
SpecForge User Guide
SpecForge is an AI-powered formal specification authoring tool based on Lilo, a domain specific
language designed for specifying temporal systems.

This guide covers installation, the Lilo specification language, the Python SDK, and using Lilo with
VSCode.

To get started, see setting up, releases are available from the releases page.

Other versions of this guide:

In PDF format.
In Japanese. (このガイドには日本語版もあります.)

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up.html
https://imiron.io/specforge/releases/
https://storage.googleapis.com/specforge-releases/v0.5.6/lilo-language-guide-0.5.6-en.pdf
file:///home/runner/work/specforge/specforge/docs/external/en/book/ja/index.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/ja/index.html

Setting up SpecForge
The SpecForge suite consists of a few components:

The SpecForge Server which is the backend server which the other components connect to. It
can be run via Docker or as an executable.
The SpecForge VSCode Extension which provides Lilo Language support in VSCode for editing
and managing specifications, as well as rendering interactive visualizations.
The SpecForge Python SDK which provides an API for interacting with the SpecForge server
from Python code. This can be used to communicate and exchange specifications or data with
the SpecForge server from Python scripts or Jupyter notebooks.

All necessary files can be obtained from the SpecForge releases page.

Quick Start

Follow these steps to get started quickly:

1. Install dependencies z3 and rsvg-converter (see OS-specific instructions; rsvg-converter is
optional)

2. Download and extract the SpecForge executable for your operating system
3. Configure your license (place license.json in the appropriate location for your OS)
4. (Optional) Configure LLM provider by setting environment variables (e.g.,

SPECFORGE_LLM_PROVIDER=openai , OPENAI_API_KEY=...) - see LLM Provider Configuration
5. Start the SpecForge server: ./specforge serve (or .\specforge.exe serve on Windows)
6. Install the VSCode Extension (see docs)
7. Create a directory for your project and place your .lilo files directly in it
8. Open the directory in VSCode and start writing specifications

Note: The lilo.toml project configuration file is optional. For initial setup, you can skip it and place
your specification and data files directly in the project root. See Project Configuration for details on
when and how to use lilo.toml .

Detailed Setup Instructions

Choose your platform for detailed setup instructions:

Windows - Complete setup guide for Windows
macOS - Complete setup guide for macOS (Apple Silicon)
Linux - Complete setup guide for Linux
Docker - Using Docker instead of the executable

https://imiron.io/specforge/releases/
https://imiron.io/specforge/releases/
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-windows.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-macos.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-linux.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-docker.html

Setting up SpecForge on Windows
This guide will walk you through setting up SpecForge on Windows.

1. Installation

MSI Installer (Recommended)

Download specforge-x.y.z-Windows-X64-en-US.msi from the SpecForge releases page and run the
installer.

The MSI installer will:

Install SpecForge to C:\Program Files\Imiron\SpecForge\
Add SpecForge to your system PATH automatically
Include all required dependencies (Z3, rsvg-convert)

Standalone Executable

Download specforge-x.y.z-Windows-X64.zip from the SpecForge releases page and extract it to a
directory of your choice.

Note: With this method, you need to manually install dependencies.

The SpecForge executable requires Z3 and rsvg-converter (optional) to be installed on your system.

Using Chocolatey (Recommended)

Open PowerShell as Administrator and run:

If you don't have Chocolatey, you can install it from chocolatey.org.

Manual Installation

If you prefer not to use a package manager, download Z3 directly from the Z3 releases page and add
it to your PATH.

2. Configure Your License

The SpecForge server requires a valid license file to start. If you don't have a license, please contact
the SpecForge team or request a trial license.

Place your license.json file in one of the following locations (the first match is used):

1. Standard Configuration Directory (recommended):

%APPDATA%\specforge\license.json

Typically: C:\Users\YourUsername\AppData\Roaming\specforge\license.json

2. Environment Variable (for custom locations):

choco install z3 rsvg-convert

https://imiron.io/specforge/releases/
https://imiron.io/specforge/releases/
https://chocolatey.org/
https://github.com/Z3Prover/z3/releases
https://forms.gle/w487KwqyX6hHrCeh9

3. Current Directory: .\license.json

Create the directory if it doesn't exist. You can do this in PowerShell:

3. Configure LLM Provider (Optional)

To use LLM-based features such as natural-language spec generation and error explanation,
configure an LLM provider by setting environment variables before starting the server.

For OpenAI (recommended):

Get an API key from platform.openai.com/api-keys.

For other providers (Gemini, Ollama), see the LLM Provider Configuration guide.

4. Start the Server

If you used the MSI installer, run from any directory:

If you used the standalone executable, navigate to the directory where you extracted the SpecForge
executable and run:

The server will start on http://localhost:8080 . You can verify it's running by navigating to
http://localhost:8080/health , which should show version information.

Note: The server will exit immediately if the license is missing or invalid. If you encounter
startup issues, verify your license configuration.

5. Install the VSCode Extension

Install the SpecForge VSCode extension from the Visual Studio Marketplace or see the VSCode
Extension setup guide.

Next Steps

VSCode Extension - Learn about the VSCode extension features
Python SDK - Set up the Python SDK for programmatic access
A Whirlwind Tour - Take a tour of SpecForge capabilities
Project Configuration - Learn about lilo.toml configuration

$env:SPECFORGE_LICENSE_FILE="C:\path\to\license.json"

New-Item -ItemType Directory -Force -Path "$env:APPDATA\specforge"
Copy-Item "C:\path\to\your\license.json" "$env:APPDATA\specforge\license.json"

$env:SPECFORGE_LLM_PROVIDER="openai"
$env:SPECFORGE_LLM_MODEL="gpt-5-nano-2025-08-07"
$env:OPENAI_API_KEY="your-api-key-here"

specforge serve

.\specforge.exe serve

https://platform.openai.com/api-keys
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
http://localhost:8080/health
vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html

Setting up SpecForge on macOS
This guide will walk you through setting up SpecForge on macOS using the standalone executable.

1. Download the Executable

Download specforge-x.y.z-macOS-ARM64.tar.bz2 from the SpecForge releases page and extract it
to a directory of your choice.

2. Install Dependencies

The SpecForge executable requires Z3 to be installed. Install it using Homebrew:

If you don't have Homebrew, install it from brew.sh.

3. Configure Your License

The SpecForge server requires a valid license file to start. If you don't have a license, please contact
the SpecForge team or request a trial license.

Place your license.json file in one of the following locations (the first match is used):

1. Standard Configuration Directory (recommended):

~/.config/specforge/license.json

2. Environment Variable (for custom locations):

3. Current Directory: ./license.json

Create the directory if it doesn't exist:

4. Configure LLM Provider (Optional)

To use LLM-based features such as natural-language spec generation and error explanation,
configure an LLM provider by setting environment variables before starting the server.

For OpenAI (recommended):

Get an API key from platform.openai.com/api-keys.

For other providers (Gemini, Ollama), see the LLM Provider Configuration guide.

brew install z3

export SPECFORGE_LICENSE_FILE=/path/to/license.json

mkdir -p ~/.config/specforge
cp /path/to/your/license.json ~/.config/specforge/

export SPECFORGE_LLM_PROVIDER=openai
export SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07
export OPENAI_API_KEY=your-api-key-here

https://imiron.io/specforge/releases/
https://brew.sh/
https://forms.gle/w487KwqyX6hHrCeh9
https://platform.openai.com/api-keys
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html

5. Start the Server

Navigate to the directory where you extracted the SpecForge executable and run:

The server will start on http://localhost:8080 . You can verify it's running by navigating to
http://localhost:8080/health , which should show version information.

Note: The server will exit immediately if the license is missing or invalid. If you encounter
startup issues, verify your license configuration.

Allowing Execution of the Downloaded SpecForge Binary

The MacOS Gatekeeper may display an alert preventing you from executing the downloaded binary,
because it was downloaded from a third-party source.

To whitelist the specforge executable, run the following command.

Alternatively, you can do so from the System Settings GUI by following these steps.

1. Open System Settings, and go to 'Privacy & Security'
2. In the security section, you should see '"specforge" was blocked to protect your Mac.'
3. Click 'Open Anyway'.

./specforge serve

xattr -d com.apple.quarantine path/to/specforge

http://localhost:8080/health
https://support.apple.com/en-us/102445

6. Install the VSCode Extension

Install the SpecForge VSCode extension from the Visual Studio Marketplace or see the VSCode
Extension setup guide.

Next Steps

VSCode Extension - Learn about the VSCode extension features
Python SDK - Set up the Python SDK for programmatic access
A Whirlwind Tour - Take a tour of SpecForge capabilities
Project Configuration - Learn about lilo.toml configuration

vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html

Setting up SpecForge on Linux
This guide will walk you through setting up SpecForge on Linux using the standalone executable.

1. Download the Executable

Download specforge-x.y.z-Linux-X64.tar.bz2 from the SpecForge releases page and extract it to
a directory of your choice.

2. Install Dependencies

The SpecForge executable requires Z3 to be installed. Use your distribution's package manager:

Ubuntu/Debian:

Fedora/RHEL:

Arch Linux:

3. Configure Your License

The SpecForge server requires a valid license file to start. If you don't have a license, please contact
the SpecForge team or request a trial license.

Place your license.json file in one of the following locations (the first match is used):

1. Standard Configuration Directory (recommended):

~/.config/specforge/license.json

2. Environment Variable (for custom locations):

3. Current Directory: ./license.json

Create the directory if it doesn't exist:

4. Configure LLM Provider (Optional)

To use LLM-based features such as natural-language spec generation and error explanation,
configure an LLM provider by setting environment variables before starting the server.

For OpenAI (recommended):

sudo apt install z3

sudo dnf install z3

sudo pacman -S z3

export SPECFORGE_LICENSE_FILE=/path/to/license.json

mkdir -p ~/.config/specforge
cp /path/to/your/license.json ~/.config/specforge/

https://imiron.io/specforge/releases/
https://forms.gle/w487KwqyX6hHrCeh9

Get an API key from platform.openai.com/api-keys.

For other providers (Gemini, Ollama), see the LLM Provider Configuration guide.

5. Start the Server

Navigate to the directory where you extracted the SpecForge executable and run:

The server will start on http://localhost:8080 . You can verify it's running by navigating to
http://localhost:8080/health , which should show version information.

Note: The server will exit immediately if the license is missing or invalid. If you encounter
startup issues, verify your license configuration.

6. Install the VSCode Extension

Install the SpecForge VSCode extension from the Visual Studio Marketplace or see the VSCode
Extension setup guide.

Next Steps

VSCode Extension - Learn about the VSCode extension features
Python SDK - Set up the Python SDK for programmatic access
A Whirlwind Tour - Take a tour of SpecForge capabilities
Project Configuration - Learn about lilo.toml configuration

export SPECFORGE_LLM_PROVIDER=openai
export SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07
export OPENAI_API_KEY=your-api-key-here

./specforge serve

https://platform.openai.com/api-keys
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
http://localhost:8080/health
vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html

Setting up SpecForge with Docker
This guide will walk you through setting up SpecForge using Docker instead of the standalone
executable.

Prerequisites

Before starting the server, you must obtain and configure a valid license. If you don't have a license,
please contact the SpecForge team or request a trial license.

1. Obtain the Docker Compose File

The SpecForge Server is distributed as a Docker Image via GHCR (GitHub Container Registry). The
recommended way to run the Docker Image is through Docker Compose.

Download the latest docker-compose-x.y.z.yml file from the SpecForge releases page.

2. Configure Your License

The SpecForge server requires a valid license file. You need to make the license file available to the
Docker container.

1. Place your license.json file in a new directory. Using /home/user/.config/specforge/ is a
common practice.

2. Modify the following lines in your docker-compose-x.y.z.yml file to point to your license file:

Note: It is not recommended to run docker as root (i.e. with sudo). But if you do, note
that paths with ~/ would be understood by the system as /root/ , not your home
directory. So it's best to use absolute paths (without ~).

3. Configure LLM Provider (Optional)

To use LLM-based features such as natural-language spec generation and error explanation,
configure an LLM provider by modifying environment variables in your docker-compose.yml file
before starting the server.

For OpenAI (recommended):

Get an API key from platform.openai.com/api-keys.

- type: bind
 source: path/to/.config/specforge/ # place your license.json file here on the
host machine

 target: /app/specforgeconfig/ # config directory inside the container (do not
modify this)
 read_only: true

- SPECFORGE_LLM_PROVIDER=openai
- SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07
- OPENAI_API_KEY=${OPENAI_API_KEY}

https://forms.gle/w487KwqyX6hHrCeh9
https://imiron.io/specforge/releases/
https://docs.docker.com/engine/install/linux-postinstall/
https://platform.openai.com/api-keys

You can insert API keys directly in the file, but using environment variables is better for security.

For other providers (Gemini, Ollama) and detailed configuration options, see the LLM Provider
Configuration guide.

4. Start the Server

Run the following command, replacing /path/to/docker-compose-x.y.z.yml with the actual path to
your downloaded file:

The flag --abort-on-container-exit is recommended so that the container fails fast on
startup errors.

You can verify that the server is up by navigating to http://localhost:8080/health , which should
show version information.

Note: The server will exit immediately if the license is missing or invalid. If you encounter
startup issues, verify your license configuration.

5. Install the VSCode Extension

Install the SpecForge VSCode extension from the Visual Studio Marketplace or see the VSCode
Extension setup guide.

Updating the Docker Image

From time to time, new versions of the SpecForge Server are released. To use the latest version, you
can either:

1. Use the updated docker-compose file from the releases page, or

2. Set the image field to latest in your Docker Compose file:

Then pull the latest image:

Next Steps

VSCode Extension - Learn about the VSCode extension features
Python SDK - Set up the Python SDK for programmatic access
A Whirlwind Tour - Take a tour of SpecForge capabilities
Project Configuration - Learn about lilo.toml configuration

docker compose -f /path/to/docker-compose-x.y.z.yml up --abort-on-container-exit

image: ghcr.io/imiron-io/specforge/specforge-backend:latest

docker compose -f /path/to/docker-compose.yml pull

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-llm.html
http://localhost:8080/health
vscode:extension/imiron.specforge
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html
https://imiron.io/specforge/releases/
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html

LLM Provider Configuration
SpecForge includes LLM-based features such as natural-language based spec generation and error
explanation. To use these features, you need to configure an LLM provider.

Supported Providers

SpecForge currently supports three LLM providers:

OpenAI - Cloud-based API (recommended for most users)
Gemini - Google's cloud-based API
Ollama - Run models locally on your machine

Configuration Methods

For Executable (Windows, macOS, Linux)

Set the following environment variables before starting the SpecForge server:

OpenAI

Get an API key from platform.openai.com/api-keys.

Gemini

Get an API key from ai.google.dev/gemini-api/docs/api-key.

Ollama

First, install and run Ollama from docs.ollama.com/quickstart.

Then set the environment variables:

Linux / macOS
export SPECFORGE_LLM_PROVIDER=openai
export SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07
export OPENAI_API_KEY=your-api-key-here

Windows PowerShell
$env:SPECFORGE_LLM_PROVIDER="openai"
$env:SPECFORGE_LLM_MODEL="gpt-5-nano-2025-08-07"
$env:OPENAI_API_KEY="your-api-key-here"

Linux / macOS
export SPECFORGE_LLM_PROVIDER=gemini
export SPECFORGE_LLM_MODEL=gemini-2.5-flash
export GEMINI_API_KEY=your-api-key-here

Windows PowerShell
$env:SPECFORGE_LLM_PROVIDER="gemini"
$env:SPECFORGE_LLM_MODEL="gemini-2.5-flash"
$env:GEMINI_API_KEY="your-api-key-here"

https://platform.openai.com/api-keys
https://ai.google.dev/gemini-api/docs/api-key
https://docs.ollama.com/quickstart

Change OLLAMA_API_BASE if your Ollama server is running on a different machine.

For Docker

Modify the environment variables in your docker-compose.yml file:

You can insert API keys directly in the file:

However, it is better to use environment variables for security.

Default Models

If you don't set the SPECFORGE_LLM_MODEL variable:

OpenAI: Defaults to gpt-5-nano-2025-08-07
Gemini: Defaults to gemini-2.5-flash
Ollama: You must specify a model (no default)

Without LLM Configuration

Without an appropriate LLM provider configuration, LLM-based SpecForge features will be
unavailable. The rest of SpecForge will continue to work normally.

Linux / macOS
export SPECFORGE_LLM_PROVIDER=ollama
export SPECFORGE_LLM_MODEL=your-model-name # e.g., llama3.2, mistral
export OLLAMA_API_BASE=http://127.0.0.1:11434

Windows PowerShell
$env:SPECFORGE_LLM_PROVIDER="ollama"
$env:SPECFORGE_LLM_MODEL="your-model-name" # e.g., llama3.2, mistral
$env:OLLAMA_API_BASE="http://127.0.0.1:11434"

- SPECFORGE_LLM_PROVIDER=openai # other options: ollama, gemini
- SPECFORGE_LLM_MODEL=gpt-5-nano-2025-08-07 # choose the appropriate model for your
provider
One of the following, depending on SPECFORGE_LLM_PROVIDER:
- OPENAI_API_KEY=${OPENAI_API_KEY}
- GEMINI_API_KEY=${GEMINI_API_KEY}
- OLLAMA_API_BASE=http://127.0.0.1:11434 # change if your ollama server is running
remotely

- SPECFORGE_LLM_PROVIDER=gemini
- GEMINI_API_KEY=abc123XYZ # no string quotes

VSCode Extension
The Lilo Language Extension for VSCode provides

Syntax Highlighting, Typechecking and Autocompletion for .lilo files
Satisfiability and Redundancy checking for specifications
Support for visualizing monitoring results in Python notebooks

Installation

The SpecForge VSCode extension can be installed in two ways:

From the VSCode Marketplace

Install the extension directly from the Visual Studio Marketplace or search for "SpecForge" in
VSCode's extensions tab (Ctrl+Shift+X or Cmd+Shift+X).

From VSIX File

Alternatively, you can install from a VSIX file (included in releases):

Open VSCode's extensions tab (Ctrl+Shift+X or Cmd+Shift+X), click on the three dots at the top
right, and select Install from VSIX...
Open VSCode's command palette (Ctrl+Shift+P or Cmd+Shift+P), type Extensions: Install
from VSIX... , and select the .vsix file

Important: Ensure the extension version matches your SpecForge server version. Version
mismatches may cause compatibility issues.

Usage and Configuration

For the extension to work, the SpecForge server must be running (see Setting up SpecForge).
The URI corresponding to the server can be configured if necessary using the extension
settings. Do not add a trailing slash at the end of this URL.

Once the extension is installed and the server is running, it should automatically be working on
.lilo files, and in relevant Python notebooks.

https://marketplace.visualstudio.com/items?itemName=imiron.specforge
https://imiron.io/specforge/releases/
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up.html
vscode://settings/specforge.apiBaseUrl
vscode://settings/specforge.apiBaseUrl

Setting up the Python SDK
The Python SDK is a python library which can be used to interact with SpecForge tools
programmatically from within Python programs, including notebooks.

The Python SDK is packaged as a wheel file with the name specforge_sdk-x.x.x-py3-none-any.whl .

Refer to the SpecForge Python SDK guide for an overview of the SDK features and capabilities.

A Sample Walkthrough

The Python SDK can be installed directly using pip , or defined as a dependency via a build
envionment such as poetry or uv .

We discuss below how such an environment can be setup using uv . If you prefer to use a different
build system, the workflow should be similar.

1. Install uv on your operating system. See the uv installation guide for more details.

2. Create a new project directory and navigate into it. Populate it with a pyproject.toml file.

3. Declare the dependencies in the pyproject.toml file.

The wheel file for the Python SDK can be declared as a local dependency. Ensure that a
correct path to the wheel file is provided.
Features of SpecForge, such as the interactive monitor, can be used as a part of Python
Notebooks. To do so, you may want to include jupyterlab as a dependency as well.
Libraries such as numpy , pandas and matplotlib are frequently included for data
processing and visualization.
Here is an example pyproject.toml file:

4. Run uv sync . This should create a .venv directory which would have the appropriate
dependencies (including the correct version of python) installed.

5. Run source .venv/bin/activate to use the Shell Hook with access to python . You can
confirm that this has been configured correctly as follows.

[project]

name = "sample-project"
version = "0.1.0"
description = "Sample Project for Testing SpecForge SDK"
authors = [{ name = "Imiron Developers", email = "info@imiron.io" }]
readme = "README.md"

requires-python = ">=3.12"
dependencies = [
 "jupyterlab>=4.4.5",
 "pandas>=2.3.1",
 "matplotlib>=3.10.3",

 "numpy>=2.3.2",
 "specforge-sdk",
]

[tool.uv.sources]

specforge_sdk = { path = "lib/specforge_sdk-0.5.6-py3-none-any.whl" }

$ source .venv/bin/activate
(falsification-examples) $ which python
/path/to/project/falsification/.venv/bin/python

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
https://docs.astral.sh/uv/getting-started/installation/

6. Now, you can browse the example notebooks. Make sure that your notebook is connected to
the kernel in the .venv . This is usually configured automatically, but can also be done
manually. To do so, run jupyter server and copy and paste the server URL in the kernel
settings in the VSCode notebook viewer.

Project Configuration
Lilo projects can use an optional lilo.toml configuration file at the project root.

For getting started, you can skip this configuration entirely and simply place your .lilo
specification files and data files directly in the root of your project. SpecForge will work with sensible
defaults.

When you do use lilo.toml , if the file or any of its fields are missing, sensible defaults apply. The
Python SDK and the VS Code extension read this file and apply the semantics accordingly.

The configuration file is useful for:

Setting a project name and custom source path (default: project root or src/)
Customizing language behavior (interval mode, freeze)
Adjusting diagnostics settings (consistency, redundancy, optimize, unused defs) and their
timeouts
Registering system_falsifier entries for falsification analysis

Below are the schema and defaults, followed by a complete example.

Schema and defaults

Top-level keys and their defaults when omitted:

project

name (string).
Default: "" .
On init: set to the provided name; otherwise to the name of the project root
directory.

source (path string). Default: "src/"

language

interval.mode (string). Supported: "static" . Default: "static"
freeze.enabled (bool). Default: true

diagnostics

consistency.enabled (bool). Default: true
consistency.timeouts.named (seconds, float). Default: 0.5
consistency.timeouts.system (seconds, float). Default: 1.0
redundancy.enabled (bool). Default: true
redundancy.timeouts.named (seconds, float). Default: 0.5
redundancy.timeouts.system (seconds, float). Default: 1.0
optimize.enabled (bool). Default: true
unused_defs.enabled (bool). Default: true

[[system_falsifier]] (array of tables, optional)

Each entry: name (string), system (string), script (string)
If absent or empty, the key is omitted from the file and treated as an empty list

Default file:

[project]
name = ""
source = "src/"

Example lilo.toml

An example project with overrides.

[project]
name = "my-specs"
source = "src/"

[language]
freeze.enabled = true
interval.mode = "static"

[diagnostics.consistency]
enabled = true

[diagnostics.consistency.timeouts]
named = 5.0
system = 10.0

[diagnostics.optimize]
enabled = true

[diagnostics.redundancy]
enabled = false

[diagnostics.unused_defs]
enabled = false

[[system_falsifier]]
name = "Psitaliro ClimateControl Falsifier"
system = "climate_control"
script = "falsifiers/falsify_climate_control.py"

[[system_falsifier]]
name = "Psitaliro ALKS falisifier"
system = "lane_keeping"
script = "falsifiers/alks.py"

A Whirlwind Tour
This section is a quick introduction to SpecForge's main capabilities through a hands-on example.
We'll explore how to write specifications in the Lilo language and analyze them using SpecForge's
VSCode extension.

The Lilo Language: A Brief Introduction

Lilo is an expression-based temporal specification language designed for hybrid systems. Here are
the key concepts:

Primitive Types: Bool , Int , Float , and String

Operators: Standard arithmetic (+ , - , * , /), comparisons (== , < , > , etc.), and logical operators
(&& , || , =>)

Temporal Operators: Lilo's distinguishing feature is its rich set of temporal logic operators:

always φ : φ is true at all future times
eventually φ : φ is true at some future time
past φ : φ was true at some past time
historically φ : φ was true at all past times

These operators can be qualified with time intervals, e.g., eventually[0, 10] φ means φ becomes
true within 10 time units. More operators are available.

Systems: Lilo specifications are organized into systems that group together:

signal s: Time-varying input values (e.g., signal temperature: Float)
param s: Non-temporal parameters that are not time-varying (e.g., param max_temp: Float)
type s: Custom types for structured data
def initions: Reusable definitions and helper functions
spec ifications: Requirements that should hold for the system

A system file begins with a system declaration like system temperature_control and contains all
the declarations for that system.

For a comprehensive guide to the language, see the Lilo Language chapter.

Running Example

We'll use a temperature control system as our running example. This example project is available in
the releases. The system monitors temperature and humidity sensors, with specifications ensuring
values remain within safe ranges:

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/lilo-language.html#operators
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/lilo-intro.html
https://imiron.io/specforge/releases/

The VSCode extension provides support for writing Lilo code, syntax highlighting, type-checking,
warnings, spec satisfiability, etc.:

Spec Analysis

Once you've written specifications for your system, the SpecForge VSCode extension provides
various analysis capabilities:

Monitor: Check whether recorded system behavior satisfies specifications
Exemplify: Generate example traces that satisfy specifications
Falsify: Search for counterexamples that violate specifications, relative to some model
Export: Convert specifications to other formats (.json , .lilo , etc.)
Animate: Visualize specification behavior over time

This can be done directly from within VSCode, or from within in a Jupyter notebook using the Python
SDK. We will perform analyses directly in VSCode here. The VSCode guide details all features in
greater depth.

system temperature_sensor

// Temperature Monitoring specifications
// This spec defines safety requirements for a temperature sensor system

import util use { in_bounds }

signal temperature: Float
signal humidity: Float

param min_temperature: Float
param max_temperature: Float

#[disable(redundancy)]
spec temperature_in_bounds = in_bounds(temperature, min_temperature, max_temperature)

spec always_in_bounds = always temperature_in_bounds

// Humidity should be reasonable when temperature is in normal range
spec humidity_correlation = always (
 (temperature >= 15.0 && temperature <= 35.0) =>
 (humidity >= 20.0 && humidity <= 80.0)
)

// Emergency condition - temperature exceeds critical thresholds
spec emergency_condition = temperature < 5.0 || temperature > 45.0

// Recovery specification - after emergency, system should stabilize
spec recovery_spec = always (
 emergency_condition =>
 eventually[0, 10] (temperature >= 15.0 && temperature <= 35.0)
)

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html

Monitoring

Monitoring checks whether actual system behavior, recorded in a data file, satisfies your
specifications. You provide recorded trace data, and SpecForge evaluates a specification against it.

Navigate to the spec selection screen, and click the Analyse button for the spec you want to
monitor.

After selecting a data file from the dropdown menu, click Run Analysis . The result is an analysis
monitoring tree for the specification:

The result for the whole specification is shown at the top. Below this, you can drill down into sub-
expressions of the specification, to understand what makes the spec true or false at any given time.
Hovering over any of the signals will show a popup with an explanation of the result at that point in
time, and will highlight relevant segments of sub-expression result signals.

An analysis can be saved. To do so, click the Save Analysis button, and choose a location to save
the analysis. You can then navigate to this analysis file and open it again in VSCode. The analysis will
also show up in the specification status menu, under the relevant spec.

Exemplification

The Exemplify analysis generates example traces that demonstrate satisfying behavior. This is
useful for:

Understanding what valid system behavior looks like
Testing other components with realistic data
Creating animations

If the exemplified data does not behave as expected, the specification might be wrong and need to
be corrected. Exemplification can thus be used as an aid when authoring specifications.

Falsification

If a model for the system is available, falsification can be used to see if the model behaves as
expected, that is, according to specification.

First a falsifier must be registered in lilo.toml , e.g.

Once this is done, the falsifier will show up in the Falsify analysis menu. If a falsifying signal is
found, the monitoring tree is show, to help understand how the model went wrong:

Export

Export converts your specifications to other formats, to be used in other tools. For example, if you
want to export your specification to JSON format, choose .json as the Export type .

name = "automatic-transmission"
source = "spec"

[[system_falsifier]]
name = "AT Falsifier"
system = "transmission"
script = "transmission.py"

Next Steps

This tour covered the basics of what SpecForge can do. The following chapters dive deeper into:

The full Lilo language (Lilo Language)
System definitions and composition (Systems)
The Python SDK for programmatic access (Python SDK)

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/lilo-language.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/lilo-systems.html
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/python-sdk.html

Lilo Language
Lilo is a formal specification language designed for describing, verifying and monitoring the behavior
of complex, time-dependent systems.

Lilo allows you to:

Write expressions using a familiar syntax with powerful temporal operators for defining
properties over time.
Define data structures using records to model your system's data.
Structure your specifications using systems.

Types and Expressions

Lilo is an expression-based language. This means that most constructs, from simple arithmetic to
complex temporal properties, are expressions that evaluate to a time-series value. This section
details the fundamental building blocks of Lilo expressions.

Comments

Comment blocks start with /* and end with */ . Everything between these markers is ignored.

A line comment start with // , and indicates that the rest of the line is a comment.

Docstrings start with /// instead of // , and attach documentation to various language elements.

Primitive types

Lilo is a typed language. The primitive types are:

Bool : Boolean values. These are written true and false .
Int : Integer values, e.g. 42 .
Float Floating point values, e.g. 42.3 .
String : Text strings, written between double-quotes, e.g. "hello world" .

Type errors are signaled to the user like this:

The code blocks in this documentation page can be edited, for example try changing the type of n
to Float to fix the type error.

Units of Measure

Lilo supports units of measure for Float values. Units are written in angle brackets <...>
immediately after a literal.

Basic Units

A simple unit is written as an identifier inside angle brackets:

Compound Units

Units can be combined using operators. The literal 1 represents a dimensionless unit:

Ratio (/):

def x: Float = 1.02

def n: Int = 42

def example = x + n

1.0<cm>
100.0<km/h>

60.0<1/s>

15.0<m/s>

Product (*):

Exponentiation (^):

Operator Precedence and Associativity

Unit operators follow standard mathematical precedence rules:

1. Exponentiation (^) has the highest precedence and binds tightly to the immediately
preceding unit.

2. Product (*) and ratio (/) have equal precedence and associate left-to-right.

This means m/s*kg is interpreted as (m/s)*kg , and m*s^-2 means m*(s^-2) , not (m*s)^-2 .

Parentheses for Grouping

Parentheses can be used to override the default precedence and associativity:

Operators

Lilo uses the following operators, listed in order of precedence (from highest to lowest).

Prefix negation: -x is the additive inverse of x , and !x is the negation of x .

Multiplication and division: x * y , x / y .

Addition and subtraction: x + y and x - y .

Numeric comparisons:

== : equality
!= : non-equality
>= : greater than or equals
<= : less than or equals
> : greater than (strict)
< : less than (strict) Comparisons can be chained, in a consistent direction. E.g. 0 < x <=
10 means the same thing as 0 < x && x <= 10 .

Temporal operators

always φ : φ is true at all times in the future.
eventually φ : φ is true at some point in the future.
past φ : φ was true at some time in the past.
historically φ : φ was true at all times in the past.
will_change φ : φ changes value at some point in the future.
did_change φ : φ changed value at some point in the past.
φ since ψ : φ is true at all points in the past, from some point where ψ was true.
φ until ψ : φ is true at all points in the future until ψ becomes true.
next φ : φ is true at the next (discrete) time point.
previous φ : φ is true at the previous (discrete) time point.

50.0<m*m>

100.0<m^2>

9.81<m*s^-2>

1.0<1/(kg*m)>

Temporal operators can be qualified with intervals:

always [a, b] φ : φ is true at all times between a and b time units in the future.
eventually [a, b] φ : φ is true at some point between a and b time units in the

future.
φ until [a, b] ψ : φ is true at all points between now and some point between a and
b time units in the future until ψ becomes true.

Similar interval qualifications apply to other temporal operators.
One can use infinity in intervals: [0, infinity] .

Conjunction: x && y , both x and y are true.

Disjunction: x || y , one of x or y is true.

Implication and equivalence:

x => y : if x is true, then y must also be true.
x <=> y : x is true if and only y is true.

Note that prefix operators cannot be chained. So one must write -(-x) , or !(next φ) .

Built-in functions

There are built-in functions:

float will produce a Float from an Int :

time will return the current time of the signal.

Conditional Expressions

Conditional expressions allow a specification to evaluate to different values based on a boolean
condition. They use the if - then - else syntax.

A key feature of Lilo is that if / then / else is an expression, not a statement. This means it always
evaluates to a value, and thus the else branch is mandatory.

The expression in the if clause must evaluate to a Bool . The then and else branches must
produce values of a compatible type. For example, if the then branch evaluates to an Int , the
else branch must also evaluate to an Int .

Conditionals can be used anywhere an expression is expected, and can be nested to handle more
complex logic.

def n: Int = 42

def x: Float = float(n)

if x > 0 then "positive" else "non-positive"

Note that if _ then _ else _ is pointwise, meaning that the condition applies to all points in time,
independently.

Records

Records are composite data types that group together named values, called fields. They are essential
for modeling structured data within your specifications.

The Lilo language supports anonymous, structurally typed, extensible records.

Construction and Type

You can construct a record value by providing a comma-separated list of field = value pairs
enclosed in curly braces. The type of the record is inferred from the field names and the types of
their corresponding values.

For example, the following expression creates a record with two fields: foo of type Int and bar of
type String .

The resulting value has the structural type { foo: Int, bar: String } . The order of fields in a
constructor does not matter.

You can also declare a named record type using a type declaration, which is highly recommended
for clarity and reuse.

Field punning

When you already have a name in scope that should be copied into a record, you can pun the field
by omitting the explicit assignment. A pun such as { foo } is shorthand for { foo = foo } .

Punning works anywhere record fields are listed, including in record literals and updates. Each pun
expands to a regular field = value pair during typechecking.

// Avoid division by zero
def safe_ratio(numerator: Float, denominator: Float): Float =
 if denominator != 0.0 then
 numerator / denominator
 else
 0.0 // Return a default value

// Nested conditional
def describe_temp(temp: Float): String =
 if temp > 30.0
 then "hot"
 else if temp < 10.0
 then "cold"
 else
 "moderate"

{ foo = 42, bar = "hello" }

/// Represents a point in a 2D coordinate system.
type Point = { x: Float, y: Float }

// Construct a value of type Point
def origin: Point = { x = 0.0, y = 0.0 }

def foo: Int = 42
def bar: String = "hello"

def record_with_puns = { foo, bar }

Path field construction

Nested records can be created or extended in one step by assigning to a dotted path. Each segment
before the final field refers to an enclosing record, and the compiler will merge the pieces together.

The order of path assignments does not matter; the paths are merged into the final record. A dotted
path cannot be combined with punning; write { status.throttle = throttle } instead of {
status.throttle } when you need the path form.

Record updates with with

Use { base with fields } to copy an existing record and override specific fields. Updates respect
the same syntax rules as record construction: you can mix regular assignments, puns, and dotted
paths.

All updated fields must already exist in the base record. Path updates let you rewrite deeply nested
pieces without rebuilding the entire structure.

Projection

To access the value of a field within a record, you use the dot (.) syntax. If p is a record that has a
field named x , then p.x is the expression that accesses this value.

Records can be nested, and projection can be chained.

Local Bindings

Local bindings allow you to assign a name to an expression, which can then be used in a subsequent
expression. This is accomplished using the let keyword and is invaluable for improving the clarity,
structure, and efficiency of your specifications.

A local binding takes the form let name = expression1; expression2 . This binds the result of
expression1 to name . The binding name is only visible within expression2 , which is the scope of

the binding.

The primary purposes of let bindings are:

type Engine = { status: { throttle: Int, fault: Bool } }

def default_engine: Engine =
 { status.throttle = 0, status.fault = false }

type Engine = { status: { throttle: Int, fault: Bool } }

def base: Engine =
 { status.throttle = 0, status.fault = false }

def warmed_up: Engine =
 { base with status.throttle = 70 }

def acknowledged: Engine =
 { warmed_up with status.fault = false }

type Point = { x: Float, y: Float }

def is_on_x_axis(p: Point): Bool =
 p.y == 0.0

type Point = { x: Float, y: Float }
type Circle = { center: Point, radius: Float }

def is_unit_circle_at_origin(c: Circle): Bool =
 c.center.x == 0.0 && c.center.y == 0.0 && c.radius == 1.0

1. Readability: Breaking down a complex expression into smaller, named parts makes the logic
easier to follow.

2. Re-use: If a sub-expression is used multiple times, binding it to a name avoids repetition and
potential re-computation.

Consider the following formula for calculating the area of a triangle's circumcircle from its side
lengths a , b , and c :

Using let bindings makes the logic much clearer:

The type of the bound variable (s , area , circumradius) is automatically inferred from the
expression it is assigned. You can also chain multiple let bindings to build up a computation step-
by-step.

def circumcircle(a: Float, b: Float, c: Float): Float =
 (a * b * c) / sqrt((a + b +c) * (b + c - a) * (c + a - b) * (a + b - c))

def circumcircle(a: Float, b: Float, c: Float): Float =
 let pi = 3.14;
 let s = (a + b + c) / 2.0;
 let area = sqrt(s * (s - a) * (s - b) * (s - c));
 let circumradius = (a * b * c) / (4.0 * area);
 circumradius * circumradius * pi

Systems

Ultimately Lilo is used to specify systems. A system groups together declarations for the temporal
input signals, the (non-temporal) parameters and the specifications. A system also includes auxiliary
definitions.

A system file should start with a system declaration, e.g.:

The name of the system should match the file name.

Type declarations

A new type is declared with the type keyword. To define a new record type Point :

We can then use Point as a type anywhere else in the file.

Signals

The time varying values of the system are called signals. They are declared with the signal keyword.
E.g.:

The definitions and specifications of a system can freely refer to the system's signals.

A signal can be of any type that does not contain function types, i.e. a combination of primitive types
and records.

System Parameters

Variables of a system which are constant over time are called system parameters. They are declared
with the param keyword. E.g.:

The definitions and specifications of a system can freely refer to the system's parameters. Note that
system parameters must be provided upfront before monitoring can begin. For exemplification,
system parameters are optional. That is, they can be provided, in which case the example must
conform to them, or otherwise the exemplification process will try to find values that work.

Definitions

A definition is declared with the def keyword:

A definition can depend on parameters:

system Engine

type Point = { x: Float, y: Float }

signal x: Float
signal y: Float
signal speed: Float
signal rain_sensor: Bool
signal wipers_on: Bool

param temp_threshold: Float
param max_errors: Int

def foo: Int = 42

One can also specify the return type of a definition:

The type annotations on parameters and the return type are both optional, if they are not provided
they are inferred. It is recommended to always specify these types as a form of documentation.

The parameters of a definition can also be be record types, for instance:

Definitions can be used in other definitions, e.g.:

Definitions can be specified in any order, as long as this doesn't create any circular dependencies.

Definitions can freely use any of the signals of the system, without having to declare them as
parameters.

Specifications

A spec says something that should be true of the system. They can use all the signal s and def s
of the system. They are declared using the spec keyword. They are much like def s except:

The return type is always Bool (and doesn't need to be specified)
They cannot have parameters.

Example:

def foo(x: Float) = x + 42

def foo(x: Float): Float = x + 42

type S = { x: Float, y: Float }

def foo(s: S) = eventually [0,1] s.x > s.y

type S = { x: Float, y: Float }

def more_x_than_y(s: S) = s.x > s.y

def foo(s: S) = eventually [0,1] more_x_than_y(s)

signal speed: Float

def above_min = 0 <= speed

def below_max = speed <= 100

spec valid_speed =
 always (above_min && below_max)

Modules

Lilo language supports modules. A module starts with a module declaration, and contains definitions
(much like a system):

The name of the module must match the file name. For example, a module declared as module
Util must be defined in a file named Util.lilo .

A module can only contain def s and type s.

Those definitions which should be accessible from other modules should be parked as pub , which
means "public".

To use a module, one needs to import it, e.g. import Util . The pub lic definitions from Util are
then available to be used, with qualified names, e.g.:

One can import a module qualified with an alias, for example:

To use symbols without a qualifier, use the use keyword:

module Util

def add(x: Float, y: Float) = x + y

pub def calc(x: Float) = add(x, x)

import Util

def foo(x: Float) = Util::calc(x) + 42

import Util as U

def foo(x: Float) = U::calc(x) + 42

import Util use { calc }

def foo(x: Float) = calc(x) + 42

Static Analysis

System code goes though some code quality checks.

Consistency Checking

Specs are checked for consistency. A warning is produced if specs may be unsatisfiable:

This means that the specification is problematic, because it is impossible that any system satisfies
this specification.

Inconsistencies between specs are also reported to the user:

In this case each of the specs are satisfiable on their own, but taken together they cannot be
satisfied by any system.

Redundancy Checking

If one spec is redundant, because implied by other specs of the system, this is also detected:

In this case we warn the user that the spec sometimes_negative is redundant, because this
property is already implied by the combination of positive_becomes_negative and
sometimes_positive . Indeed sometimes_positive implies that there is some point in time where x
> 0 , and using positivie_becomes_negative we conclude that therefore there must be some point
in time after than when x < 0 .

signal x: Float

spec main = always (x > 0 && x < 0)

signal x: Float

spec always_positive = always (x > 0)
spec always_negative = always (x < 0)

signal x: Float

spec positive_becomes_negative = always (x > 0 => eventually x < 0)

spec sometimes_positive = eventually x > 0

spec sometimes_negative = eventually x < 0

Additional Features

Attributes

In addition to docstrings (which begin with ///), Lilo definitions, specs, params and signals can be
annotated with attributes. They must immediately precede the item they annotate.

The attributes are used to convey metadata about items they annotate which is used by the tooling
(notably the VSCode extension).

Suppressing unused variable warnings: #[disable(unused)]
Using this attribute on a definition, param or signal will suppress warnings about it being
unused.
Specs or public definitions are always considered used.

Timeout for Static Analyses
To override the default timeout for static analyses, a timeout can be specified in
seconds.
They can be specified individually #[timeout(satisfiability = 20, redundancy = 30)]
Or together #[timeout(10)] which sets both to 10 seconds.

Disabling static analyses
Use #[disable(satisfiability)] or #[disable(redundancy)] to disable specific static
analyses on a definition.

Default Values for Parameters

When specifying a system, parameters can optionally be given a default value. The intent of such a
default value is to indicate that the parameter is expected to be instantiated with the default value in
a typical use case.

Default values should not be used to declare constants. For them, use a def instead.

When monitoring, parameters with default values can be omitted from the input. If omitted,
the default value is used. They can also be explicitly provided, in which case the provided value
is used.
When exporting a formula, parameters with a default value will be substituted with the default
value before the export.
When exemplifying, the exemplifier will require the solver to fix the parameter to the default
value.

When running an analysis such as export or exemplification, one can provide the JSON null value
for a field in the config. This has the effect of requesting SpecForge to ignore the default value for
the parameter.

#[key = "value", fn(arg), flag]
spec foo = true

param temperature: Float = 25.0

def pi: Float = 3.14159

system main

signal p: Int
param bound: Int = 1

spec foo = p > 1 && p < bound

Exemplification
With params = {} : Unsatisfiable (the default value of bound is used)
With params = { "bound": null } : Satisfiable (the solver is free to choose a value of
bound that satisfies the constraints)

Export
With params = {} , result: p > 1 && p < 1
With params = { "bound": 100 } , result: p > 1 && p < 100
With params = { "bound": null } , result: p > 1 && p < bound

Note that the JSON null value cannot be used as a default value as a part of the Lilo program.

Spec Stubs

The user may create a spec stub, a spec without a body. Such a stub may still have a docstring and
attributes. This can be used as a placeholder, and is interpreted as true by the Lilo tooling.

The VSCode extension will display a codelens to generate an implementation for the stub based on
the docstring using an LLM (if configured).

/// The system should always eventually recover from errors.
spec error_recovery

Conventions
Some languages require that certain classes of names be capitalized or not, to distinguish them. Lilo
is flexible, so that it can match the naming conventions of the system it is being used to specify. That
said, here are the conventions that we use in the examples:

Module and systems are lowercase snake_case. So e.g. climate_control rather than
ClimateControl .

Important: The name of a module or system must match the file name it is defined in. For
example, module climate_control or system climate_control must be defined in a file
named climate_control.lilo .
Names of signal s, param s, def s, spec s, arguments and record field names are lowercase
and snake_case. So e.g. signal wind_speed rather than signal WindSpeed or signal
windSpeed .
Types, including user defined ones, should be capitalized and CamelCase. E.g.

type Plane = {

 wind_speed: Float,
 ground_speed: Float
}

https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Camel_case

VSCode Extension
The SpecForge VSCode extension provides a comprehensive development environment for writing
and analyzing Lilo specifications. It combines language support, interactive analysis tools, and
visualization capabilities in a unified interface.

See the VSCode extension installation guide to get setup.

Overview

The extension provides:

Language Support: Syntax highlighting, type-checking, and autocompletion via a Language
Server Protocol (LSP) implementation
Diagnostics: Real-time checking for type errors, unused definitions, and optimization
suggestions
Code Lenses: Interactive analysis tools embedded directly in your code
Spec Status Pane: A dedicated sidebar for navigating specifications and saved analyses
Spec Analysis Pane: Interactive GUI for spec monitoring, exemplification, falsification, etc.
Notebook Integration: Support for visualizing SpecForge results in Jupyter notebooks
LLM Features: AI-powered spec generation and diagnostic explanations

Configuration

The extension requires the SpecForge server to be running. Configure the server connection in
VSCode settings:

API Base URL: The URI for the SpecForge server (default: http://localhost:8080)

Access via Settings → Extensions → SpecForge → Api Base Url
Or use the setting ID: specforge.apiBaseUrl

Enable Preview Features: Enable experimental features including the Spec Status sidebar

Access via Settings → Extensions → SpecForge → Enable Preview Features
Or use the setting ID: specforge.enablePreviewFeatures

Language Features

Parsing and Type Checking

The extension performs real-time checking as you write specifications. Errors will be underlined.
Hovering over the affected code will show the error:

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-vscode-extension.html

The extension will check for syntax errors, type errors, etc.

Document Outline

The extension provides a hierarchical outline of your specification file:

Open the "Outline" view in VSCode's Explorer sidebar
See all specs, definitions, signals, and parameters at a glance
Click any symbol to jump to its definition
The outline updates automatically

Diagnostics

The extension performs various checks automatically and provides feedback.

Hovering over a diagnostic will reveal the message.

Diagnostics include:

Warnings for unused signal s, param s, def s, etc.
Optimization suggestions.
Warnings about using time-dependent expression in intervals (if so configured).

Code Lenses

Code lenses are interactive buttons that appear above specifications in your code, offering
information and possibly actions.

Satisfiability Checking

Above each specification, you'll see a code lens indicating whether the spec is satisfiable:

Here is a spec that SpecForge has detected might be unsatisfiable:

The user can ask for an explanation:

If SpecForge could not decide the satisfiability, it is possible to relaunch the analysis with a longer
timeout.

Redundancy

If the system detects that a spec might be redundant, a warning is show as a code lens:

In this case, SpecForge is indicating that the spec is implied by the specifications noSolarAtNight
and diverseMix , and is therefore not necessary. By clicking Explain , an explanation for the
redundancy is produced:

Spec stubs

If a spec does not have a body, it is a spec stub. In this case a code lens offers to generate the
specification using AI.

Clicking Generate with LLM will produce a definition for the specification, that works with the
current system. If the spec is too ambiguous, or if there is some other obstacle to generation, an
error message will be shown.

Spec Status Pane

To access the spec status panel, click the SpecForge icon on the left hand side of VSCode:

The sidebar lists all the specification files and the specs that are defined:

Clicking Analyze next to a spec will bring you to a spec analysis window. You can use this to launch
various spec analysis tasks: monitoring, exemplification, export, animation and falsification.

For example, to monitor a specification, select Monitor from the dropdown, and choose a data file
to monitor, and click Run Analysis .

The result of the analysis is shown. The blue areas represent the times where the specification is
true. For large data files, only the boolean result is shown. To better understand why a specification
is false at some point, select a point and click Drill Down .

The drill-down has chosen a small enough segment of the full data source in order to present the
debugging tree. This will show a tree of monitoring result for the whole specification. Each node can
be collapsed or expanded. Hovering on the timeline will also highlight relevant regions in sub-
expression result timelines. Hovering on a timeline will display an explanation of why the result is
true or false at that point in time, for that sub-expression.

A spec analysis such as this can be saved by clicking on the Save Analysis button.

Choose a location in your project to save the analysis.

Saved analyses will show up in the spec status side panel, underneath the relevant spec.

Analysis Types

The GUI supports five types of analysis:

1. Monitor

Check whether recorded system behavior satisfies your specification.

Inputs:

Signal Data: CSV, JSON, or JSONL file containing time-series data
CSV: Column headers must match signal names
JSON/JSONL: Objects with keys matching signal names

Parameters: JSON object with parameter values
Options: Monitoring configuration (see Monitoring Options)

Output:

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html#monitoring-options

Monitoring tree showing spec satisfaction over time
Drill-down into sub-expressions
Visualization of signal values

Example:

2. Exemplify

Generate example traces that satisfy your specification.

Inputs:

Number of Points: How many time time points to generate (default: 10)
Timeout: Maximum time to spend generating (default: 5 seconds)
Also Monitor: Whether to also show monitoring tree for the generated trace
Assumptions: Additional constraints to satisfy (array of spec expressions)

Output:

Generated signal data as time-series
Optional monitoring tree if "Also Monitor" is enabled
CSV/JSON export of generated data

Use Cases:

Understanding what valid behavior looks like
Testing other components with realistic data
Creating test fixtures
Validating your specification makes sense

3. Falsify

Search for counterexamples that violate your specification using an external model.

Prerequisites:

A falsification script must be registered in lilo.toml :

Falsification Script Protocol:

Your script receives these command-line arguments:

--system : The system name
--spec : The specification name
--options : JSON string with options
--params : JSON string with parameter values
--project-dir : Path to the project root

The script should:

1. Simulate the system according to the specification
2. Search for a trace that violates the spec
3. Output JSON in the correct format with either success or failure.

Inputs:

{
 "min_temperature": 10.0,
 "max_temperature": 30.0
}

[[system_falsifier]]
name = "Temperature Model"
system = "temperature_control"
script = "falsifiers/temperature.py"

Falsifier: Select from configured falsifiers (dropdown)
Timeout: Maximum time for falsification (default: 240 seconds)
Parameters: JSON object with parameter values

Output:

If counterexample found:
1. Falsification result showing the failing trace
2. Automatic monitoring of the counterexample
3. Visualization of where/how the spec fails

If no counterexample found: Success message

Make sure your script is executable:

4. Export

Convert your specification to other formats.

Export Formats:

Lilo: Export as .lilo format with optional transformations
JSON: Machine-readable JSON representation

Inputs:

Export Type: Select the target format
Parameters: Parameter values (if needed for export)

Output:

Exported specification in the selected format
Can be saved to a file

Use Cases:

Integrating with other tools
Documentation generation
Archiving specifications

5. Animate

Create animations showing specification behavior over time.

Inputs:

SVG Template: Path to SVG file with placeholders
Signal Data: CSV, JSON, or JSONL file with time-series data

Output:

Frame-by-frame SVG images showing system evolution
Can be combined into an animated visualization

SVG Template Format:

Your SVG template should include data- attributes for signal values, e.g.:

chmod +x falsifiers/temperature.py

In this example, the <cicle> elements cy attribute will be animated by the value of the
temperature signal, thanks to the data-cy="temperature" attribute.

Monitoring Options

When running Monitor or Falsify analyses, you can configure these options:

Time Bounds: Restrict monitoring to a specific time range
Sampling: Adjust temporal resolution
Signal Filtering: Monitor only specific signals
(Additional options may be available)

Working with Results

Monitoring Tree

The monitoring tree shows:

Root: Overall spec result (true/false/unknown)
Sub-expressions: Drill down into why the spec is true or false
Timeline: Hover over any expression to see when it's true/false
Highlighting: Relevant segments are highlighted when hovering

<svg
 xmlns="http://www.w3.org/2000/svg"
 width="100"
 height="100"
 viewBox="0 0 40 40"
 role="img"
 aria-label="Transformed ball"
>
 <rect width="100%" height="100%" fill="white" />
 <g transform="translate(0,50) scale(1,-1)">
 <circle cx="20" data-cy="temperature" cy="0" r="3" fill="black" stroke="white" />
 </g>
</svg>

Loading Saved Analyses

Open a saved .analysis.sf file to:

See the original configuration
Re-run the analysis with the same settings
Modify parameters and run again
Export results

The Analysis Editor provides the same interface as the main analysis GUI, but pre-populated with
your saved configuration.

An analysis is a file, if you modify the analysis, you should save it.

Jupyter Notebook Integration

The extension includes a notebook renderer for displaying SpecForge results in Jupyter notebooks.

Activation

The renderer automatically activates for:

Jupyter notebooks (.ipynb files)
VSCode Interactive Python windows

Usage with Python SDK

When using the SpecForge Python SDK, results are automatically rendered:

Snippets

The extension provides Python code snippets for common SpecForge operations (monitor ,
exemplify , export). Type the snippet name and press Tab to insert and navigate through

placeholders.

Troubleshooting

Extension Not Working

Check the SpecForge server:

Ensure the server is running (see Setting up SpecForge)
Verify the API base URL in settings matches your server

from specforge import SpecForge

sf = SpecForge()
result = sf.monitor(
 spec_file="temperature_control.lilo",
 definition="always_in_bounds",
 data="sensor_logs.csv",
 params={"min_temperature": 10.0, "max_temperature": 30.0}
)

result is automatically rendered in the notebook
result

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up.html

Check the server logs for errors

Restart the language server:

Run SpecForge: Restart Language Server from the command palette
Check the "Output" panel (View → Output) and select "SpecForge" from the dropdown

Diagnostics Not Appearing

Trigger a refresh:

Save the file (Ctrl+S / Cmd+S)
Close and reopen the file
Restart the language server

Check server connection:

Look at the status bar for connection status
Verify the server is reachable at the configured URL

Code Lenses Not Showing

Check configuration:

Ensure code lenses are enabled in VSCode: Editor > Code Lens
Save the file to trigger code lens computation

Check for errors:

Look for parse or type errors that prevent analysis
Fix any red squiggles in your code

Analysis GUI Not Loading

Check webview:

Open the Developer Tools: Help > Toggle Developer Tools
Look for errors in the Console tab
Check if the webview iframe loaded

Check server connection:

Verify the API base URL is correct
Test the URL in a browser (should show a JSON response)

Falsification Script Errors

Verify script setup:

Check the script path in lilo.toml
Ensure the script is executable: chmod +x script.py
Test the script manually with example arguments

Check script output:

The script must output valid JSON
Use the correct result format (see Falsify)
Check script logs for error messages

Common issues:

ENOENT : Script file not found (check path)

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html#3-falsify

EACCES : Script not executable (run chmod +x)
Parse error: Invalid JSON output (check script output format)

SpecForge Python SDK
The SpecForge python SDK is used for interacting with the SpecForge API, enabling formal
specification monitoring, animation, export, and exemplification.

Refer to the Setting up the Python SDK guide for instructions on installing and configuring the SDK in
a Python environment.

Quick Start

Core Features

The SDK provides access to core SpecForge capabilities:

Monitoring: Check specifications against data
Animation: Create visualizations over time
Export: Convert specifications to different formats
Exemplification: Generate example data that satisfies specifications

Documentation

See the comprehensive demo notebook at sample-project/demo.ipynb for:

Detailed usage examples
Jupyter notebook integration
Custom rendering features

API Methods

SpecForgeClient(base_url, ...)

Initialize a SpecForge API client.

Parameters:

base_url (str): The base URL of the SpecForge API server (default: "http://localhost:8080")
project_dir (str/Path): Optional project directory path; if not provided, searches up from

current directory for lilo.toml
timeout (int): Request timeout in seconds (default: 30)
check_version (bool): Whether to check for version mismatches on initialization (default: True)

from specforge_sdk import SpecForgeClient

Initialize client
specforge = SpecForgeClient(base_url="http://localhost:8080")

Check API health
if specforge.health_check():
 print("✓ Connected to SpecForge API")
 print(f"API Version: {specforge.version()}")
else:
 print("✗ Cannot connect to SpecForge API")

file:///home/runner/work/specforge/specforge/docs/external/en/book/html/setting-up-python-sdk.html

Example:

monitor(system, definition, ...)

Monitor a specification against data. Returns analysis results with verdicts and optional robustness
metrics.

Key Parameters:

system (str): The system containing the definition
definition (str): Name of the spec to monitor
data_file (str/Path): Path to data file (CSV, JSON, or JSONL)
data (list/DataFrame): Direct data as list of dicts or pandas DataFrame

Note: Provide exactly one of data_file or data
params_file (str/Path): Path to system parameters file
params (dict): Direct system parameters as dictionary

Note: Provide at most one of params_file or params
encoding (dict): Record encoding configuration
verdicts (bool): Include verdict information (default: True)
robustness (bool): Include robustness analysis (default: False)
return_timeseries (bool): If True, return DataFrame; if False, display JSON (default: False)

Examples:

specforge = SpecForgeClient(
 base_url="http://localhost:8080",
 project_dir="/path/to/project",
 timeout=60
)

Monitor with data file and params file
specforge.monitor(
 system="temperature_sensor",
 definition="always_in_bounds",
 data_file="sensor_data.csv",
 params_file="temperature_config.json"
)

Monitor with data file and params dict
specforge.monitor(
 system="temperature_sensor",
 definition="always_in_bounds",
 data_file="sensor_data.csv",
 params={"min_temperature": 10.0, "max_temperature": 24.0}
)

Monitor with DataFrame and get results as DataFrame
result_df = specforge.monitor(
 system="temperature_sensor",
 definition="temperature_in_bounds",
 data=synthetic_df,
 encoding=nested_encoding(),
 params={"min_temperature": 10.0, "max_temperature": 24.0},
 return_timeseries=True
)

Monitor with robustness analysis
specforge.monitor(
 system="temperature_sensor",
 definition="temperature_in_bounds",
 data_file="sensor_data.csv",
 params={"min_temperature": 10.0, "max_temperature": 24.0},
 robustness=True
)

animate(system, svg_file, ...)

Create an animation from specification, data, and SVG template.

Key Parameters:

system (str): The system containing the animation definition
svg_file (str/Path): Path to the SVG template file
data_file (str/Path): Path to data file
data (list/DataFrame): Direct data as list of dicts or pandas DataFrame

Note: Provide exactly one of data_file or data
encoding (dict): Record encoding configuration
return_gif (bool): If True, returns base64-encoded GIF string (default: False)
save_gif (str/Path): Optional path to save the GIF file

Examples:

export(system, definition, ...)

Export a specification to different formats (e.g., LILO format).

Key Parameters:

system (str): The system containing the definition
definition (str): Name of the spec to export
export_type (dict): Export format configuration (defaults to LILO)
params_file (str/Path): Path to system parameters file
params (dict): Direct system parameters as dictionary

Note: Provide at most one of params_file or params
encoding (dict): Record encoding configuration
return_string (bool): If True, return exported string; if False, display JSON (default: False)

Examples:

Display animation frames in Jupyter
specforge.animate(
 system="temperature_sensor",
 svg_file="temp.svg",
 data_file="sensor_data.csv"
)

Save animation as GIF file
specforge.animate(
 system="scene",
 svg_file="scene.svg",
 data_file="scene.json",
 save_gif="output.gif"
)

Get GIF data as base64 string
gif_data = specforge.animate(
 system="temperature_sensor",
 svg_file="temp.svg",
 data=synthetic_df,
 encoding=nested_encoding(),
 return_gif=True
)

exemplify(system, definition, ...)

Generate example data that satisfies a specification.

Key Parameters:

system (str): The system containing the definition
definition (str): Name of the spec to exemplify
assumptions (list): Additional assumptions to constrain generation (default: [])
n_points (int): Number of data points to generate (default: 10)
params_file (str/Path): Path to system parameters file
params (dict): Direct system parameters as dictionary

Note: Provide at most one of params_file or params
params_encoding (dict): Record encoding for the parameters
timeout (int): Timeout in seconds for exemplification (default: 30)
also_monitor (bool): Whether to also monitor the generated data (default: False)
return_timeseries (bool): If True, return DataFrame; if False, display JSON (default: False)

Examples:

Export to LILO format as string
lilo_result = specforge.export(
 system="temperature_sensor",
 definition="always_in_bounds",
 export_type=EXPORT_LILO,
 return_string=True
)
print(lilo_result)

Export with params file
export_result = specforge.export(
 system="temperature_sensor",
 definition="always_in_bounds",
 export_type=EXPORT_LILO,
 params_file="temperature_config.json",
 return_string=True
)

Export with params dict
export_result = specforge.export(
 system="temperature_sensor",
 definition="always_in_bounds",
 export_type=EXPORT_LILO,
 params={"min_temperature": 10.0, "max_temperature": 24.0},
 return_string=True
)

Export to JSON format (display in Jupyter)
specforge.export(
 system="temperature_sensor",
 definition="humidity_correlation",
 export_type=EXPORT_JSON
)

health_check()

Check if the SpecForge API is available and responding.

Returns: bool - True if API is healthy, False otherwise

Example:

version()

Get the API server version and SDK version.

Returns: dict with keys "api" and "sdk"

Example:

File Format Support

Specifications: .lilo files
Data: .csv , .json , .jsonl files

Generate an example with 20 samples
specforge.exemplify(
 system="temperature_sensor",
 definition="always_in_bounds",
 n_points=20
)

Generate example with assumptions
humidity_assumption = {
 "expression": "eventually (humidity > 25)",
 "rigidity": "Hard"
}
specforge.exemplify(
 system="temperature_sensor",
 definition="humidity_correlation",
 assumptions=[humidity_assumption],
 n_points=20
)

Generate example with partial params (solver fills in missing values)
specforge.exemplify(
 system="temperature_sensor",
 definition="humidity_correlation",
 assumptions=[{"expression": "always_in_bounds", "rigidity": "Hard"}],
 params={"min_temperature": 38.0},
 n_points=20
)

Generate example and get as DataFrame
example_df = specforge.exemplify(
 system="temperature_sensor",
 definition="temperature_in_bounds",
 n_points=15,
 also_monitor=False,
 return_timeseries=True
)

if specforge.health_check():
 print("✓ Connected to SpecForge API")
else:
 print("✗ Cannot connect to SpecForge API")

versions = specforge.version()
print(f"API Version: {versions['api']}")
print(f"SDK Version: {versions['sdk']}")

Visualizations: .svg files

Requirements

Python 3.12+
requests>=2.25.0

urllib3>=1.26.0

Temperature Sensor - SpecForge Sample
Project
This is a complete example demonstrating the SpecForge Python SDK capabilities.

Files

temperature_monitoring.lilo - Sample specification for temperature monitoring
sensor_data.csv - Sample sensor data (31 data points with temperature and humidity)
demo.ipynb - Jupyter notebook demonstrating all SDK features
temperature_config.json - Configuration file (parameters) for the temperature monitoring

example
util.lilo - Utility functions for the example

Setup

Note: Hereafter, we recommend users to open temperature_sensor folder with VSCode.

1. Create and Activate a Virtual Environment

It is generally recommended (but not mandatory) to do this in a virtual environment. To do so, follow
these instructions:

2. Install Dependencies

3. Verify Installation

Navigate to the sample project directory
cd temperature_sensor

Create a virtual environment
python -m venv .venv

Activate the virtual environment
On Windows:
.venv\Scripts\activate
On macOS/Linux:
source .venv/bin/activate

Install the SpecForge SDK Wheel
pip install ../specforge_sdk-xxx.whl

Install additional dependencies for the sample project
pip install jupyter pandas matplotlib numpy

Check that the SDK is installed correctly
python -c "from specforge_sdk import SpecForgeClient; print('✓ SDK installed
successfully')"

Running the Examples

Prerequisites

1. Ensure SpecForge API server is running on http://localhost:8080/health
2. Activate your virtual environment (if not already active):

Run the Examples

To check that the extension is working, execute the cells in demo.ipynb . The output of the
monitoring commands should have a visualization.

You may need to make sure your notebook is connected to the correct Pyhton kernel. Often, it is
.venv (Python3.X.X) or ipykernel . It can be configured from the VSCode notebook interface.

Sample Data Overview

The included sensor_data.csv contains:

31 time points (0.0 to 30.0)
Temperature readings (20.8°C to 25.0°C)
Humidity readings (40.9% to 51.5%)

This data is designed to test various specifications including temperature bounds, stability, and
humidity correlation.

Deactivating the Environment

When you're done working with the sample project:

Troubleshooting

Common Issues

1. "Module not found" errors: Ensure the virtual environment is activated and the SDK is
installed with pip install ../specforge_sdk-xxx.whl

2. Connection refused: Make sure the SpecForge API server is running on
http://localhost:8080/health

3. Jupyter not found: Install it with pip install jupyter in your activated virtual environment
4. Missing sample files: Ensure you're in the temperature_sensor directory

On Windows:
venv\Scripts\activate
On macOS/Linux:

source venv/bin/activate

deactivate

Verify Setup

Check Python environment
which python
pip list | grep specforge

Test API connection
python -c "from specforge_sdk import SpecForgeClient; specforge = SpecForgeClient();
print('Health check:', specforge.health_check())"

Changelog
All notable changes will be documented here. The format is based on Keep a Changelog. Lilo
adheres to Semantic Versioning.

v0.5.4 - 2025-11-20

Added

Local signal file monitoring.
Offline licensing for Docker.
Monitoring drill-down.
Monitoring point of interest.
VSCode Extension documentation.
Public Docker image available on GHCR with accompanying docs.
Analysis sidebar now auto-refreshes and shows a spinner while analysis runs.

Change

Monitor tree sample limit increased to 3100.
Spec status is no longer a preview feature.

Fixed

Monitor tree range made responsive.
Styles of the VSCode sidebar.
Sample projects for monitoring are bundled correctly.
Local signal file UX issues resolved.

v0.5.3 - 2025-11-14

Added

A Whirlwind Tour guide.
Offline licenses for SpecForge.
Automated downsampling for monitoring.
Gemini and Ollama LLM provider support.
CLI monitoring commands gained interval and sampling options.
Falsification examples added to the docs.

Fixed

Issue with stale falsifier list.
Module name mismatch error reported location.
CLI commands now run from the project directory.

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://github.com/imiron-io/specforge/compare/v0.5.3...v0.5.4
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/vscode-extension.html
https://github.com/imiron-io/specforge/compare/v0.5.2...v0.5.3
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/tour.html

v0.5.2 - 2025-11-10

Changed

Falsification timeout from 60 to 240 seconds.

Fixed

Errors being reported in multiple files.

v0.5.1 - 2025-11-05

Added

New documentation site: https://docs.imiron.io/.
You can now create animation gif animations.
Projects are setup with a lilo.toml file, see Project Configuration.
Registration of system falsifiers in lilo.toml .
VSCode spec status now lists analysis.
Spec analysis in VSCode.
Run falsification engines from the spec analysis pane.

Changed

Better type errors for conflicting record construction/update.
LLM explanations are localised according to user's VSCode settings.
Unbound variable errors now include a list of in-scope variables with similar spellings.
System globals (signal s and param s) can have attributes, including docstrings.
The command JSON format has changed significantly, as is expected to be stable (backwards
compatible) going forwards. In particular this uses system names, not filenames.
One can specify a param as null (JSON) to remove the default param values.
LLM spec generation will fail for under-specified specifications.
CLI interface is updated to work with modules.

v0.5.0 - 2025-10-14

Added

Default param s: param foo: Float = 42 sets 42 as the default value of parameter foo .
Timeout attributes:

will set the timeout to 3 seconds for analysis tasks on spec foo .
Warning for mismatched server/client versions.
Spec stubs:

#[timeout = 3]
spec foo = ...

spec no_overheat

https://github.com/imiron-io/specforge/compare/v0.5.1...v0.5.2
https://github.com/imiron-io/specforge/compare/v0.5.0...v0.5.1
file:///home/runner/work/specforge/specforge/docs/external/en/book/html/project-configuration.html
https://github.com/imiron-io/specforge/compare/v0.4.12...v0.4.6

creates a "spec stub" (an unimplemented spec). There is also a code action to suggest an
implementation using the docstring, using AI.
Retry analysis with longer timeout: if an analysis times out, there is a code action to retry with a
longer timeout.
Record features:

Record update (including deep)
Field punning.
Path construction and path update.

Warnings for unused def s, signal s and param s.
Code hierarchy in VSCode.
Modules: User can create modules (containing only def and type declarations), and import
them.

Changed

VSCode code lenses resolve one at a time, which results in a much more responsive
experience.

	SpecForge User Guide
	Setting up SpecForge
	Quick Start
	Detailed Setup Instructions

	Setting up SpecForge on Windows
	1. Installation
	MSI Installer (Recommended)
	Standalone Executable
	Using Chocolatey (Recommended)
	Manual Installation

	2. Configure Your License
	3. Configure LLM Provider (Optional)
	4. Start the Server
	5. Install the VSCode Extension
	Next Steps

	Setting up SpecForge on macOS
	1. Download the Executable
	2. Install Dependencies
	3. Configure Your License
	4. Configure LLM Provider (Optional)
	5. Start the Server
	Allowing Execution of the Downloaded SpecForge Binary

	6. Install the VSCode Extension
	Next Steps

	Setting up SpecForge on Linux
	1. Download the Executable
	2. Install Dependencies
	3. Configure Your License
	4. Configure LLM Provider (Optional)
	5. Start the Server
	6. Install the VSCode Extension
	Next Steps

	Setting up SpecForge with Docker
	Prerequisites
	1. Obtain the Docker Compose File
	2. Configure Your License
	3. Configure LLM Provider (Optional)
	4. Start the Server
	5. Install the VSCode Extension
	Updating the Docker Image
	Next Steps

	LLM Provider Configuration
	Supported Providers
	Configuration Methods
	For Executable (Windows, macOS, Linux)
	OpenAI
	Gemini
	Ollama

	For Docker

	Default Models
	Without LLM Configuration

	VSCode Extension
	Installation
	From the VSCode Marketplace
	From VSIX File

	Usage and Configuration

	Setting up the Python SDK
	A Sample Walkthrough

	Project Configuration
	Schema and defaults
	Example lilo.toml

	A Whirlwind Tour
	The Lilo Language: A Brief Introduction
	Running Example
	Spec Analysis
	Monitoring
	Exemplification
	Falsification
	Export

	Next Steps

	Lilo Language
	Types and Expressions
	Comments
	Primitive types
	Units of Measure
	Basic Units
	Compound Units
	Operator Precedence and Associativity
	Parentheses for Grouping

	Operators
	Built-in functions
	Conditional Expressions
	Records
	Construction and Type
	Field punning
	Path field construction
	Record updates with with
	Projection

	Local Bindings

	Systems
	Type declarations
	Signals
	System Parameters
	Definitions
	Specifications

	Modules
	Static Analysis
	Consistency Checking
	Redundancy Checking

	Additional Features
	Attributes
	Default Values for Parameters

	Spec Stubs

	Conventions
	VSCode Extension
	Overview
	Configuration
	Language Features
	Parsing and Type Checking
	Document Outline

	Diagnostics
	Code Lenses
	Satisfiability Checking
	Redundancy
	Spec stubs

	Spec Status Pane
	Analysis Types
	1. Monitor
	2. Exemplify
	3. Falsify
	4. Export
	5. Animate

	Monitoring Options
	Working with Results
	Monitoring Tree
	Loading Saved Analyses

	Jupyter Notebook Integration
	Activation
	Usage with Python SDK

	Snippets
	Troubleshooting
	Extension Not Working
	Diagnostics Not Appearing
	Code Lenses Not Showing
	Analysis GUI Not Loading
	Falsification Script Errors

	SpecForge Python SDK
	Quick Start
	Core Features
	Documentation
	API Methods
	SpecForgeClient(base_url, ...)
	monitor(system, definition, ...)
	animate(system, svg_file, ...)
	export(system, definition, ...)
	exemplify(system, definition, ...)
	health_check()
	version()

	File Format Support
	Requirements

	Temperature Sensor - SpecForge SampleProject
	Files
	Setup
	1. Create and Activate a Virtual Environment
	2. Install Dependencies
	3. Verify Installation

	Running the Examples
	Prerequisites
	Run the Examples

	Sample Data Overview
	Deactivating the Environment
	Troubleshooting
	Common Issues
	Verify Setup

	Changelog
	v0.5.4 - 2025-11-20
	Added
	Change
	Fixed

	v0.5.3 - 2025-11-14
	Added
	Fixed

	v0.5.2 - 2025-11-10
	Changed
	Fixed

	v0.5.1 - 2025-11-05
	Added
	Changed

	v0.5.0 - 2025-10-14
	Added
	Changed

