DFFT: Data Free Flow with Trust PETs: Privacy Enhancing Technologies

# Building Verifiable Trust in DFFT through PETs

- Introducing Use Cases Utilizing Trusted Execution Environments -

### Takao Takenouchi

VP of Public Affairs, Acompany Co., Ltd. /

**Executive Director, Privacy Tech Association, Japan** 

# **Contents**

# Part 1: What is trust

- Verifiable trust would be desirable
- PETs provide verifiability

# Part 2: Use cases using TEE

(TEE: Trusted Execution Environment)

# Part 1: What is trust

### What is Trust: Trust needs Verifiability

- From a technical perspective, trust can be divided into two types:
  - Implicit trust: Trust established without taking any special action
  - Explicit trust: Trust that can be verified when necessary \*1
- PETs enable technically verifiable trust and efficient security.

Trusted Web in Japan: Trust requires verifiability



In Japan, the concept of a "Trusted Web" has been discussed since around 2020. Through these discussions, it was concluded that verifiability is essential in order to establish trust

Source: "Trusted Web White Paper ver. 3.0 Overview", https://trustedweb.go.jp/en/documents/

# Target of Trust

- Each PET focuses on a different aspect of verifiability
  - Combining PETs is desirable for more secure trust

### Trust Targets and Supporting PETs

| Trust Target                  | Supporting Technologies / PETs                         |
|-------------------------------|--------------------------------------------------------|
| Processing Environment        | TEE (Trusted Execution Environment) ,                  |
| Data Integrity / Authenticity | Verifiable Credentials, Digital Signatures,            |
| Data Confidentiality          | MPC (Multi-Party Computation), Homomorphic Encryption, |
| Counterparty                  | PKI, Trust Frameworks,                                 |
| •••                           |                                                        |



Processing Environment is important in AI workloads.

# Trust Models for AI processing

• In AI processing, there are three typical patterns of trust models.

| Trust<br>Model | Delegated Processing<br>Model                                                                    | Centralized-Collaboration Model                                                                                   | Decentralized-Collaboration Model  |
|----------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Purpose        | To offload heavy Al processing to the cloud                                                      | To improve AI performance by integrating data                                                                     |                                    |
| Detail         | <ul><li> Client delegates processing to the cloud.</li><li> Client verifies the cloud.</li></ul> | <ul> <li>Companies A, B, and C send data to the platform.</li> <li>Each company verifies the platform.</li> </ul> | Company A and B verify each other. |
|                | Client Verify Process                                                                            | Platform Process  Verify  Company A  Company B  Company C                                                         | Company A verify Process Process   |

# Requirements for Trust in the Processing Environment

- To verify processing environments, it is desirable to have the following:
  - Data Confidentiality: No data leakage at the processing destination
  - Code Integrity: No unauthorized modifications (e.g., no backdoors)

- Trusted Execution Environment (TEE) support both and Al workload.
  - TEE can also be combined with other PETs (e.g., MPC) for stronger guarantees.

### What is TEE

- TEE is a hardware-based technology that ensures data confidentiality.
- TEE provides remote attestation to verify code integrity externally.
- Some GPUs include TEE functionality, enabling secure AI processing.

### **Example of TEE use in cloud-based processing**



### Apple adopts TEE for generative Al



Source:

### **Detail of Remote Attestation**

- In TEE Remote Attestation, hardware is the root of trust.
- Middleware helps make TEE application development easier, and it must be secure.

#### **Conceptual Illustration of Remote Attestation**

### **TEE Hardware and software venders**



Starting from the Root of Trust, a chain of trust is built through verified hardware and software layers. \*3

Because middleware requires less investment than hardware, several vendors offer their own implementations.

<sup>\*1</sup> In this presentation, "middleware" includes both libraries inside the TEE that are part of the TCB(Trusted Computing Base), and external applications that handle remote attestation on behalf of the client.

\*2 The list of vendors was created by the author, referring to sources such as the Azure Partner list. https://learn.microsoft.com/en-us/azure/confidential-computing/partner-pages/partner-pages-index

\*3 Confidential Computing Consortium focuses on hardware-based roots of trust, https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/03/CCC\_outreach\_whitepaper\_updated\_November\_2022.pdf

# Part 2: Use cases using TEE

### Use Cases by Trust Model Patterns

# Generative AI for smartphones

Since generative AI is too heavy for smartphones, processing is offloaded to servers with data confidentiality preserved. (e.g. Apple Intelligence)



# Global Supply Chain Optimization

Sharing manufacturing data confidentially across borders, while optimizing the overall process.



# Cross-analysis of location and other data

A company holding location data and another company perform joint analysis while keeping their data confidential.



### I will explain these use cases

- Asahi Kasei and NEC, https://www.nec.com/en/press/202303/global\_20230328\_02.html
- Zeon and SBT, https://www.softbanktech.co.jp/en/news/release/press/2024/017/
- Aixtal and Acompany, https://en.acompany.tech/news/acompany-joint-research-intel

Use case: Global Supply Chain

### ■ Challenge:

- In manufacturing industry, raw material data is sensitive and hard to share across borders.
- However, optimizing the full manufacturing process requires data sharing between companies.

#### ■ Solution:

- TEE enables verified, confidential sharing of data for cross-step optimization.
- The middleware performs remote attestation, and it should be secure and vendor-neutral.



### Use case: Cross-analysis of location and other data

### Challenge

- Location data is sensitive, yet extremely valuable.
- Because it qualifies as personal data, user consent is required.

#### ■ Solution

- A combination of PETs, including TEEs, provides robust protection against privacy breaches.
- Mutual attestation of TEEs is leveraged to prevent parties from acting maliciously.



<sup>\*1</sup> For details, please refer to https://www.docomo.ne.jp/english/corporate/technology/rd/technical\_journal/bn/vol25\_1/

<sup>\*2</sup> There are several cases of secure data matching and analysis like this. https://en.acompany.tech/news/acompany-joint-KDDI-DCR

# Legal Treatment in Japan for This Use Case

- In this use case, various PETs are used in combination, including TEE, homomorphic encryption, differential privacy, and others. \*1
- In Japan, this is generally not regarded as personal data processing under the law.
- However, when exporting such technologies, legal compatibility must be checked in each country.
  - This process involves significant time and cost.

- Homomorphic encryption-based protocol enables parties to cross-analyze data without disclosing personal information to each other
- Differential privacy protects the privacy of the output
- Mutual attestation of TEEs ensures the soundness of the system

<sup>\*1</sup> Details of the PETs combination

# **Summary and Recommendations**

### ■ Summary

- It would be beneficial if trust in DFFT could be verified.
- PETs contribute to verifiable trust Remote Attestation with TEE is a strong example.

### ■ Recommendations

- 1. Include TEE Remote Attestation in use case repository.
  - Middleware must also be verifiably included full-stack trust is essential.
- 2. In the context of global cooperation, clarify the legal treatment of PETs and personal data.
- 3. Promote investment and international participation in PETs development.
  - This helps prevent over-reliance on any single provider.