
README.md 10/31/2021

1 / 21

SPX Graphics Controller

Manage and control graphics for CasparCG and streaming applications.
Readme updated Oct 31 2021. See RELEASE_NOTES.md for latest changes (v.1.0.15).

SPX is professional graphics controller for live television productions and web streaming. Browser based GUI
can control HTML graphics templates on CasparCG server(s) and/or live stream applications such as OBS, vMix
or Wirecast.

spxgc.com

Table of Contents

LIVE DEMO 🔥 and Template TestDrive
Screenshots
Install pre-built packages for Windows, Mac or Linux. Or build from source code.
Run multiple instances
Configuration
UI localization
Add CasparCG server(s)
Projects and rundowns
HTML templates and template definition
Custom controls and Plugins
Using SPX with OBS (or vMix, Wirecast, XSplit...)
Control with external devices (Stream Deck etc)
Product roadmap
Issues and Feedback
MIT License

SPX Graphics Controller can be used to playout lower thirds, bumpers, logos and other on-screen graphics
in live web streams or live TV broadcasts. Content for the graphic templates are entered into elements which

file:///x%3A/GC/RELEASE_NOTES.md
https://github.com/CasparCG/
https://obsproject.com/
https://www.vmix.com/
https://www.telestream.net/wirecast/
https://spxgc.com/

README.md 10/31/2021

2 / 21

are stored on rundowns within projects.

Software is based on a NodeJS server and can be run on Windows, Mac or Linux computers, on-premise or
using cloud instances for remote work scenarios.

Graphic templates are typical HTML templates used with CasparCG and other HTML compatible renderers.
Integrating existing templates with SPX is done by adding a template definition (javascript-snippet) to them.

Originally SPX was developed by SmartPX for YLE, a public broadcaster in Finland. Thanks Markus Nygård for
the challenge! 🤘

If you need custom HTML templates or functionality get in touch tuomo@smartpx.fi.

Live demo 🔥
SPX running in the cloud: http://35.228.47.121:5000

Please be aware there is just one instance running for demo purposes, so expect clashes and overall
quirky experience if multiple users are logged in at once. Changes made in demo are reset
automatically few times a day. (Also pay attention to the version number, it may not be the latest
version.)

Template Store & Testdrive 🔥
A marketplace for free and premium SPX templates and plugins is opened at spxgc.com/store. Each store item
can be testdriven, see these examples:

Template Type Link

Bug - You have logo. Why not show it? Free Test drive

ImageLayer - Pick an image and play. Free Test drive

Texter - An essential template for unbranded text. Premium Test drive

TwoTone - You have logo. Why not show it? Premium Test drive

More ▶ spxgc.com

> Please be aware: just _one instance_ running for demo purposes, so expect clashes and overall quirky
experience if multiple users are logged in at once. Changes made in demo are reset automatically few times a
day.

Screenshots

https://smartpx.fi/
https://www.yle.fi/
https://spxgc.com/store
https://www.spxgc.com/store/Bug-p291293870
http://35.228.47.121:5009/show/Template%20Demo%20-%20Bug
https://www.spxgc.com/store/ImageLayer-p291331877
http://35.228.47.121:5009/show/Template%20Demo%20-%20ImageLayer
https://www.spxgc.com/store/Texter-p291207513
http://35.228.47.121:5009/show/Template%20Demo%20-%20Texter
https://www.spxgc.com/store/Two-Tone-p245011856
http://35.228.47.121:5009/show/Template%20Demo%20-%20Two-Tone%20Pack
https://www.spxgc.com/

README.md 10/31/2021

3 / 21

SPX's UI is browser based and can be operated with
a mouse or keyboard. Additonal extra controls can
be added as plugins to execute specific tasks or to
trigger events in external devices.

Content is managed in projects. Each project can
have unlimited amount of rundowns and graphics
templates. Projects and their rundowns and settings
are stored in dataroot -folder.

Main Controller: rundown with few items and a local
preview. Items can be edited and controlled also
with keyboard shortcuts. Fullscreen viewing mode
recommended. Buttons below preview are
customizeable.

An introduction video on Youtube. There are more
images in the screenshots -folder.

Installation
SPX can be installed using a ready-to-go binary package which includes all required software components.
Developers can alternatively get the full source code and run SPX with npm scripts, see section install source

https://www.youtube.com/watch?v=e5LTFC9MlOI

README.md 10/31/2021

4 / 21

code.

Source is updated more frequently than binary packages. See package.json file for current version.

Available pre-built packages:

Package
Build
date

Notes

Windows
SPX_1_0_15_win64.zip

Oct
31
2021

The app is cross-platform and is mostly developed and tested on
Windows. Approx 56% users are on Windows.

MacOS
SPX_1_0_15_macos64.zip

Oct
31
2021

The "wrong folder" macOS issue (#3) got fixed in v1.0.12. If any
installation issues, please see this Knowledge base article. 6% of
current users are on Mac.

Linux
SPX_1_0_15_linux64.zip

Oct
31
2021

Tested with some flavours of Debian and Ubuntu but user's input is
appreciated here, see feedback. 38% of users are on Linux

For links to older packages see RELEASE_NOTES. Please get in touch if you have problems downloading
or installing these files.

Option 1: Install a pre-built package
Download a zip-file for your system using one of the links above.
Create a new folder for the app (for example on Windows C:/Program Files/SPX/, or on Linux /SPX
).
Extract the zip-file to that folder.
Locate the executable (for example SPX-GC_win64.exe on Windows) and double click it to start the
SPX server. A console window should open (and remain open) and show some startup information.
Chrome browser should launch automatically at server start-up. This can be disabled with a setting in
config.json.
When running application the first time it will create a file structure shown in the below screenshot.
Note: unzipping and running SPX does not usually require admin priviledges.
On Linux or Mac you may need to add execute permission to the file (chmod a+x SPX-GC_linux64
[or ...macos64]) and launch it in a console (./SPX-GC_linux64 [or ...macos64]). See this KB
article
See next steps in section first launch.

file:///x%3A/GC/package.json
https://storage.googleapis.com/spx-gc-bucket-fi/installers/1.0/SPX-GC_1_0_15_win64.zip
https://storage.googleapis.com/spx-gc-bucket-fi/installers/1.0/SPX-GC_1_0_15_macos64.zip
file:///issues/3
https://spxgc.tawk.help/article/spx-gc-installation-steps
https://storage.googleapis.com/spx-gc-bucket-fi/installers/1.0/SPX-GC_1_0_15_linux64.zip
file:///x%3A/GC/RELEASE_NOTES.md
https://spxgc.tawk.help/article/make-executable

README.md 10/31/2021

5 / 21

Option 2: Install from source code
Developers can get the source code from the repository with git and run the application using NodeJS and
npm.

Create an empty folder on your system and fetch the source code using a git clone command:

git clone https://github.com/TuomoKu/SPX-GC.git

After downloading the source, install required additional dependencies (node_modules) with

npm install

See package.json for available scripts, but in development the typical start script would be npm run
dev which will use nodemon to restart the server when changes are made to source files.

npm run dev

pm2 process manager

Installation of pm2 process manager (https://pm2.keymetrics.io/) can help in advanced production
scanarios.
To run the server in production mode use npm start which will run the server in the background with
pm2 process manager which will automatically restart the server if a crash occurs. Deeper usage and
configuration options of pm2 is outside the scope of this readme-file.

npm start

Run multiple instances

To run several instances of SPX (on different ports) with pm2 prepare a ecosystem.config.js -file to
same folder as config.json with details of each instance, such as:

// Example "ecosystem.config.js" file for pm2 to run multiple instances of SPX.

module.exports = {
 apps : [
 {
 'name': 'GC1',
 'script': 'server.js',
 'args': 'config.json'
 },
 {

https://git-scm.com/
https://nodejs.org/
https://www.npmjs.com/
https://pm2.keymetrics.io/

README.md 10/31/2021

6 / 21

 'name': 'GC2',
 'script': 'server.js',
 'args': 'config5001.json'
 }
]
};

Then launch multiple instances with pm2:

pm2 start ecosystem.config.js

Stop all running instances

pm2 kill

First launch
Open web browser (such as Chrome) and load SPX gui from url shown in the console at the start-up:

 SPX url:
 http://127.0.0.1:5000

Port 5000 is the default value in config and can be changed.

If installation and server start-up worked, you should see a Config screen in your browser asking a preference
regarding user access.

README.md 10/31/2021

7 / 21

There are two alternatives:

YES: Username and password are reguired to access the application.
NO: Application will not require a login.
This config screen is shown

at first startup, or
when config.json is missing, or
when config.json has username but password is left empty

Depending on the selection made, you will either be asked to login or you land to the Welcome page and you
are free to explore the application. If password is given it will be stored in the config-file in unreadable,
encrypted format.

By default the dataroot has one "Hello world" -project with "My First Rundown" in it for demonstration
purposes.

Start making configuration changes or creating projects and adding templates and adding those to rundowns
for playout.

You can also follow these steps to get yourself familiarized with the application:

1. Open SPX in browser, typically at http://localhost:5000
2. Choose 'no login' policy by selecting No option and click Save
3. Go to Projects
4. Add a new project, for instance My First Project. (Project's settings opens.)
5. Click [+] button to add the first template to the project
6. Browse to smartpx > Template_Pack_1 -folder and choose SPX1_INFO_LEFT.html -template
7. Go back to Projects
8. Double click My First Project to open it
9. Add a new rundown to this project, for instance My First Rundown. (The new empty rundown opens.)

README.md 10/31/2021

8 / 21

10. Click [+] button to add an item to the rundown
11. Pick SPX1_INFO_LEFT -template
12. Double click rundown item to edit it, enter "Hello world!" and click Save to close the editor
13. Play the item with SPACEBAR or by clicking on PLAY button at the bottom of rundown list.

Congratulations! Now go back to your project's settings and add more templates to it...

When a new version becomes available it will be shown on the Welcome page of the application.

App configuration options
Application DOES NOT come with config.json and it will be generated at server start up.

SPX uses a JSON file to store configuration settings, such as folder paths, playout server settings or user
interface language options. Most of the settings can be changed from the configuration page.

Some rarely used settings are left out from configuration page and can be changed by manually modifying
the config file in a text editor.

The default configuration file name is config.json but it is possible to run the server with a specific
configuration file. For instance you might have two instances running on the same system, using shared
project files and templates but on different server ports and using different renderers. (See also pm2 process
manager)

README.md 10/31/2021

9 / 21

To run the server with another config, provide the config file as the first command line argument, for example:

SPX-GC_win64.exe myOtherConfig.json

An example config.json of the SPX server

{
 "general": {
 "username": "admin",
 "password": "",
 "hostname": "My main machine",
 "langfile": "english.json",
 "loglevel": "info",
 "logfolder": "X:/GC-DEV/LOG/",
 "port": "5000",
 "dataroot": "X:/DATAROOT/",
 "templatefolder": "X:/GC-DEV/ASSETS/templates/",
 "templatesource": "spxgc-ip-address",
 "launchchrome": "true"
 },
 },
 "casparcg": {
 "servers": [
 {
 "name": "OVERLAY",
 "host": "localhost",
 "port": "5250"
 },
 {
 "name": "VIDEOWALL",
 "host": "128.120.110.1",
 "port": "5250"
 }
]
 },
 "globalExtras": {
 "customscript": "/ExtraFunctions/demoFunctions.js",
 "CustomControls": [
 {
 "ftype": "button",
 "bgclass": "bg_black",
 "text": "ANIMATE OUT",
 "fcall": "stopAll()",
 "description": "Take all layers out"
 },
 {
 "ftype": "button",
 "bgclass": "bg_red",
 "text": "PANIC",
 "fcall": "clearAllChannels()",

README.md 10/31/2021

10 / 21

 "description": "Clear playout channels"
 }
]
 }
}

Please note: the server will fail to start if config is not valid JSON. You can use JSONLint to validate
JSON data.

Config parameters
general.username / password If username is present but the password is left blank, the app will ask for
login policy, just as with first launch. When both are entered the password is saved here (encrypted) and a
logic is required to start a session.

general.templatefolder contains the HTML templates and their resource files (css, js, images, etc). This
root folder is used by SPX's template browser and 'Explore templates folder' menu command (Win only). For
playout folder see templatesource parameter below.

general.templatesource (Added in v 1.0.9) For CasparCG playout the templates can be loaded from the
filesystem or via http-connection provided by SPX. Supported values are:

spxgc-ip-address to automatically use SPX's IP address and http -protocol for playing out templates
from SPX's template folder. This is the default behaviour.
casparcg-template-path to playout templates from target CasparCG server's file system template-
path. (See caspar.config file) Note, in this workflow the templates must be in two places: in SPX
ASSETS/templates -folder and CasparCG's templates folder. And if a changes are done to either
location, those changes should also be done to the other. rsync or other mirroring technique should
be considered...
http://<ip-address> manually entered address can be used when the automatically generated IP
address is not usable. For instance Docker containers or VM hosted instances may expose internal IP
address which can not be accessed from outside.

Please note templatesource only affects CasparCG playout and not web playout. Also file:// protocol is
more restrictive in using external data sources and it can yield javascript errors, such as CORS.

general.langfile is a file reference in locales-folder for a JSON file containing UI strings in that language.
Folder is scanned at server start and files are shown in the configuration as language options. There are some
hardcoded strings in the UI still which are gradually improved. Some texts are "user settings" (plugin and
extension UI texts, template instructions) and cannot be added to the locale strings.

If you want to add your own language you have to options: You can copy an existing file to another
name and modify it's contents or better yet: make a copy of a Google Sheet language document of
locale strings and use that to create the locale file. You can also contribute to the project by
submitting your language back to the project. See the Google Sheet for instructions.

Localization credits:

Language Contributor Bundled in version

https://jsonlint.com/
https://docs.google.com/spreadsheets/d/1I5sJW1vTCpBe2WyqxUxl42Lyc6tsYf0-VbiDFIgsnvA/edit#gid=1071261648

README.md 10/31/2021

11 / 21

Language Contributor Bundled in version

Dutch Koen Willems, Netherlands v1.0.12

general.loglevel default value is info. Other possible values are error (least), warn, verbose and debug
(most log data). Log messages are shown in the SPX console window and are stored into log files in logfolder.
The active file is named access.log. Log files can be useful in troubleshooting, verbose is the recommeded
level for troubleshooting. If further analysis is needed debug level produces even more information.
Remember to set log level back to info since heavy logging will increase disk usage and may effect software
performance.

globalExtras{} are additional user interface controls, or plugins, shown below preview window in all project
as opposed to projectExtras which are project specific. Each item has an UI component (a button) and
associated function call available in the specified javascript file. When a new config.json is created it
has some demo extra controls to introduce related consepts and possibilities.

PLEASE NOTE: Global extras will be replaced by Plugins in future versions, since they are easier to
install and maintain.

Adding CasparCG server(s)
⚠ If SPX is used with CasparCG version 2.3.x LTS is recommended. See CasparCG Releases.

Starting from v.1.0.12 SPX does not have a CasparCG server assigned by default in the configuration. To add
CasparCG server(s) go to Configuration and scroll down to CasparCG servers. Add a new server by giving it
name such as OVERLAY, ip-address (or localhost) and a port number (5250 is CasparCG's default port).
Click on Save at the bottom of the page and there will be an empty line to add another server. Add as many
as you have in your production, such as OVERLAY (for CG's), VIDEOWALL, FULLSCREEN etc...

The name OVERLAY is preferred, since this name is used in all SPX Store templates and the default
template pack which comes with the application.

Each SPX template has a setting for
choosing a target CasparCG server.
This server is assigned in the
template settings within Project
Settings. (Default value comes to
the project from the HTML
sourcecode of the template as the
'playserver' -parameter of the
TemplateDefinition object.) The
name must match with one of
configured servers for the playout
to work.

If you have problems during playout it is recommeded to set log level higher and observe SPX console
window messages for potential cause.

https://github.com/CasparCG/server/releases
https://spxgc.com/store

README.md 10/31/2021

12 / 21

REMEMBER SPX server process must be restarted whenever changes are made to configuration.

Projects and rundowns
All content in SPX is stored as files in dataroot folder which is specified in the configuration.

Projects are subfolders in the dataroot-folder
Rundowns are files in project subfolders.

Projects can be added and removed on the Projects page and rundowns can be added and removed inside
project on the Rundows page. Most changes are saved automatically. If the UI becomes unresponsive it is
usually fixed by refreshing the current page (Ctrl+R).

File structure of dataroot:

⏵ LOG
⏵ ASSETS
⏷ DATAROOT
 ┝━⏵ Project A
 ┝━⏵ Project B
 ┕━⏷ Project C
 ┝━━ profile.json
 ┕━⏷ data
 ┝━ Rundown 1.json
 ┕━ Rundown 2.json

Typically users don't need to do any manual file management using computer's filesystem.

Project specific settings, such as assigned templates and project extras are stored into profile.json within
each project folder.

A static background image can be assigned to a project in the Project Settings. A use case for this might be
a chroma image to help in chroma keying in a vision mixer such as ATEM. Another creative use is to have a
logo or border or other design element onscreen all the time. A transparent PNG (with an alpha channel) can
be used. The background image must be placed to ASSETS/media/image/hd folder and it will appear in the
dropdown.

Templates can be added to a project on the project settings page. When a template (a .html file) is browsed
and selected, the system will scan the file and search for a template definition which will tell SPX what kind of
input fields should be generated for that template and how the template is planned to be played out.
Template defaults are stored to project's profile.json (as "copy") and if HTML template's definition related
details are changed afterwards the template must be imported to the project again. The system does not re-
scan added templates.

If selected template does NOT have template definition it will cause an
error:templateDefinitionMissing -message. See section html templates.

README.md 10/31/2021

13 / 21

showExtras are additional user interface controls, or plugins, shown below preview window in current project
as opposed to globalExtras which are shown in every project. Each item has an UI component (a button) and
associated function call available in the specified javascript file.

An example projects settings <PROJECT>/profile.json:

{
 "templates": [
 {
 "description": "Hashtag one-liner",
 "playserver": "OVERLAY",
 "playchannel": "1",
 "playlayer": "7",
 "webplayout": "7",
 "out": "4000",
 "uicolor": "7",
 "onair": "false",
 "dataformat": "xml",
 "relpath": "myTemplates/ProjectA/hashtag.html",
 "DataFields": [
 {
 "field": "f0",
 "ftype": "textfield",
 "title": "Social media hashtag",
 "value": "#welldone"
 }
],
 }
],
 "showExtras": {
 "customscript": "/ExtraFunctions/demoFunctions.js",
 "CustomControls": [
 {
 "description": "Play simple bumper",
 "ftype": "button",
 "bgclass": "bg_orange",
 "text": "Bumper FX",
 "fcall": "PlayBumper",
 },
 {
 "description": "Corner logo on/off",
 "ftype": "togglebutton",
 "bgclass": "bg_green",
 "text0": "Logo ON",
 "text1": "Logo OFF",
 "fcall": "logoToggle(this)"
 },
 {
 "description": "Sound FX",
 "ftype": "selectbutton",
 "bgclass": "bg_blue",
 "text": "Play",

README.md 10/31/2021

14 / 21

 "fcall": "playSelectedAudio",
 "value": "yes.wav",
 "items": [
 {
 "text": "No!",
 "value": "no.wav"
 },
 {
 "text": "Yesss!",
 "value": "yes.wav"
 }
]
 },
]
 }
}

The above project has just one template (hashtag.html) assigned with three extra controls of
different types.

Custom control's ftype can be

button: a simple push button (with text as caption)
togglebutton: button with separate on / off states
selectbutton: a select list with an execute selection button
ftypes

hidden value is used, title shown
textfield a typical input field
dropdown options provided as an array

"items":[{"text": "Hundred", "value": 100}, {"text": "Dozen", "value":
12}]
value is one of the item array values

caption text of "value" is shown in UI. Useful with static graphics.

Templates
SPX uses HTML templates for visuals.

Templates can have any features supported by the renderers, such as Canvas objects, WebGL animations, CSS
transforms and animations, animation libraries, such as GSAP, ThreeJS, Anime, Lottie/Bodymovin and
templates can utilize ajax calls for data visualizations and other advanced uses.

SPX comes with a starter template package for reference. See folder
ASSETS/templates/smartpx/Template_Pack_1

Video: Use existing HTML templates.

https://github.com/TuomoKu/SPX-GC/tree/master/ASSETS/templates/smartpx/Template_Pack_1
https://www.youtube.com/watch?v=AdZATSBByng

README.md 10/31/2021

15 / 21

Recommended folder structure for templates

⏵ LOG
⏵ DATAROOT
⏷ ASSETS
 ┝━⏵ video
 ┝━⏵ media
 ┕━⏷ templates
 ┝━⏵ smartpx
 ┝━⏵ yle
 ┕━⏷ myCompany
 ┝━⏵ ProjectA
 ┕━⏷ ProjectB
 ┝━⏵ css
 ┝━⏵ js
 ┝━ Template1.html
 ┕━ Template2.html

The templates must be within ASSETS/templates folder structure. It is preferred to have a single
subfolder for all your templates (myCompany in the example above) and futher subfolders for different
template packs or visual styles within it (ProjectA, ProjectB in the example).

SPX user interface and web playout always loads templates from ASSETS/templates folder, but CasparCG
playout can be configured to playout copied templates from template-path folder configured in CasparCG
Server caspar.config -file.

SPXGCTemplateDefinition -object in templates
IMPORTANT: Each HTML template must have an JSON data object present in the HTML-files source
code, within the HEAD section. Video: use existing HTML templates covers also this topic.

TemplateDefinition configures how a template is supposed to work within SPX; what kinds of controls are
shown to the operator and how the graphic should playout, on which server and layer for instance. These
values are template's defaults and can be changed in the Project Settings view after the template is added
to the project.

See details about supported values below the snippet.

<!-- An example template definition object for SPX. -->
<!-- Place it as the last item within the HEAD section -->

<script>
 window.SPXGCTemplateDefinition = {
 "description": "Top left with icon",
 "playserver": "OVERLAY",
 "playchannel": "1",
 "playlayer": "7",
 "webplayout": "7",
 "steps" : "1",

https://www.youtube.com/watch?v=AdZATSBByng

README.md 10/31/2021

16 / 21

 "out": "manual",
 "uicolor": "2",
 "dataformat": "json",
 "DataFields": [
 {
 "ftype" : "instruction",
 "value" : "A example demo template definition. Learn what it does
and make use of it's capabilities."
 },
 {
 "field" : "f0",
 "ftype" : "textfield",
 "title" : "Info text",
 "value" : ""
 },
 {
 "field": "f1",
 "ftype": "dropdown",
 "title": "Select logo scaling",
 "value": "0.3",
 "items": [
 {
 "text": "Tiny logo",
 "value": "0.3"
 },
 {
 "text": "Huge logo",
 "value": "1.2"
 }
]
 },
 {
 "field" : "f2",
 "ftype" : "textarea",
 "title" : "Multiline field",
 "value" : "First line\nSecond line\n\nFourth one"
 },
 {
 "ftype" : "divider"
 },
 {
 "field": "f3",
 "ftype": "filelist",
 "title": "Choose background image from global ASSETS-folder",
 "assetfolder" : "/media/images/bg/" ,
 "extension" : "png",
 "value": "/media/images/bg/checker.png",
 },
 {
 "field": "f4",
 "ftype": "filelist",
 "title": "Choose CSS stylesheet from template's relative styles-
folder",
 "assetfolder" : "./styles/" ,

README.md 10/31/2021

17 / 21

 "extension" : "css",
 "value": "./styles/defaultStyle.css",
 },
 {
 "field": "f5",
 "ftype": "number",
 "title": "Rotation degrees",
 "value": "45",
 },
 {
 "field": "f6",
 "ftype": "checkbox",
 "title": "Show logo",
 "value": "1",
 },
 {
 "field": "f7",
 "ftype": "button",
 "title": "Click me",
 "descr": "Describe button function here",
 "fcall": "myCustomHello('world')"
 }
]
 };
</script>

playserver: one of the available CasparCG server names in config or "-" for none
playchannel: CasparCG playout channel
playlayer: CasparCG playout layer
webplayout: a number between 1..20, or "-" for none

Layer is a number between 1..20. Layer 1 is at the very back and 20 is the highest ("closest to the
camera"). Layers can be changed for each template in each project separately in the Project Settings.

out: how layer should be taken out:
manual default way: press STOP to animate out
none play only. Suitable for wipes / bumpers
[numeric] milliseconds until STOP is executed

steps: how many phases in animation? For normal in-out templates this is 1. For templates with 2 or
more steps the Continue button gets enabled.
dataformat: how template is expecting data

xml the default
json used in some special templates

ftypes
ftypes (for field types) define template's GUI controls in SPX controller
the values of first two fileds are used as content preview in the rundown, so the order of fields
should be considered for the ease of use
The developer of the HTML template can consider how to utilize these values, for instance a
dropdown control can be used to pick the name of the show host, or it can drive other values via
javascript in the templates. See /ASSETS/templates/smartpx -folder for some inspiration.

README.md 10/31/2021

18 / 21

Field type Description Example

hidden
A variable which is not editable by the user. Value is used by the
template and, title shown as static text on UI.

Red color
(#f00)

caption
The value is shown in UI. Caption can be used to display texts to
operators of the template.

This template
does not have
editable values

textfield A typical single line text input field.
Firstname
Lastname

dropdown

A dropdown selector list. Options is an items array, each consisting
of text (which is visible) and the value (which the template will use).
The default selection is defined as value and it must be one of the
values in the items array. See an example definition above.

"items":[
{"text":
"Hundred",
"value": 100},
{"text":
"Dozen",
"value": 12}]

textarea
A multiline text control which accepts return key for new lines.
(Added in 1.0.2)

First line \n
Second line

filelist

A dropdown selector list for files of of given type extension in an
assetfolder within ASSETS -folderstructure of SPX. This is useful for
picking images or other media files in templates. (Added in 1.0.3).
Version 1.0.15 introduced relative folders. If assetfolder path
value starts with "./" the path is considered relative to the
template root folder. This is useful for optional CSS styles or
alternative images. See examples of both path styles above.

sport_logo.png,
news_logo.png

divider
A utility ftype to add a visual divider to a template. Can be used to
create visual seqments for ease of use. (Added in 1.0.3)

instruction
Value can be used as a longer help text on the template but does
not have any other functionality. (Added in 1.0.6)

Max 100
characters to
the field
below.

number
Value is exposed as a number field in the template UI. (Added in
1.0.7)

45

checkbox
Title is used as label in UI. Value is "0" or "1" when checked.
(Added in 1.0.10)

Show logo

Note additional user interface controls may be added in future releases.

Anatomy of an example rundown item

README.md 10/31/2021

19 / 21

Using SPX with OBS / vMix / Wirecast...
SPX's animated graphics and overlays can be integrated used in streaming and videoconferencing with any
video- or streaming application which has a support for "Browser" or "HTML Sources". SPX provides a URL
address which is entered to the streaming software as a layer / input / source. In OBS use Browser source, in
vMIX it's called Web Browser input and in XSplit it's a Webpage source...

http://localhost:5000/renderer

If you have several inputs (for instance for multiple presenters) you can limit which layers get's rendered to
different screens with the layers parameter in Renderer url, for instance:

http://localhost:5000/renderer/?layers=[2,4,20]

Control SPX with external devices such as Elgato
Stream Deck...

SPX (v.1.0.8+) rundowns can be loaded and controlled with external devices with http GET/
POST commands. See available commands here:

http://localhost:5000/api/v1

SPX can also be used with Bitfocus Companion, see https://bitfocus.io/companion. Companion version 2 will
have a built in module with presets for SPX.

OSC -protocol is not supported in SPX 1.0.x but will be added in a future version.

README.md 10/31/2021

20 / 21

Plugins and Extensions
Version 1.0.10 introduced ASSETS/plugins -folder for additional functionality, such as custom function
triggering plugin buttons and extensions which are additional user interfaces or panels. For instance
Scoreboard is a sports clock extension with an independent user interface. Another example is a SocialPlayout
- an upcoming extension for moderating and LIVE playout of social messages from various social media
platforms, such as Twitter, Instagram, Facebook, Youtube, etc.

Each plugin has a subfolder with at least an init.js file and optionally other folders and files, such as html, css
and js.

plugins/lib -folder contains common SPX user interface elements used by plugins. More functionality and
UI controls will be added here in future releases. These can be checkboxes, dropdown selectors etc.

Issues and Feedback
A Knowledge Base at spxgc.tawk.help is a growing collection of self-help articles in various SPX related
topics.

Github issue tracker should be used for bug reports. For other feedback such as feature requests or other
comments (for now at least) please use Google Forms feedback form at
https://forms.gle/T26xMFyNZt9E9S6d8. All constructive feedback is highly appreciated!

Gotcha's & Known Issues (things to be aware of)

If UI becomes wonky reload the view (F5 / Ctrl+R).
There is spagetti code whenever worked tired. Try to accept it...
Undocumented features do exist. (templateEvents, TTS, pm2, cfg:hostname/usercommapass/greeting...)
This list shouldn't be. At least not here.

Roadmap
New releases will try address found issues and bugs in older versions and they will also introduce new features
and functionality. See table for some planned features and use feedback to submit suggestions.

When a new version becomes available it will be promoted on the Welcome page of the application (if
access to internet). Several versions can be installed (into different folders) and if there are no
backwards compatibility issues between versions they can be configured to use the same dataroot and
template -folder.

Release Planned features (subject to change) Timeframe

https://www.spxgc.com/store/Scoreboard-plugin-p313595701
https://spxgc.tawk.help/
https://github.com/TuomoKu/SPX-GC/issues
https://forms.gle/T26xMFyNZt9E9S6d8

README.md 10/31/2021

21 / 21

Release Planned features (subject to change) Timeframe

1.1

Mac install folder issue (#3) fix. Help page update, internal logic change to fix
playlist item issue (#1), http protocol for CasparCG templates, simple rundown
view for mobile / tablet browsers, automatically running rundowns, item
grouping, textarea control, item / file duplication. Project and rundown rename.
Export/import CSV

TBD

X.X

Under consideration: OSC support, Built-in NDI support, mediafile picker, video
playback control templates, graphics preview, MIDI interface, global extras editor
in appconfig, public API for controls, HTML template store, community
marketplace. Video tutorials. Knowledgebase. Forum. Slack support channel.
Free lunches.

TBD

Strikethrough items are already done.

MIT License

Copyright 2020-2021 Tuomo Kulomaa tuomo@smartpx.fi

This project is licensed under the terms of the MIT license. See LICENSE.txt

file:///issues/3
file:///issues/1
mailto:tuomo@smartpx.fi
file:///x%3A/GC/LICENSE.txt

