
Programming Foundations with Python:
Learn Object Oriented Programming

Lesson 03b Notes

Advanced Ideas in OOP

So we've come a long way in this course, from drawing
shapes, to designing a movie website. And what we're going
to do here in this lesson is talk about some advanced ideas
in object-oriented programming. The first of which is called
class variables. Let's talk about it next.

Class Variables

So let's begin by recalling this thing called the instance variables. In the case of class Movie, there
were several of them, title, storyline, poster_image_url, and trailer_youtube_url. Now, further recall
that these variables are associated with every instance that we create. For example, both Toy Story
and Avatar have their own copies of these variables. So I could print out Toy Story's storyline and I
could also print out Avatar's storyline.

Sometimes however, we need variables that we want all of our instances to share. So consider the
variable valid_ratings for a movie. This is an array or a list, of all possible ratings a movie could have.
Now, it would not quite make sense to say, hey, here are Toy Story's valid ratings, and here are
Avatar's valid ratings. They would essentially be the same for all instances. Thus, this variable is really
associated with a class Movie, and is therefore called a Class Variable. Let's see it in action. So here is
the code for our Class Movie. And behind this Python file is the other Python file we created, where we
made a bunch of movie instances.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

So I'm going to begin by making changes to my class Movie. Now here I will define a variable called
valid_ratings. Now notice that this variable valid ratings is defined at the level of the class and is
outside the init function. In order to start using this variable, we will begin by saving this file first.

So next I'm going to go to my other Python file. By the way, this is the file where we are defining a
bunch of movie instances. And here, I will scroll down all the way to the bottom. And comment out
any sort of print or output statements. Now, I'm doing this so I can focus primarily on valid_ratings.
Now, here, I will try to print out the value of the variable valid ratings by saying, print, and the name of
my class, which is media.Movie, followed by the name of the variable, which is valid_ratings. There.
Let me save and run this program.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

And boom. There it is. A list of
all of my valid ratings. Notice
how we use the class name
movie to access this variable.
This means that all instances
of this class movie, Toy Story,
Avatar and others, they can
share this list. They can share

this list to see if their individual rating is a valid one or not. Okay, so the one last thing I want to do is
go back to my class Movie. Now notice that the value of this variable valid_strings is probably a
constant. By that I mean, that the value of this variable is probably not going change every now and
then. When we define a constant like this, the Google Style Guide for Python recommends that we use
all caps or an upper case to define a variable like that. I'm going to go ahead and save this file and
then go back to my other Python file and change the variable name there as well. Let me save and run
this program to see if it still works. And there it is, I get the correct output one more time.

Doc Strings

So now that we know a little bit about class variables, let's move on
to another idea in object oriented programming, which is that in
Python, all classes come with some pre-existing class variables. One
of them is called __doc__. Now this variable has got underscores on both sides of its name. Let's see
this variable in action.

So here I am at the Python Shell window, with the Python prompt. And I can type a program in here
like 2+2 and it gives me the correct answer. Now I want us to recall this class called turtle that we
had used some time back while drawing shapes. So I can just import that class turtle here. There.
Then let me see what happens when I use the class name. turtle.Turtle. Remember this was the
name of the module or the file and this was the class name. So if I use the class name with the
prepackaged variable called doc (turtle.Turtle.__doc__). Let me see what it prints out. I get some kind
of documentation on the class turtle.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Now I wonder if I can use this variable doc with my class Movie. So, I'm back to the code for the class
movie and behind this file is my other Python file where, I'm defining a whole bunch of instances of
class Movie. Let me go back to the code for class Movie here for a second. Now, here, I'm going to add
some documentation. At the beginning of the class Movie. You may have noticed that I use triple
codes, to define my documentation. Now what I can do with triple codes, is I can create
documentation in multiple lines. For now I just have the one line. So I'm going to save this file, and

then go to my other Python file. And here, I'm going to scroll all the way to the bottom, and comment
out any sort of print statements. There. Now, I will try to print out the documentation for my class
Movie, which is accessed by saying, media.Movie. Then I will try to print out its documentation. There.
Let me save and run this file. And there it is. The documentation for my class Movie. Notice how I
accessed it though. I accessed it using my class name, which is Movie and a predefined class variable,
called __doc__. So, now that we have successfully used this variable called doc, I have a question for
you.

You know much like the variable __doc__, Python has a few more predefined variables these include
the variable __name__ and __module__. By the way more information about these is also available

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www2.lib.uchicago.edu/keith/courses/python/class/5/

through links in the instructor notes. What I want you to do is read through the documentation in
the instructor notes and then I want you to use these variables __name__ and __module__, in a new
program. Once you have done that, please come back to the screen and check this box.

 Inheritance

So, now that we know a little bit about class variables, both the ones that we created and the ones
that come by default or predefined in Python classes, I want to
take a moment to talk about the next big idea in object-
oriented programming which is called inheritance. Now, let's
think about the meaning of this word inheritance and how we
use it in the English language. You may have heard someone
say that a child can inherit some traits from their parents.
Things like the last name, the eye color, some money, if the kid
is lucky. So, if we were to take this meaning of inheritance, like
we commonly use it in the English language, and turn it into
code or model this in terms of programming, we would create
a class called Parent. This would have some attributes like last
name and eye color. And then we would make a class called
class Child which would inherit these two things from the class

Parent. Additionally, the class Child could have another variable of its own called number of toys.
Now, you may notice that if we design code like this, we are already beginning to reuse code, which is
a huge advantage of object oriented programming. Okay, so the next thing we are going to do is take
our design and convert it into actual code. Let's do that next.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Class Parent

Okay, so here we have our design of the classes we are going to build up on the top right hand corner,
and what I've done thus far is created a new Python file, and I called it inheritance.py. Now, based
on our design, I'm going to go ahead and create a class called Parent. There. The next thing to do is
to initialize the variables of class Parent, variables like last_name and eye_color. So, to do that, I will
define this class’ init method or constructor. The first argument for this function, we know, is self. And
the two instance variables for class Parent, we know, are self.last_name and self.eye_color. Now the
init function we know will receive a couple of values as arguments. So, let me add them in here, and
we will use these two arguments to initialize our instance variables. Let me do that next. Alright. You
may notice that this piece of code is pretty similar to the code for class Movie that we have written
previously. By the way, one new thing I will do here, is add a quick print statement inside the init
method. It will print out, Parent Constructor Called. So, this print statement will explicitly tell us, each
time the init method or the constructor of class Parent is called.

Alright, to make sure that this code that we have written thus far actually works, let's go ahead and
use this class. I will define an instance of class Parent and call it billy_cyrus, and will provide the two
arguments that are necessary. The first of which is last_name and that happens to be Cyrus, and the
next one is eye_color which is, let's say, blue. Now, a quick word of caution. Ordinarily, I would have
kept these two things, the definition of the class Parent and creating its instances. I would have kept
them in separate Python files. But I have kept them both here in the same file for ease of
demonstration. Okay, so to demonstrate that the instance actually works, I'll print out its last name.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Let me save and then run this file. And there's my output. It says the parent constructor was called.
Which seems appropriate, because we created an instance called billy_cyrus. And as soon as we did
that, the class Parent's _init_ method got called, which had a print statement inside it. And then, we
printed out Billy Cyrus's last name, which it printed out correctly.

Okay, so far so good. Now, you'll notice that there really isn't anything new that we've done here thus
far. The new thing we're going to try is called inheritance, which will happen when we create the class
called Child. Let's do that next.

What’s the Output

Okay, so here is the code for class Parent and now I will start to define class Child. Now, I know class
Child inherits from class Parent and the way to indicate that in Python is to say this. The syntax here
means that class Child will now inherit or reuse everything that is publicly available in class Parent.

Now, things will get really interesting when we begin to define the init method, or the constructor
for this class. So, we know that class Child has three variables. last_name and eye_color that are
inherited from class Parent. And this other variable called number_of_toys. So, in addition to the
keyword self, I will receive those values as arguments right here in the init function; there they are.

Now, to initialize the variables I'm inheriting from class Parent, variables like last_name and
eye_color, I will actually reuse class Parent's init method. This is how we do it. The last instance
variable, number_of_toys, will be initialized next. Okay, finally, I will add a print statement to the very
beginning of the init method.

All right, now that we have defined our class Child, the next thing to do is to create an instance of
this class Child. I will call it, appropriately enough, miley_cyrus. And here, I will provide it the three
necessary arguments. And then, I will print out two things. Her last name, and the number of toys.
Also, so I can focus on these print statements in my output, I will comment out the previous instance
for now. There. Let me save this file. Now, before I run this program, I want you to think about what
the output of this program will be. So, here is the code one more time. Here is class Parent, and here
is class Child, and here, we are creating an instance of class Child, and we named it miley_cyrus. So,
what do you think will be printed when I run this piece of code? Enter your responses in this box.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Class Child

So before I run this program, let me share with you my hypothesis of what will happen when I run this
piece of code.

Now one of the first things we are doing here in this program, is that we're creating an instance of
class Child we called it miley_cyrus. As soon as that line of code runs, the init method inside class
Child will get called. The first line within the init method, is this print statement. So my hypothesis is,
that this print statement will be printed out first in our output.

After that the constructor for the class Parent is going to get called. So the control will move from here
up to here. When the init method for class Parent is called, this statement is going to get executed. So
my hypothesis is that this print statement “Parent constructor called” will be the second thing that
gets printed.

Then the instance variables last_name and eye_color will be appropriately initialized. Once the init
method for class Parent has successfully run, the control will come back here. At that point, the
instance variable number_of_toys will successfully get initialized. So at that point, the init method for
class child is done, which means that the instance miley_cyrus has been created successfully.

Then, the following two print statements which are trying to print the last_name and number_of_toys
for miley_cyrus will get executed in that order. Alright, this time let me actually run this piece of code.
And there's my output. And it seems pretty close to what I thought it would be. Now, I want you to
pause the video here for a second, and I want you to see if the output here matches your hypothesis.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Transitioning To Class Movie

Ok, so we've just seen how inheritance can help us reuse code. In our example, we saw that class
Child can reuse some of the code written in class Parent. Now I want to use the same technique of
inheritance, to see if I can improve my design for class Movie that I wrote previously. Let's do that
next.

Updating the Design for Class Movie

So in a previous lesson we created a class called Movie. Now this class had the following attributes,
the movie's title, its storyline, a link to the movie's poster image, and a link to its YouTube trailer.
Now in addition to these things, the class movie also had a function called show_trailer. After we had
defined this class Movie we created several instances of this class. Instances like Toy Story and Avatar.

Now further imagine that we wanted to create another class called TvShow. I would think that
this class would have details like the title of the show, its season and episode number. And also,
the TV station that this show is aired on. Additionally, this class could also have a function called,
get_local_listings. Once we've created a class called TvShow, we can create multiple instances of
this class, instances like, season one, episode one of Breaking Bad, and the final episode of Seinfeld.
Alright, so if we continue our thought experiment here, we can further imagine that there can be
several items that both of these classes can share amongst each other. Things like title for sure, also
things like duration of the movie and duration of the TV show in minutes.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

So the best way to structure this code would be to create another class called Video, which would
have two attributes. The video's title, and the video's duration. And the class Movie, could inherit from
this class Video. To do this, we would have to add the class name Video, inside these parentheses.
Now, this would mean that class Movie, would inherit title and duration, from class Video.

Additionally, the class TvShow could also inherit from class Video. To do this we would also have to
add the class name Video inside these parentheses. Now this would mean that class TvShow would
inherit title and duration from class Video. Now you can clearly see how we can write a piece of code,
in this case, class Video, and continue to reuse it in multiple different places. Another big benefit of
writing code this way, in addition to just reusing code, is that it allows us to follow an intuitive model
of how things exist in our brain. So intuitively speaking, we know what videos are, we also know what
TV shows and movies are. So writing code in this way allows programmers to map how things exist in
our brain onto code.

Reusing Methods

Okay, so thus far, we've seen how inheritance can help us with reusing instance variables. Now I want
to show you an example of how inheritance can help with reusing methods. So here we are back at
the code, where we have a class called Parent and a class called Child. And if you recall, class Child
inherits from class Parent.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Now, I'll begin by defining a simple instance method inside class Parent. And I will call it show_info.
The first argument of this method is self, and all this method does is it prints out the last name and
eye color of the parent. Alright, there are the two print statements.

Now to test to see if this method actually works, I'm going to call this method show_info using the
parent's instance billy_cyrus. So let me do that next. So there is that method. Now all I've done thus
far is created a new method called show_info inside class Parent. And then used an instance of class
Parent, instance called billy_cyrus to call that method. Now to be able to focus on this statement's
output, I am going to comment out the other instance statement for now. There. Let me go ahead and
save and run this program. Alright. So the program prints out the correct values of billy_cyrus' last
name and eye color. So far so good.

Method Overriding

Alright so I'm going to come back to the code, and this time I'm going to do something new. Now
because this class Child inherits from class Parent this method show_info is also inherited. Now
this means that instances of class Child instances like miley_cyrus, they can also call the show_info
method, even though this method is not explicitly defined inside class Child. Let me do that next.

So the first thing I will do is uncomment this line of code where I'm creating the instance called
miley_cyrus, and then use that instance, to call the method show_info. There. Now because I want to
focus on the output of this show_info method, I'm going to comment out the previous show_info
method for now. There. Now before I run this program, I want to highlight one more time that I'm
using the instance miley_cyrus to call the method show_info. Now this method does not explicitly

Copyright © 2014 Udacity, Inc. All Rights Reserved.

exist inside class Child. But because class Child inherits from class Parent this method show_info is
actually available to the instances of class Child. So let me go ahead and save and run this program.
And there is my output. The program did not throw any errors, and the last name and eye color of the
instance miley_cyrus did get printed out. Okay. So the next thing I am going to do is create a method
called show_info inside class Child, and see what that does.

So
I'm

going to create a new method called show_info inside class Child. Now this method show_info is
going to print out the three things associated with a child. It's last name, eye color, and number of
toys. Here we are printing the last name of the child. Now we are printing the child's eye color, and
finally, we are printing the number of toys. In order to print this number correctly, we had to wrap it
around the string function.

Now, if I save and run this program, my hypothesis is that when I call the show_info method using
miley_cyrus, which by the way is an instance of class Child. This show_info method is going to get
called and not the show_info method in the class Parent. So let me save and run this program. And
there's the output. We're printing out the last name, eye color and number of toys of the instance of
class Child. So really what we have done here is defined the method by the same name show_info
inside class Child, and also inside class Parent. This ability of a subclass, in this case the class Child, to
override a method that it inherited from its parent class is called Method Overriding in programming.

Next Stop - Final Project

Copyright © 2014 Udacity, Inc. All Rights Reserved.

So we've talked about several different advanced object oriented programming ideas thus far, ideas
like inheritance, and also method overriding. I want to thank you for your patience thus far, and also
for all of your hard work. And I really think that we are ready to attempt the final project now. And that
final project is next.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

