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?

• Problem 1: Given a splice junction, is it a good splice junction? 

• Problem 2: Given a DNA sequence, where are the splice sites?
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Training & testing datasets creation

• Positive-MANE sites are from the MANE database with ≥100 alignments. 

• Positive-Alt sites are in RefSeq (not MANE) with ≥100 alignments. 

• Negative-1 sites occur on the opposite strand with only 1 alignment. 

• Negative-Random sites are random GT-AG pairs on the opposite strand, 

non-overlapping with known sites and without alignment support.

Filtering low-scoring spliced alignments improves transcriptome assembly

Splam generalizes well to non-human species, even plants 
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Pan troglodytes Mus musculus Arabidopsis thaliana Pan troglodytes Mus musculus Arabidopsis thaliana

Species Tools
Accuracy (%) 

(Donor / Acceptor / Junction)

Recall (%)

(Donor / Acceptor / Junction)

Precision (%) 

(Donor / Acceptor / Junction)

Pan troglodytes
(chimpanzee)

Splam 95.7  /  95.7  /  95.5 91.4  /  91.4  /  91.0 99.9  /  99.9  /  99.9

SpliceAI 84.6  /  86.0  /  78.7 69.2  /  72.0  /  57.3 99.9  /  99.9  /  99.9

Mus musculus
(house mouse)

Splam 93.6  /  93.7  /  93.3 87.3  /  87.4  /  86.6 99.9  /  99.9  /  99.9

SpliceAI 80.0  /  82.1  /  73.6 59.7  /  64.2  /  47.3 99.9  /  99.9  /  99.9

Arabidopsis thaliana
Splam 90.7  /  90.4  /  90.0 81.4  /  80.9  /  80.2 99.9  /  99.9  /  99.9

SpliceAI 68.2  /  67.8  /  60.0 36.3  /  35.7  /  20.0 99.8  /  99.9  /  99.9

Threshold = 0.8
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OpenSpliceAI design & model training

AGACTCAGCCCCCGGAGTCTTAGTTAGAGGAAGAAAGGTAGGACAGAAGAAGTAAGGCAGGACATACAAGGTAGCTGGCCCAGGGCGGX
Y 0000000000000002000000000000000000000100000000000020000000000000000000000010000000000000

Donor: 2 Acceptor:  1 Neither:  0

Inputs Subcommands Outputs

create-data

train

transfer-learn

predict

variant

HDF5

1. dataset_train.h5

HDF5

2. dataset_test.h5 

1. MODEL.pt

MODEL_transfer-learned.pt

2. Training / Validation /
     Testing Log

HDF5

1. dataset_train.h5

HDF5

2. dataset_test.h5 

HDF5

1.  dataset_train.h5
      (species 2)

3. MODEL.pt

HDF5

2.  dataset_test.h5
      (species 2)

1. MODEL.pt

FASTA

2. Target gene sequences

1. MODEL.pt SpliceAI predictions2. Variants of interests 

SpliceAI scores for each position

Bedgraph

1.  Genome annotation (GFF /GTF)

2.  Genome assembly (FASTA)

calibrateHDF5

1. dataset_train.h5

HDF5

2. dataset_test.h5 3. MODEL.pt MODEL_calibrated.pt
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Input sequence (len: L)

Flanking sequence 5,000 nt on each side

OpenSpliceAI
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Testing OpenSpliceAI-MANE on Human MANE and Mouse GRCm39 splice sites 
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Elasped time, GPU Memory, and main memory benchmark

Retraining OpenSpliceAI on Mouse, Zebrafish, Honeybee, and Thale Cress

Transfer learning: Transfer OpenSpliceAI-MANE to four species

OpenSpliceAI-Mouse  vs OpenSpliceAI-Mouse-transfer OpenSpliceAI-Zebrafish  vs OpenSpliceAI-Zebrafish-transfer

OpenSpliceAI-Honeybee  vs OpenSpliceAI-Honeybee-transfer OpenSpliceAI-Thale-Cress  vs OpenSpliceAI-Thale-Cress-transfer

In Silico Mutagenesis (ISM) analysis
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Donor site (Average of 100 sites) Acceptor site (Average of 100 sites)

• DST gene, exon 2   chr6:56,735,192-56,735,344 (153 nt)

Perturbation-based forward propagation determines the relevance of a feature via mutating each nucleotide to all three possible alternatives.

The "importance score" of a nucleotide for a splice acceptor is calculated by taking the reference acceptor score, 𝑆𝑟𝑒𝑓, and recalculating it 

with the nucleotide replaced by A, C, G, and T to obtain 𝑆𝐴, 𝑆𝐶 , 𝑆𝐺 , 𝑆𝑇 . This procedure is often referred to as in-silico mutagenesis (ISM).

𝑆𝑟𝑒𝑓 =
𝑆𝐴 + 𝑆𝐶 + 𝑆𝐺 + 𝑆𝑇

4

SpliceAI

OpenSpliceAI-MANE

SpliceAI

OpenSpliceAI-MANE

• U2SURP gene,    chr1:142,740,137–142,740,263 (127 nt)

Search: Splam

OpenSpliceAI-Mouse  vs SpliceAI OpenSpliceAI-Zebrafish  vs SpliceAI OpenSpliceAI-Honeybee  vs SpliceAI OpenSpliceAI-Thale-Cress  vs SpliceAI

SpliceAI

OpenSpliceAI

Results comparing RefSeq introns with splice junctions from 10 poly-A capture (A) 

and 10 rRNA depletion (B) RNA-seq samples, with original and Splam-cleaned 

samples connected by arrows. Panels (C) and (D) compare RefSeq transcripts with 

assembled transcripts from poly-A capture (C) and rRNA depletion (D), also before 

and after Splam cleanup. The x-axis shows precision (percentage matched), while 

the y-axis shows intron recall in A,B, and matched transcript count in C,D.

(A) (B) 

(C) (D) 

SpliceAI labeling 
approach

Comparison of OpenSpliceAI-

MANE and SpliceAI-Keras on 

donor and acceptor sites 

trained with 80nt, 400nt, 

2,000nt, and 10,000nt 

flanking sequences. Metrics 

include top-1 and AUPRC. 

Blue curves show SpliceAI-

Keras; orange curves show 

OpenSpliceAI-MANE. Each 

dot represents the average 

score with ± one standard 

deviation.

Performance of OpenSpliceAI trained on species-specific genomes and annotation files (mouse, zebrafish, honeybee, thale cress) vs. SpliceAI-

Keras trained on the human  genome and the MANE annotation. Orange curves show OpenSpliceAI metrics; blue curves show SpliceAI-Keras. 

Each subplot covers Top-K accuracy and AUPRC for donor and acceptor sites.

Transfer learning improves model performance by leveraging knowledge from related domains. We tested if OpenSpliceAI, trained on human splice annotations, 

could adapt to predict splice sites in other species. Using five pre-trained OpenSpliceAI-MANE models, we fine-tuned species-specific models for mouse, honeybee, 

zebrafish, and thale cress, then compared them to scratch-trained models. Figures show F1 score for donor and acceptor sites in 80 nt, 400 nt, 2,000 nt, and 10,000 nt 

models over epochs 1–10 on the test dataset, comparing scratch-trained and transfer-trained variants."

OpenSpliceAI is an open-source version of the SpliceAI program1, a 

highly accurate splice site prediction system. OpenSpliceAI uses the 

newer PyTorch ML package instead of the older, slower Keras package, 

but otherwise uses the same code and is intended to replicate SpliceAI 

and allow users to re-train on their own species of interest.

1. Jaganathan, Kishore, et al. "Predicting splicing from primary 

sequence with deep learning." Cell 176.3 (2019): 535-548.
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