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Photo with you!
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Sequence models map a sequence to a sequence

Sequence model

Reference: https://www.youtube.com/watch?v=luCBXCErkCs&t=197s
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Neural ODEs
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RNN

TransformersCNNs

(batch, length, dim)

(batch, length, dim)

Sequence model

Normalization

Linear
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Reference: https://www.youtube.com/watch?v=luCBXCErkCs&t=197s



https://jalammar.github.io/how-gpt3-works-
visualizations-animations/

https://deepmind.google/discover/blog/predicting-gene-expression-with-ai/https://twitter.com/AIatMeta/status/1587467600413351937/photo/
1

https://deepmind.google/discover/blog/wavenet-a-
generative-model-for-raw-audio/

3

ESMFold

Enformer
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Spectrum of Sequential Data
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ContinuousDiscrete

Text Graph DNA Video Sound signal Time-series data

Reference: https://www.youtube.com/watch?v=luCBXCErkCs&t=197s
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Why Deep learning sequence models to DNA ?
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Saluki
2022

Borzoi
2023

Enformer
2021

Akita
2020

DeepSEA
2015

SpliceAI
2019

ExPecto
2018

Basset
2016

Basenji
2018

DeepVariant
2018

DeepBind
2015

DNA-TF binding
2016

Troyanskaya Lab Princeton

FUToronto

Gifford LabMIT Google Health

Illumina

Calico

DeepMind + Calico

Calico

Calico

Troyanskaya Lab Princeton

Calico

Calico
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Foundation model
• Stanford 

researchers called 
transformers 
“foundation 
models” in an 
August 2021 paper 
because they see 
them driving a 
paradigm shift in AI. 
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Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the 
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.

• GPT-3, GPT-4 by OpenAI

• Gemini by Google

• Claude by Anthropic

• Llama 3 by Meta
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Foundation model
• Versatility: wide range of downstream tasks

• Transfer learning: learn general representation of data. Task-specific is 
limited

• Efficiency: computational efficiency of fine-tuning models

• Generalization: “zero-shot” or “few-shot”

• Emergent abilities: 
• basic arithmetic 

• simple programming tasks

• summarization, translation, or question-answering.
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Goals

• Building an interpretable fungi LLM to help Calico 

   construct gene regulatory networks (GRN) in the future.

• Predicting ChIP-exo, histone marks, and RNA-Seq

• Does fine-tuning a pretrained LM outperform training a new model 

from scratch under the exact model architecture?
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Why yeast?

• Simple Eukaryotic Model

• Rapid Growth and Easy Culturing

• Genetic Manipulability

• Well-Characterized Genome

• Conserved Regulatory Mechanisms

9
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Fungi Language Model

• Q: To what evolutionary distance should we include in our LM?

• Q: What is the quality of the annotation? Coding vs non-coding regions

• Q: How repetitive are the genomes?

Part I



Why building a Fungi Language Model?

• Yeast genome is small. 12Mbps.

• Thousands of fungal genomes with high quality. No supervised 

measurements

• Language model pre-training on all available genomes followed by 

transfer learning to the smaller yeast genome.
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Data preprocessing

11

Repeat regions

Coding regions
Gene Locus 1 Gene Locus 2 Gene Locus 3
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Data preprocessing
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Repeat regions

Coding regions

16384

4096

~ 7 genes per window
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Data preprocessing
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Repeat regions

Coding regions

16384

4096

~ 7 genes per window
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Data preprocessing
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7% repeat 
threshold

Training

Testing
(chrXII, chrXIV, chrXVI)

Validation
(chrXI, chrXIII, chrXV)

Repeat regions

Coding regions
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Q1: To what evolutionary 
distance should we include in 
our LM?
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Selected Genomes for LM
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R64 
reference yeast

80 strains 
of yeasts

Dataset 1 Dataset 2 Dataset 3

Q1: Diversity of strains? Q2: Diversity of species?

Dataset 4

1361
Fungus genomes

165 
Saccharomycetales

Q3: Even more 
diverse?

Order level Kingdom levelSame species,
Different strains

Fungi diverged from other life 
around 1.5 billion years ago
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Genome distance evaluation
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R64 Reference Yeast 80 strains of yeasts 165 Saccharomycetales
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Q2: What is the quality of the 
annotation? 
Coding vs non-coding regions?

Gene Locus 1 Gene Locus 2 Gene Locus 3
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Genome annotation completeness evaluation
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R64 Reference Yeast 80 strains of yeasts 165  Sachramonycetales

Conclusion: 
~95% completeness
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Genome evaluation – coding / noncoding regions
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R64 Reference Yeast 72.46% coding regions

165  Sachramonycetales

80 strains of yeasts
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Genome evaluation – # genes per window
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R64 Reference Yeast

165  Sachramonycetales

Median: 9.0;  Mean:  8.98 80 strains of yeasts
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Q3: How repetitive are the 

genomes?

Gene Locus 1 Gene Locus 2 Gene Locus 3

7% repeat 
threshold
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Genome evaluation – repeat regions
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R64 Reference Yeast 7.39% repeat regions

165  Sachramonycetales

80 strains of yeasts
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Repeats Detection
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• RepeatModeler: Identifies de novo transposable element (TE) families.

• BuildDatabase

• RepeatModeler

• RepeatMasker: Screens DNA sequences for interspersed repeats and low 

complexity DNA sequences using Dfam (or RepBase, 30K ) database.

• Dust: Masks low-compexity regions
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Repeats masking evaluation
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Data cleaning – repeats removal
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Train Test Validation

St
ra

in
s

Fu
ng

i
a 7% threshold removes 
~10% of the sequences.
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Q4: How many homologous 
sequences are there between 
training and testing?

Training

Testing (chrXII, chrXIV, chrXVI)

Validation (chrXI, chrXIII, chrXV)
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Training

Testing
(chrXII, chrXIV, chrXVI)

Validation
(chrXI, chrXIII, chrXV)
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Training

Testing
(chrXII, chrXIV, chrXVI)

Validation
(chrXI, chrXIII, chrXV)
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Detect homologous sequence using DNA sequence aligner



Homology sequence removal
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• Nucmer: 

• minimum length of maximal exact matches (MEMs) (20) MEMs shorter than this 

length will be ignored. 

• A cluster is a group of MEMs that are close to each other and are used to build the 

alignment  (65) Smaller clusters will be ignored

• Minimap2: minimap2 -x asm20

• - asm5/asm10/asm20: - asm-to-ref mapping, for ~0.1/1/5% sequence divergence
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Homology sequence removal evaluation
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r64 80 strains 165 Saccharomycetales
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Homology sequence removal evaluation (minimap2)
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Train - Test Train - Validation
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Is it good enough?
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Homology sequence removal evaluation
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r64 80 strains 165 Saccharomycetales
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Homology sequence removal evaluation (minimap2)
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Final sequence for training / testing / validation
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r64 80 strains 165 Saccharomycetales

Train  : 1440
Test  : 608
Validation : 576

Train  : 843
Test  : 507
Validation : 488 
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Train  : 108960
Test  : 608
Validation : 576

Train  : 68513
Test  : 507
Validation : 488 

Train  : 404608
Test  : 608
Validation : 576

Train  : 339166
Test  : 507
Validation : 488 

-597 (-41.4%) -40447 (-37.1%) -65442 (-16.2%)
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Fungi Language Model 

Architecture
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Different model architecture we’ve tried 

• Dilated convolutional neural network (small)

• Dilated convolutional neural network (large)

• Transformer-based unet (small)

• Transformer-based unet (large)

28

Total params: 3,642,116 (13.89 MB)

Total params: 320,708 (1.22 MB)

Total params: 13,665,828 (52.13 MB)

Total params: 71,790,564 (273.86 MB)

Masked language 
modeling loss
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Transform
er Blocks 

(11x)

32bp res

64bp res

128bp res

? C T C T A ? C G ? G T A T A C

…

32bp res

64bp res

128bp res

1bp res

…… …

16384bp

8 0 0

16384 * 4
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16bp res 16bp res

1bp res

Reverse complementary

Masked language modeling loss

Encoding: (4 + 1 + 
species_num)
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Self-supervised Fungi LM 

Language Model Results
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Model comparison
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r64 80 strains 165 Saccharomycetales
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Dataset comparison
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Different resolutions of input to transformer blocks
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32
32

128bp res
Transform
er Blocks 

(11x)

32bp res

Both resolutions reach 
the similar loss



Fungi LM Language Model 

Motif inference
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Constructing PWM from Fungi LM
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Upstream 512bp
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YLR015W; chrXII:175226-176744(+)

YLR134W; chrXII:410722-412414 (+)

YLR056W; chrXII:253860-254958 (+)

YLR057W; chrXII:255305-257855 (+)

YLR438W; chrXII:1012500-1013775 (+)

Upstream 512bp

TATA box

TATA box

Initiator (Inr)

TATA box

PolyA tracks

PolyA tracks
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YLR015W; chrXII:175226-176744(+)

YLR134W; chrXII:410722-412414 (+)

YLR056W; chrXII:253860-254958 (+)

YLR057W; chrXII:255305-257855 (+)

YLR438W; chrXII:1012500-1013775 (+)

Downstream 512bp

PolyA tracks
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Tomaz da Silva et al., (2024). 
Nucleotide dependency 
analysis of DNA language 
models reveals genomic 
functional elements. bioRxiv



Fungi LM: Summary
1. Fungi language model: The Saccharomycetales order is a good evolutionary distance, offering good 

species diversity.

2. Orthologous gene annotations are 95% complete.

3. Coding regions make up 50% - 75% of the genome (72.46% in r64). Down-weighting is important!

4. A window size of 16,384 captures approximately 5-10 genes (9 in r64).

5. Repetitive regions account for ~2% - 15% of the genome (7.39% in r64). Down-weighting is important!

6. Homologous sequence removal between train-test/validation is crucial  (40% / 60% / 16%)

7. Transformer-based U-Net architecture overfits in r64 but generalizes best in Saccharomycetales.

8. Self-supervised learning is able to capture cis-regulatory motifs (preliminary results)
36
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Linder, J., Srivastava, D., Yuan, H., Agarwal, V., & Kelley, D. R. (2023). 
Predicting RNA-seq coverage from DNA sequence as a unifying model 
of gene regulation. Biorxiv, 2023-08.

Supervised ChiP-exo, histone marks, RNA-Seq 

prediction

Part II



Label data introduction & 

preprocessing



ChiP-exo + Histone Marks

• ChIP-exo provides high res view of DNA 

binding

• Dataset includes 800 ChIP-exo 

experiments:

• Epigenetic regulators, DNA replication, 

centromeres, subtelomeres, transposons, 

RNA polymerase I/II/III

• 161 matched TF ChIP-exo from IDEA 1.0

• Histone Mods MNase-ChIP-seq

37
Rossi, Matthew et al. Nature. 2021.
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RNA-Seq

38

● Genome-scale perturbation dynamics 

propagate signals across regulatory 

networks

● Measuring dynamics allows events to 

be ordered

● Aggregating dynamics across many 

time-courses enables disambiguation 

of cause > effect relationships
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RNA-Seq

39

• IDEA (the Induction Dynamics gene Expression Atlas)
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Supervised model architecture
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Transfor
mer 

Blocks 
(8x)

32bp res

64bp res

128bp res

? C T C T A ? C G ? G T A T A C

1bp res

…

32bp res

64bp res

128bp res

…

16384bp

16bp res 16bp res

[
Coverage Tacks

CHiP-exo   (1128)
Histone marks  (20)
RNA-Seq             (1340)]One-hot 

encoding
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Basenji Model Training
Fold0:     743 seq, 1406020 nt (0.1244)

    chrXIV: 0-628758
    chrX: 0-436307
    chrXI: 440246-666816
    chrIII: 0-114385

 Fold1:    736 seq, 1433427 nt (0.1268)
    chrXI: 0-440129
    chrV: 0-151987
    chrV: 152104-576874
    chrXIII: 0-268031
    chrVI: 0-148510

 Fold2:     806 seq, 1521492 nt (0.1346)
    chrII: 238323-813184
    chrVII: 0-496920
    chrIV: 0-449711

 Fold3:     755 seq, 1408276 nt (0.1246)
    chrXVI: 0-555957
    chrIV: 449821-990877
    chrVI: 48627-270161
    chrVIII: 0-105586
    chrIX: 355745-439888

 Fold4:     732 seq, 1444997 nt (0.1278)
 chrIV: 990877-1531933
    chrXII: 614562-1078177
    chrII: 0-238207
    chrIII: 114501-316620

 Fold5:     742 seq, 1284157 nt (0.1136)
    chrVII: 497038-1090940
    chrX: 436425-745751
    chrI: 0-151465
    chrI: 151582-230218
    chrXII: 0-150828

 Fold6:     785 seq, 1446481 nt (0.1280)
    chrXIII: 268149-924431
    chrXII: 150947-614562
    chrXV: 0-326584

 Fold7:     733 seq, 1360020 nt (0.1203)
 chrVIII: 105703-562643
    chrXVI: 556073-948066
    chrIX: 0-355629
    chrXIV: 628875-784333

Introduction Supervised model Fine-tuning LMSelf-supervised LM
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● Divide genome into 8 folds.

● Train 8 models with distinct 

validation and test folds.



58

Fine-tuning Fungi Language Model

Part III

Q: Does fine-tuning a pretrained LM outperform training a 

new model from scratch under the exact model architecture?



Supervised Fungi model VS 

Fine-tuning Language Model
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[
Coverage Tacks

CHiP-exo   (1128)
Histone marks  (20)
RNA-Seq             (1340) ]
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Transform
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(8x)

32bp res

64bp res

128bp res

? C T C T A ? C G ? G T A T A C

1bp res

…

32bp res

64bp res

128bp res

…

16384bp

16bp res 16bp res
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A C T C T A C C G G G T A T A C

Fine-tuning LMSupervised
A C T C T A C C G G G T A T A C

16,384 * 4 16,384 * ( 4 + 1 + 165)Input
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Masked encoding

Species encoding
(r64 : 109)

Model Model



Fine-tuning  vs  Training from Scratch
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(16 bp resolution)
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Fine-tuning  vs  Training from Scratch
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(4 bp resolution)
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RNA-Seq track visualization
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YAL067C (chrI: 7235 – 9016) YAL065C (chrI: 11565 – 11951)

Label

Prediction

Label

Prediction



Track level prediction 

evaluation 
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RNA-Seq Histone Marks

Average results across 8 folds. Each dot is a track. 
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CHiP-exo All (RNA-Seq + Histone Marks + CHiP-exo)

Average results across 8 folds. Each dot is a track. 
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Average results 
across tracks. 
Each dot is a fold
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RNA-Seq tracks alone  VS 

RNA-Seq + Histone Marks + 

CHiP-exo tracks
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Supervised trained models Self-supervised trained models

Average results across 8 folds. Each dot is a track. 
Introduction Fine-tuning LMSelf-supervised LM Supervised model



Project Conclusion

1. Built the first fungi language model. The Saccharomycetales 

order is a good evolutionary distance, offering good species 

diversity. Processing 1361 fungus genomes. 

2. Under the exact model architecture, pretrained LM weights & 

fine-tuning can outperform training a model from scratch.

• Loss / gene level Pearson R / gene level R2
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