Front line talk - South African health care workers’ response to the COVID-19 pandemic
• The Recife Political Declaration on Human Resources for Health – **NO health without a WORKFORCE** (WHO, 2013)

• New report: The State of the World’s Nursing 2020 – ‘Nurses are the **backbone** of any health system. Today, many nurses find themselves on the frontline in the battle against Covid-19,’ said Dr Tedros Adhanom Ghebreyesus, ‘This report is a stark reminder of the **unique role** they play, and a wake-up call to ensure they get the support they need to keep the world healthy.’ – nurses make up 65% of South Africa’s health workforce

• Globally, **at the time** of conducting this survey more than 90 000 healthcare workers were infected with COVID-19 and more than 600 deaths have been recorded (Mantovani, 6 May 2020). 17 July 2020 - 1.4 million infections (WHO, 2020)

• Approximately 24 000 South African healthcare workers were diagnosed with COVID-19 in South Africa as at 2\(^\text{nd}\) August 2020, with 181 deaths recorded (Dr Zweli Mkhize, 05\(^\text{th}\) August 2020).

• Labour organisations have called for **stringent measures to protect** healthcare workers in the form of personal protective equipment (PPE), safe transport for those who make use of public transport, regular screening of healthcare workers for COVID-19, rotation of staff and the provision of counselling facilities to assist with the mental and emotional strain of the epidemic (Mlambo, 29 April 2020).
STUDY METHODS
STUDY DESIGN AND RECRUITMENT

Study population
• Health care workers aged ≥ 18 years and older from all nine provinces of South Africa

Time frames
• The survey was conducted from 11 April - 7 May 2020

Ethical approval
• Approval was obtained from the HSRCs Research Ethics Committee (REC 5/03/20).

Recruitment of participants
• Healthcare workers were invited to participate in the online survey on the BINU data free platform: www.hsrc.ac.za/heroes
COMMUNICATION STRATEGY FOR RECRUITMENT

A multi-pronged approach
• Stakeholders and various mediums and platforms utilised to encourage participation.
• Mainstream media (radio and television interviews) as well as social medium platforms (Twitter and Facebook) were used.
• Regular posting across both Facebook and Twitter and two campaigns geo-targeted in an attempt to recruit nurses from all provinces. This social media campaign was seen by 14 560 people and 1106 people engaged with the posts.
• Partners and organisations within the healthcare sector amplified the posts and this further encouraged healthcare workers to participate.

Smart Partnerships
• The study was led by the HSRC in collaboration with the UKZN College of Health Sciences and Edendale Hospital, in KwaZulu-Natal. Support was received from the Health Professions Council of South Africa (HPCSA), the South African Nursing Council (SANC), the South African Democratic Nursing Organisation, the South African Pharmacy Council, other Health Professions Associations as well as the Department of Health HODs in all nine provinces.

Academic and Research Networks
• HSRC and UKZN networks were used extensively.
• Call for participation sent across networks of partners in government, science councils, higher education institutions, non-profit stakeholders, private sector, medical aid organisations and hospital groups.
CONDUCTED EARLY IN EPIDEMIC
11 APRIL – 7 MAY 2020

Total and daily confirmed COVID-19 cases, South Africa
The number of confirmed cases is lower than the number of total cases. The main reason for this is limited testing.

Survey began:
11 April
2003 cases
69 daily cases

Survey ended:
7 May
7808 cases
236 daily cases

Source: European CDC – Situation Update Worldwide – Last updated 11 July, 10:47 (London time) OurWorldInData.org/coronavirus • CC BY
### THEMES, DETERMINANTS, BEHAVIOIRS AND PRACTICES

<table>
<thead>
<tr>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-demographic characteristics</td>
</tr>
<tr>
<td>Knowledge about COVID-19</td>
</tr>
<tr>
<td>Sources of information about COVID-19</td>
</tr>
<tr>
<td>Training for the management of COVID-19</td>
</tr>
<tr>
<td>Self-perceived risk perception (including risk factors)</td>
</tr>
<tr>
<td>Infection prevention and control (IPC)</td>
</tr>
<tr>
<td>Personal protective equipment (PPE)</td>
</tr>
<tr>
<td>Risk to and concern for family members</td>
</tr>
<tr>
<td>Psychological distress (10-point Kessler Scale)</td>
</tr>
<tr>
<td>General health and wellbeing</td>
</tr>
</tbody>
</table>

- 45 close-ended questions
DATA ANALYSIS

• The data were exported from the online platform into MS Excel, processed and analysed in Stata 15.0. Analysts from HSRC and UKZN performed the analyses. Tabulations were performed reporting 95% CIs & p values.

• The data were benchmarked (weighted) to the distribution of South Africa’s health care professional population by age, sex, population group and province. This increases generalizability to the national sample of health care professionals.

• To our knowledge, there was no existing freely available central database of the total health care professional population across various professional categories in South Africa. Therefore we needed to compile and estimate the total health care professional population from individual databases and sources that were freely available.

• The health care professional population estimates by demographic categories were compiled using the following:
  - The total numbers of registered health professionals from the HPCSA by province, sex and population group.
  - The total numbers of registered nurses from the SANC by province, sex and age for 2018. 
  - The estimated proportions of medical practitioners by age and population group. Source Shisana et al. (2004)¹.

RESULTS

11 April – 7 May 2020
DEMOGRAPHIC CHARACTERISTICS
A total of 7,607 healthcare professionals participated in the survey.

78.2% of the sample were female, [95% CI 77.0-79.4]

A fifth were <30 years old, 70% were aged 30-59 years and 10.7% were older than 60 years
Over 60% worked in urban formal localities [95% CI 59.5-63.0]
2.9% worked in remote rural localities [95% CI 2.3-3.7]

- 29% worked in Gauteng,
- 21% worked in KwaZulu-Natal & 14% in the Western Cape;
- the lowest proportion (1.6%) of participants worked in the Northern Cape

<table>
<thead>
<tr>
<th>Province</th>
<th>Urban formal (formal urban areas)</th>
<th>Urban informal (informal settlements, peri-urban areas)</th>
<th>Rural formal (commercial farm areas)</th>
<th>Rural informal (tribal authority areas)</th>
<th>Remote rural (tribal authority areas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Cape</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free State</td>
<td>5,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mpumalanga</td>
<td>5,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North West</td>
<td>5,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpopo</td>
<td>8,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Cape</td>
<td>9,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Cape</td>
<td>13,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KwaZulu-Natal</td>
<td>21,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauteng</td>
<td>29,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nurse practitioners comprised 36.7% of the sample, other health care professional 34.7% and medical practitioners 28.7%.

** Other health care professional: Approximately 14% were physiotherapists and the remaining categories each constituted under 10% of the sample. Nearly 40% classified themselves as “other health care worker”.

- Social Services: 1.9
- Pharmacist: 2.9
- Audio and Speech therapist: 5.3
- Dentist: 5.3
- Dietician: 6.7
- Radiographer: 7.4
- Psychologist: 8.9
- Occupational therapist: 9.1
- Physiotherapist: 13.5
- Other (specify): 39.2
1. The public/private/other sectors were not mutually exclusive.
2. Other work sector included academic, NGO, civil sector

49.4% worked in the public health sector
32.1% worked in the private sector
2.5% indicated they worked in both public and private sectors
KNOWLEDGE OF INCUBATION PERIOD, SYMPTOMS AND TRANSMISSION
The majority of participants (≥60%) across all professional categories were able to identify the correct incubation period of 2-14 days.

Nurse practitioners (59.5%, 95% CI [55.8-63.0]) did not differ significantly from medical practitioners (65.5%, 95% CI [62.5-68.5]) on correct knowledge of the incubation period.
KNOWLEDGE OF COVID-19 TRANSMISSION

BY PROFESSIONAL CATEGORY

Multiple responses on knowledge about COVID-19 transmission showed that the majority (over 70%) of all professional categories identified contact with contaminated surfaces as a mode of transmission.

Responses on contact with contaminated surfaces did not differ significantly between nurse practitioners, medical practitioners and other health care professionals (p>0.05).
KNOWLEDGE OF MAIN SYMPTOMS OF COVID-19:

BY PROFESSIONAL CATEGORY

Over 85% correctly identified cough, sore throat and fever as main symptoms of COVID-19. Significantly fewer nurses correctly identified cough and fever as main symptoms compared to medical practitioners and other health care professionals (p<0.001). Significantly fewer medical practitioners and other health care professionals identified runny nose as a main symptom (p<0.001). Less than 20% incorrectly identified skin rash as a main symptom, with significantly more nurses selecting this option (p<0.001).

NB: Multiple selections were allowed
Significantly more medical practitioners (54.7%) reported that they were confident in their knowledge about COVID-19 than nurse practitioners (41.7%) and other health care professionals (46.7%) (p<0.001).
SOURCES OF INFORMATION ON COVID-19
The NDOH and Official health organisation websites (WHO, CDC) were the most frequently reported information sources.* Over 60% reported using these sources.

Significantly more health professionals working in urban formal areas used official health organisation websites and scientific journals than those working in rural areas.

* Participants were asked to select all the information sources they used. Therefore the information source categories are not mutually exclusive.
Significantly more medical practitioners used official health organisation websites and scientific journals than nurses and other health care professionals.

Significantly more nurses and other health care professionals reported using social media (excluding WhatsApp) than medical practitioners.

Significantly more other health care professionals reported using news websites than nurses and medical practitioners.

* Participants were asked to select all the information sources they used. Therefore the information source categories are not mutually exclusive.
TRAINING RECEIVED ON THE MANAGEMENT OF COVID-19
RECEIVED TRAINING OR INSTRUCTION IN THE FOLLOWING FIELDS:

- The majority indicated they were trained/instructed in screening and workplace infection control (over 70% received training in these fields), followed by isolation procedures and visitor policies (65%).
- Only a quarter reported they had received training in declaring patients as recovered.

![Bar chart showing the percentage of individuals trained in various COVID-19 management areas.](chart.png)

**NB:** Multiple selections were allowed.
There were significant differences among professional categories for each training area (p<0.001). More medical practitioners reported receiving training in every training area compared to nurses and other health care professionals respectively. Among medical practitioners, over 70% reported being trained in each area except for declaring patients as recovered (37.4%). Among nurses, less than half reported being trained in treatment guidelines (41.5%) and declaring patients as recovered (23.1%). Among other health professionals, less than half reported being trained in referrals for testing (47.4%), case definitions (42.9%), treatment guidelines (40%) and declaring patients as recovered (14.8%).

<table>
<thead>
<tr>
<th>Training Area</th>
<th>Nurse Practitioner</th>
<th>Medical Practitioner</th>
<th>Other Health Care Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol for workplace infection control</td>
<td>72.1 ± 6.3</td>
<td>77.2 ± 5.1</td>
<td>69.3 ± 5.7</td>
</tr>
<tr>
<td>Screening people for COVID-19</td>
<td>83.7 ± 4.1</td>
<td>81.7 ± 4.1</td>
<td>74.8 ± 4.1</td>
</tr>
<tr>
<td>Isolation procedures for patients</td>
<td>68.1 ± 5.1</td>
<td>75.6 ± 4.1</td>
<td>68.1 ± 5.1</td>
</tr>
<tr>
<td>Visitor policies</td>
<td>62.7 ± 5.1</td>
<td>73.6 ± 4.1</td>
<td>62.6 ± 5.1</td>
</tr>
<tr>
<td>Referring individuals for testing</td>
<td>76.1 ± 4.1</td>
<td>62.6 ± 5.1</td>
<td>42.4 ± 5.1</td>
</tr>
<tr>
<td>The tests that should be done to make the diagnosis</td>
<td>84.5 ± 3.1</td>
<td>59.2 ± 4.1</td>
<td>44 ± 4.1</td>
</tr>
<tr>
<td>Case definitions</td>
<td>81.6 ± 4.1</td>
<td>56 ± 4.1</td>
<td>41.5 ± 4.1</td>
</tr>
<tr>
<td>Treatment guidelines</td>
<td>70.3 ± 4.1</td>
<td>41.5 ± 4.1</td>
<td>40 ± 4.1</td>
</tr>
<tr>
<td>Declaring patients as recovered</td>
<td>37.4 ± 4.1</td>
<td>37.4 ± 4.1</td>
<td>14.8 ± 4.1</td>
</tr>
</tbody>
</table>
Training Areas where confidence* was high or moderate
Generally over 80% expressed moderate or high confidence in all the training areas in which they reported receiving training or instruction. The exception was visitor policies, where 53% had high confidence in their training in this regard.

Training Areas where confidence* was low
Just over 20% lacked confidence in treatment guidelines. Approximately 16% lacked confidence in declaring patients as recovered. Between 10% and 15% reported low confidence in the other training fields.

Screening people for COVID-19
Referring individuals for testing
The tests that should be done to make the diagnosis
Case definitions
Protocol for workplace infection control
Isolation procedures for patients
Treatment guidelines
Visitor policies
Declaring patients as recovered

Low  Moderate  High  • Percentages are of those who reported having received training or instruction in each field
COVID-19 AND RISK PERCEPTION
Participants had a significantly high self-perceived risk of contracting COVID-19 ($p<0.001$), and this was the same across all the provinces. High risk perception was highest in the North West (71.3%) and Free State (70.1%) and lowest in the Western Cape (53.2%) and Gauteng (54.6%).
Participants had a significantly high self-perceived risk of contracting COVID-19 (p<0.001), and this was the same across all the locality types but lower in urban formal areas.
Nurses had the highest self perceived risk among all professional categories (p<0.001).
There was a significant difference in self-perceived risk of contracting COVID-19 by the overall confidence in knowledge about the disease ($p<0.001$). Those who were not confident in their overall knowledge had a high self perceived risk.
RISK FACTORS FOR CONTRACTING COVID-19

My profession as HCW makes me more susceptible 76.9%
The general public is not following all the guidelines to... 64.1%
Not having adequate PPE 53.9%
The facility in which I work in 36.6%
My place of work is not equipped to deal with COVID-19 35.1%
The section of the facility in which I work 27.1%
My other underlying health conditions 26.0%
Inadequate staff levels at my place of work 21.1%
My age 20.9%
My long working hours 17.3%
I use public transport to come to work 10.4%
My family members do not adhere to guidelines to... 4.4%

The majority of health professionals (76.9%) felt that their profession makes them more susceptible to contracting COVID-19.
My family members do not adhere to guidelines to prevent transmission
I use public transport to come to work
My age
My long working hours
My place of work is not equipped to deal with COVID-19
My other underlying health conditions
Inadequate staff levels at my place of work
The section of the facility in which I work
Not having adequate PPE
The facility in which I work in
My profession as HCW makes me more susceptible
The general public is not following all the guidelines to prevent transmission

Participants who felt that their profession makes them more susceptible to COVID-19 had a significantly higher self-perceived risk of contracting the disease (p<0.001).
PERSONAL PROTECTIVE EQUIPMENT
• All forms of PPE (masks, eye protection (goggles/visor), apron/gown, and gloves) are required for all healthcare situations, except triage of patients. In patient triage, patients are screened using a symptoms-based questionnaire, where only a surgical mask is required for the healthcare professional while maintaining a 1.5 meter distance from the patient.

• The type of mask to be used depends on the situation: N95 respirator masks are recommended for aerosol generating procedures, including sample collection. In all other situations, surgical masks are recommended.

• Aprons are the preferred PPE under most situations, where gowns are only suggested as a possible alternative in procedures or environments where an aerosol may be produced.
Overall over two thirds of participants expressed the need for all forms of PPE, with the exception of rubber boots (58%).

The majority (>90%) expressed the need for environmental controls, eye shields/goggles, gloves and N95 masks.
### KNOWLEDGE OF THE TYPE OF PPE TO BE WORN

#### UNDER SPECIFIC CONDITIONS

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Gloves (%)</th>
<th>Eye Shield or Goggles (%)</th>
<th>Disposable Apron (%)</th>
<th>Surgical mask (%)</th>
<th>N95 mask (%)</th>
<th>Full Gown (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triage of General Patients</td>
<td>82.3</td>
<td>69.5</td>
<td>52.0</td>
<td>37.8</td>
<td>25.5</td>
<td>5.2</td>
</tr>
<tr>
<td>Sample Collection</td>
<td>97.9</td>
<td>90.1</td>
<td>80.2</td>
<td>71.0</td>
<td>69.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Managing Suspected COVID-19 Patients</td>
<td>95.6</td>
<td>91.8</td>
<td>81.8</td>
<td>70.7</td>
<td>64.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Managing Probable or Confirmed COVID-19 Patients</td>
<td>96.7</td>
<td>80.6</td>
<td>85.3</td>
<td>85.3</td>
<td>62.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Aerosol-generating Procedures on COVID-19 Patients</td>
<td>95.4</td>
<td>93.4</td>
<td>91.4</td>
<td>86.8</td>
<td>23.1</td>
<td>6.0</td>
</tr>
<tr>
<td>Critical and Intensive Care of COVID-19 Patients</td>
<td>96.8</td>
<td>95.1</td>
<td>92.5</td>
<td>95.1</td>
<td>62.0</td>
<td>6.1</td>
</tr>
</tbody>
</table>
Overall 45% of all health care professionals were confident in the donning, doffing and correct use of PPE. Overall confidence was higher in the use of PPE than in its availability and accessibility.
Participants who reported that they were ‘not confident at all’ about correct use of PPE had a significantly higher self-perceived risk of contracting COVID-19 (p<0.001).
GENERAL HEALTH AND WELLBEING
The level of concern for personal and family well-being and for passing COVID-19 infection to family members was significantly higher than for other possible issues of concern (p<0.001).
A higher proportion of nurses (41.0%) were extremely concerned about family members and personal health. The level of concern was significantly different by profession (p<0.001).
A higher proportion of nurses (39.4%) were highly concerned about passing infection to family members. The level of concern was significantly different by profession (p<0.001)
Overall approximately 20% of all participants were severely distressed, whilst just over half the sample had low distress. Psychological distress was significantly higher among nurses than medical practitioners and other health care professionals (p<0.001), and among public sector employees than those in the private or other sectors (p=0.012).
Amongst nurses general health and well-being was the lowest (44.4%) as compared to the medical practitioners and other health care professionals. There was a significant difference in the general health and well-being among the professional categories (p<0.001).
There was a significant inverse association between psychological distress and general wellbeing (p<0.05), in that participants with high psychological distress had low levels of general health and well-being. On the other hand health professionals that had high general well-being had low level of psychological distress.
RECOMMENDATIONS

- Health & wellbeing
- Surveillance
- In-service training & continuing medical education
- Communication strategy
- Workplace support
- Infection control, PPE
SURVEILLANCE OF HEALTHCARE WORKERS WITHIN THE HEALTHCARE SYSTEM

- For future research and planning an up-to-date central database of all healthcare professionals and their demographics (age, sex, population group, province working in) in South Africa i.e. public, private and NGO sectors i.e. benchmarking.

- Regular surveillance of healthcare workers within the healthcare system.

- Additional surveillance of healthcare workers should be implemented as part of the response mechanism to pandemics/outbreaks.

- Develop an intentional strategy of inclusion of all healthcare workers across the healthcare sector.

- Clear custodianship of health and safety should be clarified.
COMMUNICATION STRATEGY FOR PUBLIC HEALTH EMERGENCIES

• Communication strategy improvements with clear implementable plans
  • Communication should be motivational, timely, regular, factual and non-sensational i.e. lessons can be taken from WHO briefings and include Q&A for members of the public
  • Communication must identify fake information
  • A mechanism on a platform accessible to all healthcare workers i.e. an information hub that provides data, scientific evidence and information pertaining to evolving information about the new pandemic
  • Consolidated clinical information should be synthesized and disseminated by NDOH structures for all healthcare workers (reliable sources of information)
IN-SERVICE TRAINING AND CONTINUING MEDICAL EDUCATION

• Training should be timely, equitable, impactful and comprehensive.

Improvements can be made on:

Training:

• has to cover the entire scope of patient and disease management
• should be done across all categories of health professionals equitably which should result in confidence in practice
• should combine on-the-job sessions/rehearsals with periodic assessments (combination of patient care and use of PPE)
• Building confidence should be intentional and ideally aimed at healthcare teams rather than individual categories
WORKPLACE SUPPORT AND THE HEALTH SYSTEM

• Support for workplace environments by:
  • Ensuring sufficient infrastructure/spaces for infection control
  • Clear protocols for screening, referral, testing, managing and isolating patients
  • Providing adequate PPE for all staff in accordance with IPC guidelines
  • Strategic allocation of procedures for health professionals with underlying health conditions, to minimize their risk.
  • The sharing of information between facilities across provinces at all levels to share experiences of COVID-19 management

• Motivational communication material to encourage and enforce preventive behaviours (mask wearing, distancing) among South Africans.

• Create public awareness for the need to support the health system i.e. stop smoking, engage in preventive behaviour, support front line workers empathetically.
INFECTION CONTROL, PPE AND THE HEALTH SYSTEM

• Comprehensive training and practice of correct use of PPE
• Instruction on the correct types of PPE to be used in each COVID-19 management procedure
• Adequate provision of all required PPE for all levels of staff
• Communication to the public should include information about PPE for different clinical situations
• Visual depictions of PPE should be consistent with what is locally used
• More emphasis placed on broader infection prevention and control including environmental measures
HEALTH AND WELL-BEING OF HEALTHCARE WORKERS

• Pro-active health and wellbeing programmes should be developed and implemented to support health professionals
  • Core medical curriculums should be adapted to include psychosocial components that would assist maintaining and promoting health and wellbeing
  • The programme must be tailored and targeted for all levels of health professionals, i.e. from primary healthcare workers to ICU nurses, doctors etc.
  • A multi-disciplinary support mechanism for acute situational counselling and debriefing sessions, coping strategies for all levels of health professionals should be implemented
  • Mechanisms for shielding of high risk health professionals and their families need to be put in place
KEY MESSAGES: FROM DATA TO ACTION
What the findings tell us

• 4 in 5 participants were female
• 3 in 5 participants were black African
• 3 in 5 participants came from urban formal areas
• Half of the participants came from the 4 most affected provinces (GP, WC, KZN, EC)
• Nurse practitioners comprised 2 in 5 of the participants
• Half of the participants worked in the public health sector whilst a third worked in the private sector
• About a quarter of participants worked in either the NGO, civil society or academic sector – designated as neither public nor private
• 1 in 10 participants were over 60

Logic for change from data to action

• The findings speak to the responsiveness of the health sector in participating in the survey
• Health professionals over the age of 60 are at greater risk of poorer COVID-19 outcomes
• It is important to understand and designate professional categories and sector correctly

Health Systems Improvement Strategy (Individual, professional, system)

• It underscores the importance of adequately engaging all health professionals in research so that inputs from a diverse range of perspectives within the healthcare sector can be considered to inform policy interventions
• Need to ensure better representation of different groups to have a complete picture of needs. Enhanced methods for both recruitment and data collection should be employed to be more inclusive (beyond online surveys)
• Targeted surveys during disease outbreaks should be part of the routine response mechanism and must be able to rapidly provide key information about the frontline workforce
### KEY MESSAGE 2: KNOWLEDGE

<table>
<thead>
<tr>
<th>What the findings tell us</th>
<th>Logic for change from data to action</th>
<th>Health Systems Improvement Strategy/Policy (Individual, professional, system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 in 5 participants did not know the correct COVID-19 incubation period</td>
<td>• Even though COVID-19 is droplet spread, the small droplets containing the virus can be suspended in the air – this speaks to the uncertainty and complexity of managing a new disease at a clinical level</td>
<td>• Interventions need to be in place to address knowledge gaps in public health emergencies</td>
</tr>
<tr>
<td>3 in 4 of all professional categories correctly identified contact with contaminated surfaces as a mode of transmission.</td>
<td>• What must be noted is that in a new pandemic additional symptoms or changes in criteria come to the fore as evidence emerges (such as loss of taste and smell)</td>
<td>• At a policy level, the uncertainty relating to new pandemics should be managed effectively and pro-actively by government because health professionals are expected to provide answers to the public within a vacuum of uncertainty in the face of a new pandemic</td>
</tr>
<tr>
<td>2 in 5 of all professional categories incorrectly identified COVID-19 as being airborne.</td>
<td>• Special attention may need to be paid to nurse practitioner training to further build their confidence</td>
<td>• Communication of information must be cascaded at all levels as it emerges from trusted sources.</td>
</tr>
<tr>
<td>Knowledge of the correct symptoms is high at the time of data collection</td>
<td></td>
<td>• Responsiveness to new evidence as it emerges is crucial</td>
</tr>
<tr>
<td>Overall, half of the healthcare professionals were confident on their knowledge about COVID-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse practitioners lacked confidence in their knowledge about COVID-19 more than the other categories</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What the findings tell us | Logic for change from data to action | Health Systems Improvement Strategy (Individual, professional, system)
--- | --- | ---
• Overall, two-thirds of health professionals consulted sources of information on COVID-19 from the National Department of Health, from WHO, CDC.
• Compared to health professionals in rural areas, health professionals in urban formal areas relied more on WHO/CDC websites and scientific journals.
• Similarly, medical practitioners vs. all other health professionals relied on WHO/CDC websites (3 in 4 vs 3 in 5) and scientific journals (2 in 5 vs 1 in 5) as sources of information.
• Other health professionals used social media (1 in 4 vs 1 in 5) and news websites (3 in 5 vs 2 in 5) more than medical practitioners.

• In an emerging epidemic all categories of health professionals consult different sources of information in order to care for patients.

• Department of Health should establish a strong communication mechanism.
  • Consolidated clinical information could be disseminated by means of a knowledge synthesis process managed by government.
  • Public health journalists/health correspondents should work with government to ensure that correct, non-sensationalist information is disseminated.

• Information needs to be timely, regular, specific given the dynamic nature of a pandemic.
**KEY MESSAGE 4: TRAINING**

<table>
<thead>
<tr>
<th>What the findings tell us</th>
<th>Logic for change from data to action</th>
<th>Health Systems Improvement Strategy (Individual, professional, system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• About two thirds of health professionals received some form of COVID-19 related training</td>
<td>• The data highlights the status and experiences of training among health professionals in the early days of the pandemic</td>
<td>• Training must be provided timeously before a high case load and throughout as new information comes to the fore</td>
</tr>
<tr>
<td>• Only 1 in 2 were trained in treatment guidelines and 1 in 4 in declaring patients as recovered</td>
<td>• There are variations of training amongst categories of health professionals, which has an impact on level of confidence</td>
<td>• Training has to cover the entire scope of patient and disease management</td>
</tr>
<tr>
<td>• There is a large difference in training received between medical vs nurse practitioners on treatment guidelines, case definitions as well as tests that should be done to confirm diagnosis</td>
<td>• There were areas of training that were not covered at the time of this study</td>
<td>• Training should be done across all categories of health professionals equitably which should result in confidence of knowledge</td>
</tr>
<tr>
<td>• The fields in which health professionals were least frequently trained in, i.e. treatment guidelines and declaring patients as recovered, were also the fields in which confidence in training received was lowest</td>
<td></td>
<td>• Building confidence should be intentional and ideally aimed at healthcare teams rather than individual categories</td>
</tr>
</tbody>
</table>
**KEY MESSAGE 5: RISK PERCEPTION**

<table>
<thead>
<tr>
<th>What the findings tell us</th>
<th>Logic for change from data to action</th>
<th>Health Systems Improvement Strategy (individual, professional, system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Risk perception is lowest in GP and WC. These are the provinces with the highest proportions of health professionals who work in urban formal settings. i.e. 84% of Gauteng participants worked in urban formal areas, 78% of WC participants worked in urban formal areas.</td>
<td>• GP and WC had the highest number of cases at the time of the survey. Cases were also presenting more frequently in urban formal facilities. The health professionals here were more likely to have experienced COVID-19 management first hand or in their facility/practice. At this relatively early phase, their facilities would have successfully managed these patients. This may have reduced fears and panic about COVID-19 management because it became something familiar and manageable instead of unknown.</td>
<td>The health system improvement strategy should be to: 1) Train health professionals to become more knowledgeable and self-efficacious in outbreaks such as COVID-19 by: - send streamlined communications that are targeted, tailored and sensitive to ensure - All communication must be developed to avoid the negative consequences of fear, stigma and denial - Provide comprehensive training in all the fields that will be required in their jobs - Have practical training and application so that health professionals feel confident in them.</td>
</tr>
<tr>
<td>• Risk perception is highest in NW and FS. Urban formal health professionals also consulted scientific literature the most, and may be more knowledgeable and have high trust in the information about COVID-19, therefore making their risk perceptions more realistic.</td>
<td>• Conversely in areas/environments/professions where COVID-19 management is unfamiliar and uncertain, (e.g. NW, FS provinces) the risk can be higher.</td>
<td>2) Ensure safer work environments w.r.t. adequate structural measures and PPE for outbreaks such as COVID-19.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Information sharing between facilities across provinces / districts to share experiences of COVID-19 management, and therefore place risk into realistic contexts.</td>
</tr>
</tbody>
</table>
## KEY MESSAGE 6: RISK PERCEPTION

<table>
<thead>
<tr>
<th>What the findings tell us</th>
<th>Logic for change from data to action</th>
<th>Health Systems Improvement Strategy (Individual, professional, system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Those who were not confident in their overall knowledge about COVID-19 reported a higher self perceived risk.</td>
<td>• Protection Motivation Theory (PMT): general perceptions of the severity/vulnerability of a health threat determines one’s risk perception about a disease.</td>
<td>Given factors 1-5, a risk perception may be heightened or exaggerated and differ from the actual or real risk.</td>
</tr>
<tr>
<td>• Nurses had the highest self perceived risk among all professional categories.</td>
<td>• Perceptions about the severity and vulnerability of the health worker-related risk can be influenced by knowledge and self efficacy in managing the infection in patients. Perceptions must also be viewed in the context of the individuals’ environments.</td>
<td>Keeping the personal risk in perspective will help prevent anxiety, panic and counterproductive coping strategies.</td>
</tr>
<tr>
<td></td>
<td>• Higher risk perceptions occur when the individual has 1) less perceived control over an outcome, 2) when there’s heightened awareness about the disease (e.g. media coverage), 3) when there is uncertainty surrounding the disease and risks, 4) when the risk is novel rather than familiar and 5) when there is less trust in information sources (among other factors).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nurses would be expected to have higher risk perceptions given the nature of their work and more frequent close contact with patients.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nurses reported lower knowledge, less training and were less confident in their training fields which could explain their high risk perception.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As a result of lower knowledge, training and self efficacy, and more frequent personal contact with patients, they may experience 1 and 2 more intensely i.e. heightened awareness, and feel a loss of control in their situational environment.</td>
<td></td>
</tr>
</tbody>
</table>
### KEY MESSAGE 7: RISK FACTORS

<table>
<thead>
<tr>
<th>What the findings tell us</th>
<th>Logic for change from data to action</th>
<th>Health Systems Improvement Strategy (Individual, professional, system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three quarters of health professionals felt that their occupation placed them at higher risk.</td>
<td>Health professionals need to feel as safe and protected as possible, by having appropriately equipped work environments, structural measures for COVID-19 management, and adequate PPE.</td>
<td>Health facilities need to have:</td>
</tr>
<tr>
<td>A third of health professionals felt that where they worked put them at greater risk</td>
<td>Health professionals need to know what PPE is necessary in each situation, so that they do not inaccurately perceive lack of some types of PPE as putting them at increased risk.</td>
<td>- Sufficient infrastructure/spaces and protocols for screening, referral, testing, managing and isolating patients.</td>
</tr>
<tr>
<td>Two thirds felt that the general population are not following the transmission guidelines and therefore putting health professionals at risk</td>
<td>COVID-19 management strategies in facilities must take into account health professionals with underlying health conditions</td>
<td>- Ventilation and environmental controls</td>
</tr>
<tr>
<td>Over half of health professionals felt they did not have adequate PPE which put them at risk</td>
<td></td>
<td>- Adequate PPE for all staff in accordance with IPC guidelines</td>
</tr>
<tr>
<td>A quarter of health professionals felt that their underlying health conditions put them at risk of contracting COVID-19</td>
<td></td>
<td><strong>Encourage and enforce preventive behaviours (mask wearing, distancing) among South Africans. Create public awareness of health systems' burden. Build social buy-in among the public to value the contributions of health professionals/ front-line workers e.g. “We stay here for you, please stay home for us” campaigns and “Clap for our Carers” hour.</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Strategic allocation of procedures for health professionals with underlying health conditions, to minimize their risk.</strong></td>
</tr>
</tbody>
</table>


What the findings tell us | Logic for change from data to action | Health Systems Improvement Strategy (Individual, professional, system)
---|---|---
• Overall over two thirds of participants expressed the need for all forms of PPE | • Knowledge about correct and rational PPE use in clinical situations is crucial, this is not only for best practice but also to ensure sustained PPE stock in a long-term pandemic | • Comprehensive training and application of correct use of PPE, including donning and doffing.  
• The data suggests incorrect knowledge of the use of PPE in some clinical situations, e.g. N95 mask for use in triaging patients, use of surgical mask in critical and intensive care of COVID-19 patients | • There needs to be recognition that PPE is only one aspect of Infection and Prevention Control Measures (IPC), with other aspects such as environmental control measures often overlooked and ignored in the face of media sensationalism | • Adequate provision of all required PPE for all levels of staff  
• 4 in 5 health professionals expressed the need for environmental controls, eye shields/goggles, gloves and N95 masks | • The data shows that confidence in ability (i.e. to control an individual factor, like donning PPE) is higher than confidence in system/infrastructure factors (system factors out of individual control) i.e. supply chain for provision of PPE as well as environmental controls i.e. ventilation | • Instruction on the correct types of PPE to be used in each COVID-19 management procedure  
• Overall confidence in the use of PPE was low. | • Communication to the public should include information about PPE for different clinical situations  
• 1 in 2 health professionals were confident in their personal ability in the correct use of PPE including donning and doffing | • Visual depictions of PPE should be consistent with what is locally used  
• Health professionals indicated their lack of confidence in the availability and accessibility of PPE | • Greater emphasis should be put on the broader infection prevention and control including environmental measures  
• Self perceived risk of contracting COVID-19 was high when confidence in the correct use of PPE was low
<table>
<thead>
<tr>
<th>What the findings tell us</th>
<th>Logic for change from data to action</th>
<th>Health Systems Improvement Strategy (Individual, professional, system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The level of concern for health and wellbeing was significantly different by profession</td>
<td>More nurse practitioners reported serious concerns about passing on the infection to family members and about family wellbeing.</td>
<td>The health systems improvement strategy is to protect health professionals in their work and work environments by:</td>
</tr>
<tr>
<td>Nearly half of nurse practitioners were extremely concerned about family members and personal health.</td>
<td>Nurse practitioners also had higher personal risk perception.</td>
<td>During outbreaks such as COVID-19 a proactive health and wellbeing framework for supporting health professionals should be implemented. The framework should contain a core curriculum which can be adjusted to the specific requirements of the outbreak</td>
</tr>
<tr>
<td>2 in 5 health professionals have extreme concern for their family wellbeing, whilst 1 in 5 health professionals have extreme concern for their own personal wellbeing</td>
<td>Poor mental health affects health workforce capabilities and staff performance and morale.</td>
<td>The framework needs to be tailored and targeted for all levels of health professionals, i.e. from primary healthcare workers to ICU nurses, doctors etc.</td>
</tr>
<tr>
<td>3 in 5 nurse practitioners were concerned about passing infection to family members.</td>
<td></td>
<td>A mechanism for acute situational counselling and debriefing sessions, coping strategies for all levels of health professionals should be implemented by a multi-disciplinary support team</td>
</tr>
<tr>
<td>A quarter of nurse practitioners experienced severe psychological distress with health professionals working in the public sector experiencing higher psychological distress than those working in the private sector</td>
<td></td>
<td>Particular attention should be paid to the shielding of those health professionals with underlying health conditions and/or family members who have COVID-19 risk factors</td>
</tr>
<tr>
<td>Nurses reported the lowest general health and well-being compared to medical practitioners and other health care professionals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health professionals who reported high psychological distress reported low levels of general health and well-being whilst health professionals who reported high general well-being reported low levels of psychological distress.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THANK YOU

- Thank you to all our front line workers for participating in this study.
- Thanks are due not only to HSRC and UKZN staff, but also to key partners in implementing the survey
- Thank you to influencers and media personalities for encouraging participation of the survey and recording public health messaging
- Thank you to the Department of Science and Innovation and the Department of Health for support and strategic direction