initialize client
specforge = SpecForgeClient(base_url="http://localhost:8080")

Check API health
if specforge.health_check():
print("v Connected to SpecForge API")
print(f"API Version: {specforge.version()}")
else:
print("x Cannot connect to SpecForge API")

Core Features

The SDK provides access to core SpecForge capabilities:

e Monitoring: Check specifications against data

¢ Animation: Create visualizations over time

e Export: Convert specifications to different formats

o Exemplification: Generate example data that satisfies specifications

Documentation

See the comprehensive demo notebook at sample-project/demo.ipynb for:

¢ Detailed usage examples
e Jupyter notebook integration
e Custom rendering features

APl Methods

SpecForgeClient(base_url, ...)
Initialize a SpecForge API client.
Parameters:

e base_url (str): The base URL of the SpecForge API server (default: "http://localhost:8080")

e project_dir (str/Path): Optional project directory path; if not provided, searches up from
current directory for lilo.toml

e timeout (int): Request timeout in seconds (default: 30)

e check_version (bool): Whether to check for version mismatches on initialization (default: True)

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-python-sdk.html

Example:

specforge = SpecForgeClient(
base_url="http://localhost:8080",
project_dir="/path/to/project",
timeout=60

monitor (system, definition, ...)

Monitor a specification against data. Returns analysis results with verdicts and optional robustness
metrics.

Key Parameters:

® system (str): The system containing the definition

e definition (str): Name of the spec to monitor

e data_file (str/Path): Path to data file (CSV, JSON, or JSONL)

e data (list/DataFrame): Direct data as list of dicts or pandas DataFrame
o Note: Provide exactly one of data_file or data

e params_file (str/Path): Path to system parameters file

e params (dict): Direct system parameters as dictionary
o Note: Provide at most one of params_file or params

® encoding (dict): Record encoding configuration

e verdicts (bool): Include verdict information (default: True)

® robustness (bool): Include robustness analysis (default: False)

e return_timeseries (bool): If True, return DataFrame,; if False, display JSON (default: False)

Examples:

Monitor with data file and params file

specforge.monitor (
system="temperature_sensor",
definition="always_in_bounds",
data_file="sensor_data.csv",
params_file="temperature_config.json"

)

Monitor with data file and params dict

specforge.monitor (
system="temperature_sensor",
definition="always_in_bounds",
data_file="sensor_data.csv",
params={"min_temperature": 10.0, "max_temperature'": 24.0}

)

Monitor with DataFrame and get results as DataFrame
result_df = specforge.monitor(
system="temperature_sensor",
definition="temperature_in_bounds",
data=synthetic_df,
encoding=nested_encoding(),
params={"min_temperature": 10.0, "max_temperature'": 24.0},
return_timeseries=True

)

Monitor with robustness analysis

specforge.monitor(
system="temperature_sensor",
definition="temperature_in_bounds",
data_file="sensor_data.csv",
params={"min_temperature": 10.0, "max_temperature": 24.0},
robustness=True

animate(system, svg_file, ...)
Create an animation from specification, data, and SVG template.
Key Parameters:

e system (str): The system containing the animation definition
e svg_file (str/Path): Path to the SVG template file
e data_file (str/Path): Path to data file
e data (list/DataFrame): Direct data as list of dicts or pandas DataFrame
o Note: Provide exactly one of data_file or data
e encoding (dict): Record encoding configuration
e return_gif (bool): If True, returns base64-encoded GIF string (default: False)
e save_gif (str/Path): Optional path to save the GIF file

Examples:

Display animation frames 1in Jupyter

specforge.animate(
system="temperature_sensor",
svg_file="temp.svg",
data_file="sensor_data.csv"

)

Save animation as GIF file

specforge.animate(
system="scene",
svg_file="scene.svg",
data_file="scene.json",
save_gif="output.gif"

)

Get GIF data as base64 string

gif_data = specforge.animate(
system="temperature_sensor",
svg_file="temp.svg",
data=synthetic_df,
encoding=nested_encoding(),
return_gif=True

export(system, definition, ...)
Export a specification to different formats (e.g., LILO format).
Key Parameters:

e system (str): The system containing the definition
e definition (str): Name of the spec to export
e export_type (dict): Export format configuration (defaults to LILO)
e params_file (str/Path): Path to system parameters file
e params (dict): Direct system parameters as dictionary
o Note: Provide at most one of params_file Or params
e encoding (dict): Record encoding configuration
e return_string (bool): If True, return exported string; if False, display JSON (default: False)

Examples:

Export to LILO format as string

lilo_result = specforge.export(
system="temperature_sensor",
definition="always_in_bounds",
export_type=EXPORT_LILO,
return_string=True

)
print(lilo_result)

Export with params file

export_result = specforge.export(
system="temperature_sensor",
definition="always_in_bounds",
export_type=EXPORT_LILO,
params_file="temperature_config.json",
return_string=True

)

Export with params dict

export_result = specforge.export(
system="temperature_sensor",
definition="always_in_bounds",
export_type=EXPORT_LILO,
params={"min_temperature": 10.0, "max_temperature": 24.0},
return_string=True

)

Export to JSON format (display in Jupyter)

specforge.export(
system="temperature_sensor",
definition="humidity_correlation",
export_type=EXPORT_JSON

exemplify(system, definition, ...)
Generate example data that satisfies a specification.
Key Parameters:

e system (str): The system containing the definition
e definition (str): Name of the spec to exemplify
e assumptions (list): Additional assumptions to constrain generation (default: [1)
e n_points (int): Number of data points to generate (default: 10)
e params_file (str/Path): Path to system parameters file
e params (dict): Direct system parameters as dictionary
o Note: Provide at most one of params_file Or params
e params_encoding (dict): Record encoding for the parameters
e timeout (int): Timeout in seconds for exemplification (default: 30)
e also_monitor (bool): Whether to also monitor the generated data (default: False)
® return_timeseries (bool): If True, return DataFrame; if False, display JSON (default: False)

Examples:

Generate an example with 20 samples

specforge.exemplify(
system="temperature_sensor",
definition="always_in_bounds",
n_points=20

)

Generate example with assumptions
humidity_assumption = {
"expression": "eventually (humidity > 25)",
"rigidity": "Hard"

}

specforge.exemplify(
system="temperature_sensor",
definition="humidity_correlation",
assumptions=[humidity_assumption],
n_points=20

)

Generate example with partial params (solver fills in missing values)
specforge.exemplify(
system="temperature_sensor",
definition="humidity_correlation",
assumptions=[{"expression": "always_in_bounds'", "rigidity": "Hard"}],
params={"min_temperature": 38.0},
n_points=20
)

Generate example and get as DataFrame
example_df = specforge.exemplify(
system="temperature_sensor",
definition="temperature_in_bounds",
n_points=15,
also_monitor=False,
return_timeseries=True

health_check()
Check if the SpecForge API is available and responding.
Returns: bool - True if APl is healthy, False otherwise

Example:

if specforge.health_check():

print("v Connected to SpecForge API")
else:

print("x Cannot connect to SpecForge API")

version()
Get the API server version and SDK version.
Returns: dict with keys "api" and "sdk"

Example:

versions = specforge.version()
print(f"API Version: {versions['api']l}")
print(f"SDK Version: {versions['sdk']}")

File Format Support

e Specifications: .1ilo files
e Data: .csv, .json, .jsonl files

¢ Visualizations: .svg files

Requirements

e Python 3.12+
® requests>=2.25.0
e urllib3>=1.26.0

Temperature Sensor - SpecForge Sample
Project

This is a complete example demonstrating the SpecForge Python SDK capabilities.

Files

® temperature_monitoring.lilo - Sample specification for temperature monitoring

® sensor_data.csv - Sample sensor data (31 data points with temperature and humidity)

e demo.ipynb -Jupyter notebook demonstrating all SDK features

e temperature_config.json - Configuration file (parameters) for the temperature monitoring
example

® util.lilo - Utility functions for the example

Setup

Note: Hereafter, we recommend users to open temperature_sensor folder with VSCode.

1. Create and Activate a Virtual Environment

It is generally recommended (but not mandatory) to do this in a virtual environment. To do so, follow
these instructions:

Navigate to the sample project directory
cd temperature_sensor

Create a virtual environment
python -m venv .venv

Activate the virtual environment
On Windows:
.venv\Scripts\activate

On macOS/Linux:

source .venv/bin/activate

2. Install Dependencies

Install the SpecForge SDK Wheel
pip install ../specforge_sdk-xxx.whl

Install additional dependencies for the sample project
pip install jupyter pandas matplotlib numpy

3. Verify Installation

Check that the SDK 1is dinstalled correctly
python -c "from specforge_sdk import SpecForgeClient; print('v SDK installed
successfully')"

Running the Examples

Prerequisites

1. Ensure SpecForge API server is running on http://localhost:8080/health
2. Activate your virtual environment (if not already active):

On Windows:
venv\Scripts\activate
On macOS/Linux:

source venv/bin/activate

Run the Examples

To check that the extension is working, execute the cells in demo.ipynb . The output of the
monitoring commands should have a visualization.

You may need to make sure your notebook is connected to the correct Pyhton kernel. Often, it is
.venv (Python3.X.X) or ipykernel. It can be configured from the VSCode notebook interface.

Sample Data Overview

The included sensor_data.csv contains:

e 31 time points (0.0 to 30.0)
e Temperature readings (20.8°C to 25.0°C)
e Humidity readings (40.9% to 51.5%)

This data is designed to test various specifications including temperature bounds, stability, and
humidity correlation.

Deactivating the Environment
When you're done working with the sample project:

deactivate

Troubleshooting

Common Issues

1. "Module not found" errors: Ensure the virtual environment is activated and the SDK is
installed with pip install ../specforge_sdk-xxx.whl

2. Connection refused: Make sure the SpecForge API server is running on
http://localhost:8080/health

3. Jupyter not found: Install it with pip install jupyter in your activated virtual environment

4. Missing sample files: Ensure you're in the temperature_sensor directory

Verify Setup

Check Python environment
which python
pip list | grep specforge

Test API connection
python -c "from specforge_sdk import SpecForgeClient; specforge = SpecForgeClient();
print('Health check:', specforge.health_check())"

Changelog

All notable changes will be documented here. The format is based on Keep a Changelog. Lilo
adheres to Semantic Versioning.

v0.5.4 - 2025-11-20

Added

e Local signal file monitoring.

¢ Offline licensing for Docker.

e Monitoring drill-down.

e Monitoring point of interest.

e VSCode Extension documentation.

e Public Docker image available on GHCR with accompanying docs.

¢ Analysis sidebar now auto-refreshes and shows a spinner while analysis runs.

Change

e Monitor tree sample limit increased to 3100.
e Spec status is no longer a preview feature.

Fixed

e Monitor tree range made responsive.

Styles of the VSCode sidebar.

e Sample projects for monitoring are bundled correctly.
e Local signal file UX issues resolved.

v0.5.3 - 2025-11-14

Added

e A Whirlwind Tour guide.

¢ Offline licenses for SpecForge.

¢ Automated downsampling for monitoring.

e Gemini and Ollama LLM provider support.

e CLI monitoring commands gained interval and sampling options.
¢ Falsification examples added to the docs.

Fixed

e Issue with stale falsifier list.
e Module name mismatch error reported location.
e CLI commands now run from the project directory.

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://github.com/imiron-io/specforge/compare/v0.5.3...v0.5.4
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
https://github.com/imiron-io/specforge/compare/v0.5.2...v0.5.3
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html

v0.5.2 - 2025-11-10

Changed

o Falsification timeout from 60 to 240 seconds.

Fixed

e Errors being reported in multiple files.

v0.5.1 - 2025-11-05

Added

¢ New documentation site: https://docs.imiron.io/.

¢ You can now create animation gif animations.

e Projects are setup with a 1ilo.toml file, see Project Configuration.
e Registration of system falsifiers in 1ilo.toml.

e VSCode spec status now lists analysis.

e Spec analysis in VSCode.

¢ Run falsification engines from the spec analysis pane.

Changed

e Better type errors for conflicting record construction/update.

e LLM explanations are localised according to user's VSCode settings.

e Unbound variable errors now include a list of in-scope variables with similar spellings.

e System globals (signal s and params) can have attributes, including docstrings.

e The command JSON format has changed significantly, as is expected to be stable (backwards
compatible) going forwards. In particular this uses system names, not filenames.

e One can specify a param as null (JSON) to remove the default param values.

e LLM spec generation will fail for under-specified specifications.

e CLlinterface is updated to work with modules.

v0.5.0 - 2025-10-14

Added

e Default params: param foo: Float = 42 sets 42 as the default value of parameter foo .
e Timeout attributes:

#[timeout = 3]

spec foo = ...
will set the timeout to 3 seconds for analysis tasks on spec foo .
e Warning for mismatched server/client versions.

e Spec stubs:

spec no_overheat

https://github.com/imiron-io/specforge/compare/v0.5.1...v0.5.2
https://github.com/imiron-io/specforge/compare/v0.5.0...v0.5.1
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html
https://github.com/imiron-io/specforge/compare/v0.4.12...v0.4.6

creates a "spec stub" (an unimplemented spec). There is also a code action to suggest an
implementation using the docstring, using Al.
e Retry analysis with longer timeout: if an analysis times out, there is a code action to retry with a
longer timeout.
e Record features:
o Record update (including deep)
o Field punning.
o Path construction and path update.
e Warnings for unused defs, signalsand params.
e Code hierarchy in VSCode.
e Modules: User can create modules (containing only def and type declarations), and import
them.

Changed

e VSCode code lenses resolve one at a time, which results in a much more responsive
experience.

	SpecForge User Guide
	Setting up SpecForge
	Quick Start
	Detailed Setup Instructions

	Setting up SpecForge on Windows
	1. Installation
	MSI Installer (Recommended)
	Standalone Executable
	Using Chocolatey (Recommended)
	Manual Installation

	2. Configure Your License
	3. Configure LLM Provider (Optional)
	4. Start the Server
	5. Install the VSCode Extension
	Next Steps

	Setting up SpecForge on macOS
	1. Download the Executable
	2. Install Dependencies
	3. Configure Your License
	4. Configure LLM Provider (Optional)
	5. Start the Server
	Allowing Execution of the Downloaded SpecForge Binary

	6. Install the VSCode Extension
	Next Steps

	Setting up SpecForge on Linux
	1. Download the Executable
	2. Install Dependencies
	3. Configure Your License
	4. Configure LLM Provider (Optional)
	5. Start the Server
	6. Install the VSCode Extension
	Next Steps

	Setting up SpecForge with Docker
	Prerequisites
	1. Obtain the Docker Compose File
	2. Configure Your License
	3. Configure LLM Provider (Optional)
	4. Start the Server
	5. Install the VSCode Extension
	Updating the Docker Image
	Next Steps

	LLM Provider Configuration
	Supported Providers
	Configuration Methods
	For Executable (Windows, macOS, Linux)
	OpenAI
	Gemini
	Ollama

	For Docker

	Default Models
	Without LLM Configuration

	VSCode Extension
	Installation
	From the VSCode Marketplace
	From VSIX File

	Usage and Configuration

	Setting up the Python SDK
	A Sample Walkthrough

	Project Configuration
	Schema and defaults
	Example lilo.toml

	A Whirlwind Tour
	The Lilo Language: A Brief Introduction
	Running Example
	Spec Analysis
	Monitoring
	Exemplification
	Falsification
	Export

	Next Steps

	Lilo Language
	Types and Expressions
	Comments
	Primitive types
	Units of Measure
	Basic Units
	Compound Units
	Operator Precedence and Associativity
	Parentheses for Grouping

	Operators
	Built-in functions
	Conditional Expressions
	Records
	Construction and Type
	Field punning
	Path field construction
	Record updates with with
	Projection

	Local Bindings

	Systems
	Type declarations
	Signals
	System Parameters
	Definitions
	Specifications

	Modules
	Static Analysis
	Consistency Checking
	Redundancy Checking

	Additional Features
	Attributes
	Default Values for Parameters

	Spec Stubs

	Conventions
	VSCode Extension
	Overview
	Configuration
	Language Features
	Parsing and Type Checking
	Document Outline

	Diagnostics
	Code Lenses
	Satisfiability Checking
	Redundancy
	Spec stubs

	Spec Status Pane
	Analysis Types
	1. Monitor
	2. Exemplify
	3. Falsify
	4. Export
	5. Animate

	Monitoring Options
	Working with Results
	Monitoring Tree
	Loading Saved Analyses

	Jupyter Notebook Integration
	Activation
	Usage with Python SDK

	Snippets
	Troubleshooting
	Extension Not Working
	Diagnostics Not Appearing
	Code Lenses Not Showing
	Analysis GUI Not Loading
	Falsification Script Errors

	SpecForge Python SDK
	Quick Start
	Core Features
	Documentation
	API Methods
	SpecForgeClient(base_url, ...)
	monitor(system, definition, ...)
	animate(system, svg_file, ...)
	export(system, definition, ...)
	exemplify(system, definition, ...)
	health_check()
	version()

	File Format Support
	Requirements

	Temperature Sensor - SpecForge SampleProject
	Files
	Setup
	1. Create and Activate a Virtual Environment
	2. Install Dependencies
	3. Verify Installation

	Running the Examples
	Prerequisites
	Run the Examples

	Sample Data Overview
	Deactivating the Environment
	Troubleshooting
	Common Issues
	Verify Setup

	Changelog
	v0.5.4 - 2025-11-20
	Added
	Change
	Fixed

	v0.5.3 - 2025-11-14
	Added
	Fixed

	v0.5.2 - 2025-11-10
	Changed
	Fixed

	v0.5.1 - 2025-11-05
	Added
	Changed

	v0.5.0 - 2025-10-14
	Added
	Changed

