Why the 90th?

"Maximized" Water Quality Capture Volume

Guo & Urbonas

Step 1 Determine the 90th Percentile Precipitation Depth, d

Obtain long-term reliable rainfall data.

- 1. Active rain gage
- 2. 30 years of data
- 3. 90% data coverage

Rainfall data sources

Daily rainfall summaries

Other sources that meet criteria

90th Percentile Depth at 83 Utah Rain Gages 1.00" - 1.50" 1 0.95" - 1.00" 0 0.90" - 0.95" 4 0.85" - 0.90" 2 0.80" - 0.85" 7 0.75" - 0.80" 2 0.70" - 0.75" 10 0.65" - 0.70" 16 0.60" - 0.65" 11 0.55" - 0.60" 19 0.50" - 0.55" 9 0.45" - 0.50" 10 0 5 15 20 Number of Rain Gages

Appendix A

STATION	NAME	LATITUDE	LONGITUDE	ELEVATION (FT)	90TH PERCENTILE DEPTH (IN)
USC00420074	ALTAMONT, UT US	40.3670	-110.2986	6456	0.53
USC00420086	ALTON, UT US	37.4402	-112.4819	7098	0.81
USC00420168	ANGLE, UT US	38.2486	-111.9608	6410	0.53
USC00420336	ARCHES NATIONAL PARK HQS, UT US	38.6163	-109.6191	4093	0.56
USC00420527	BEAVER CANYON POWER HOUSE, UT US	38.2682	-112.4818	7275	0.74
USS0011J46S	BEAVER DIVIDE, UT US	40.6100	-111.1000	8280	0.70
USS0011H08S	BEN LOMOND PEAK, UT US	41,3800	-111.9400	8000	1.50
USS0012L07S	BIG FLAT, UT US	38.3000	-112.3600	10349	0.90

Usually between 0.50" and 0.85"

Step 2 Determine the Project's Imperviousness

Imperviousness =

Impervious Area within Project Limits

Total Project Area

Step 3 Determine the Volumetric Runoff Coefficient, R_V

What is R_v ?

R_v = Monitored Runoff Volume Total Precipitation Volume

- Not the same as the Rational Method C
- R_v is more appropriate for smaller, more frequent storms
- Typically smaller values than C

Methods Used in the Manual

<u>Method 1 – Reese</u> Applicable for urban development $R_V = 0.91 \times imp - 0.0204$

 $\frac{\text{Method } 2 - \text{Hydrologic Soil Groups}}{R_{V-A} = 0.84 \times \text{imp}^{1.302}}$ $R_{V-B} = 0.84 \times \text{imp}^{1.169}$ $R_{V-C/D} = 0.83 \times \text{imp}^{1.122}$

<u>Method 3 – Granato Method</u> Applicable for highways $R_V = 0.225 \times imp + 0.05$; when imp < 0.55 $R_V = 1.14 \times imp - 0.371$; when imp ≥ 0.55

