Lesson 2 Notes

Introduction

In this lesson we'll take a deeper look at the two key parts of Hadoop - how it stores the data, and how it processes it. Let's start by seeing how data is stored.

HDFS

Files are stored in something called the Hadoop Distributed File System, which everyone just refers to as HDFS. As a developer, DISTRIBUTED this looks very much like a regular filesystem -- the kind you're used to working with on a standard machine. But it's helpful to understand what's going on behind the scenes, so that's what we're going to talk about here.

ADOOP FILE S YSTEM

When a file is loaded into HDFS, it's split into chunks, which we call 'blocks'. Each block is pretty big; the default is 64 megabytes. So, imagine we're going to store a file called 'mydata.txt', which is 150 megabytes in size. As it's uploaded to the cluster, it's split into 64 megabyte blocks, and each block will be stored on one node in the cluster. Each block is given a unique name by the system: it's actually just 'blk', then an underscore, then a large number. In this case, the file will be split into three blocks: the first will be 64 megabytes, the second will be 64 megabytes, and the third will be the remaining 22 megabytes.

There's a daemon, or piece of software, running on each of these cluster nodes called the

DataNode, which takes care of storing the blocks.

Now, clearly we need to know which blocks make up the file. That's handled by a separate machine, running a daemon called the NameNode. The information stored on the NameNode is known as the 'metadata'.

QUIZ - Are there problems?

That's fine as far as it goes, but there are some problems with this. Take a look at the diagram, and see if you can spot where we might run into trouble.

		between	

[] Disk failure on DataNode

[] Not all DataNodes are used

[] Block sizes are different

[] Disk failure on NameNode

Answer:

'Some nodes are not used' is not a problem, since they can be used for different files, neither is different block size. Network and disk failures are certainly a problem, let's look into this in more detail

Data Redundancy

The problem with things right now is that if one of our nodes fails, we're left with missing data for the file. If this node goes away, for example, we've got a 64 megabyte hole in the middle of

mydata.txt. And, of course, similar problems with any other files which have blocks stored on that node.

To solve this problem, Hadoop replicates each block three times as it's stored in HDFS. So blk_1 doesn't just live here, it's also stored perhaps here and here. blk_2 isn't just here, but also maybe here and here. And similarly for blk_3. Hadoop just picks three random nodes, and puts one copy of the block on each of the three. Well, actually, it's not a totally random choice, but it's close enough for us right now.

Now, if a single node fails, it's not a problem because we have two other copies of the block on other nodes. And the NameNode is smart enough that if it sees that any of the blocks are under-replicated, it will arrange to have those blocks re-replicated on the cluster so we're back to having three copies of them again.

QUIZ - Any problems now?

OK, so, we've taken care of what happens if one of our DataNodes fails. But there's another obvious single point of failure here. What happens if the NameNode has a hardware problem?

data on HDFS may be inaccessible [] data on HDFS may be lost forever [] there is no problem []

Answer:

If there is a network failure, the data will not be accessible temporarily. If the disk of the single NameNode would fail, data on HDFS would be lost permanently

NameNode High Availability

For a long time, the NameNode was a single point of failure in Hadoop. If it died , the entire cluster was inaccessible. And if the metadata on the NameNode was lost, the entire cluster's data was lost. Sure, you've still got all the blocks on the DataNodes, but you've no way of knowing which block belongs to which file without the metadata. So to avoid that problem, people would configure the NameNode to store the metadata not just on its own hard drive but also somewhere else

on the network using NFS, which is a method of mounting a remote disk on the NameNode. That way, even if the NameNode burst into flames, there would be a copy of the metadata somewhere else on the network.

Active and Standby NameNode

These days, the problem of the NameNode being a single point of failure has been solved. Most production Hadoop clusters now have two NameNodes: one Active, and one Standby. The Active NameNode works as before, but the Standby can be configured to take over automatically if the Active one fails. That way, the cluster will keep running if any of the nodes -- even one of the NameNodes -- fails.

lan's now going to show you a demonstration of how to use HDFS.

DEMO of HDFS

So, here I have a directory on my local machine, which contains a couple of files, and I want to put one of them into hdfs. All of the commands which interact with the Hadoop file system start with Hadoop FS. So first of all, let's see what we

[training@localhost data]\$ ls
access_log.gz purchases.txt
[training@localhost data]\$ hadoop fs -ls
[training@localhost data]\$ ■

have in hdfs to start with. I do that by saying hadoop fs minus ls. That gives me a listing of what's in my home directory on the Hadoop cluster. Because I'm logged in to the local machine as a user called training, my home directory in hdfs is /user/training. And as you can see, there's nothing there. So now, let's upload our purchases.txt file. We do that with hadoop fs minus put purchases.txt. Hadoop fs minus put takes a local file and places it into hdfs.

```
[training@localhost data]$ hadoop fs -put purchases.txt
```

Since I'm not specifying a destination filename, it'll be uploaded with the same filename. So, it takes a few seconds to upload. And now I can do another hadoop fs minus Is, and we can see that that file is now in hdfs.

```
[training@localhost data]$ hadoop fs -ls
Found 1 items
-rw-r--r-- 1 training supergroup 211312924 2013-09-12 21:16 purchases.txt
```

I can take a look at the last few lines of the file by saying, hadoop fs minus tail, and then the filename, and that just displays the last few lines on the screen for me.

```
[training@localhost data]$ hadoop fs -tail purchases.txt
       17:59
              Norfolk Toys
                             164.34 MasterCard
31
2012-12-31
              17:59
                     Chula Vista
                                    Music
                                           380.67 Visa
              17:59
                                    115.21 MasterCard
2012-12-31
                     Hialeah Toys
2012-12-31
              17:59
                                    Men's Clothing 158.28 MasterCard
                     Indianapolis
                     Norfolk Garden 414.09 MasterCard
2012-12-31
             17:59
2012-12-31
             17:59
                                    DVDs
                                           467.3 Visa
                    Baltimore
2012-12-31
             17:59
                    Santa Ana
                                    Video Games
                                                   144.73 Visa
             17:59
                    Gilbert Consumer Electronics
                                                  354.66 Discover
2012-12-31
2012-12-31
             17:59 Memphis Sporting Goods 124.79 Amex
             17:59 Chicago Men's Clothing 386.54 MasterCard
2012-12-31
2012-12-31
             17:59 Birmingham
                                    CDs
                                           118.04 Cash
2012-12-31
             17:59 Las Vegas
                                    Health and Beauty
                                                          420.46 Amex
2012-12-31
             17:59 Wichita Toys
                                    383.9 Cash
             17:59 Tucson Pet Supplies
                                           268.39 MasterCard
2012-12-31
             17:59 Glendale
                                  Women's Clothing
2012-12-31
                                                          68.05
                                                                 Amex
2012-12-31
             17:59 Albuquerque
                                    Toys
                                           345.7 MasterCard
2012-12-31
              17:59 Rochester
                                    DVDs
                                           399.57 Amex
2012-12-31
              17:59 Greensboro
                                    Baby
                                           277.27 Discover
2012-12-31
              17:59
                     Arlington
                                    Women's Clothing
                                                         134.95 MasterCard
2012-12-31
              17:59 Corpus Christi DVDs
                                           441.61 Discover
```

There's also a hadoop fs minus cat, which will display the entire contents of the file and we'll use that later. There are plenty of other hadoop fs commands and as you'll probably have started to realize, they closely mirror standard UNIX file system commands. So, if I want to rename the file, for example, I can say hadoop fs minus mv, which moves purchases.txt, in this case, to newname.txt.

```
[training@localhost data]$ hadoop fs -mv purchases.txt newname.txt
[training@localhost data]$ hadoop fs -ls
Found 1 items
-rw-r---- 1 training supergroup 211312924 2013-09-12 21:16 newname.txt
[training@localhost data]$ hadoop fs -rm newname.txt
```

If I want to delete a file, hadoop fs minus rm will remove that file for me. So, let's get rid of

newname.txt from hdfs.

```
[training@localhost data]$ hadoop fs -rm newname.txt
Deleted newname.txt
```

I create a directory in hdfs by saying hadoop fs minus mkdir and then the directory name, and now let's upload purchases.txt and place it in the myinput directory so that it's ready for processing by hdfs. Once I've done that, hadoop fs minus Is myinput will show me the contents of that directory. And just as I expected, there's the file.

MapReduce

Thanks, Ian. OK, now we've seen how files are stored in HDFS, let's discuss how that data is processed with MapReduce. Say I had a large file. Processing that serially from the top to the bottom could take a long time.

Instead, mapreduce is designed to be a very parallelized way of managing data, meaning that your input data is split into many pieces, and each piece is processed simultaneously. To explain, let's take a real-world scenario.

Let's imagine we run a retailer with thousands of stores around the world. And we have a ledger which contains all the sales from all the stores, organized by date. We've been asked to calculate the total sales generated by each store over the last year.

Now, one way to do that would be just to start at the beginning of the ledger and, for each

entry, write the store name and the amount next to it. For the next entry, I need to see if I've already got that store written down; if I have, I can add the amount to that store. If not, I write down a new store name and that first purchase. And so on, and so on.

2012-01-01 London Clothes 25.99 2012-01-01 Miami Music 12.15 2012-01-02 NYC Toys 3.10 2012-01-02 Miami Clothes 50.00

LONDON 25.99 MIAMI 12.15 62.15 NYC 3.10

Hashtables

Typically, this is how we'd solve things in a traditional computing environment: we'd create some kind of associative array or hashtable for the stores then process the input file one entry at a time.

What problems do you see with such approach, if you run this on 1 TB of data?

[] it will not work

[] you might run out of memory

[] it will take a long time

[] the end result might be incorrect

Answer:

First of all, you got millions and millions of sales to process. So it's going to take an awfully long time for your computer to first read the file from a disk and then to process. Also, the more stores you have, the longer it takes you to check my total sheet, find the right store, and add the new value to the running total for that store. But again, it would take a long time and you may even run out of memory to hold your array if you really do have a huge number of stores. So instead, let's see how you would do this as a MapReduce job.

Mappers and Reducers

We'll take the staff in the accounts department and split them into two groups, We'll call them the Mappers and the Reducers. Then we'll break the ledger down into chunks, and give each chunk to one of the Mappers. All of the Mappers can work at the same time, and each one is working on just a

small fraction of the overall data.

Here's what a Mapper will do. They will take the first record in their chunk of the ledger, and on an index card they'll write the store name as the heading. Underneath, they'll write the sale amount for that record. Then they'll take the next record, and do the same thing. As they're writing the index cards, they'll pile them up so that all the cards for one particular store go on the same pile. By the end, each Mapper will have a pile of cards per store.

Once the Mappers have finished, the Reducers can collect their sets of cards. We tell each Reducer which stores they're responsible for. The Reducers go to all the Mappers and retrieve

the piles of cards for their own stores. It's fast for them to do, because each Mapper has separated the cards into a pile per store already. Once the Reducers have retrieved all their data, they collect all the small piles per store and create a large pile per store. Then they start going through the piles, one at a time. All they have to do at this point is add up all the amounts on all the cards in a pile, and that gives them the total sales for that store, which they can write on their final total sheet. And to keep things organized, each Reducer goes through his or her set of piles of cards in alphabetical order.

MapReduce

And that's MapReduce! The Mappers are programs which each deal with a relatively small amount of data, and they all work in parallel. The Mappers output what we call 'intermediate records', which in this case were our index cards. Hadoop deals with all data in the form of records, and records are key-value pairs. In this example, the key was the store name, and the value was the sale total for that particular piece of input. Once the Mappers have finished, a phase of MapReduce called the 'Shuffle and Sort' takes place. The shuffle is the movement of

the intermediate data from the Mappers to the Reducers and the combination of all the small sets of records together, and the sort is the fact that the Reducers will organize the sets of records -- the piles of index cards in our example -- into order. Finally, the Reduce phase works on one set of records -- one pile of cards -- at a time; it gets the key, and then a list of all the values, it processes those values in some way (adding them up in our case) and then it writes out its final data for that key.

QUIZ: Final result Since the intermediate data is only sorted per Reducer, how could we get the final results in total sorted order? [] can't be done [] have only one Reducer [] merge the result files after the job Answer: You could either have a single reducer, or merge the result files after the job

QUIZ: Two reducer problem

Assume you have a job which has two Reducers. The Mappers output the following keys: Apple, Banana, Carrot, Grape Which keys will go to the first of the two Reducers?

.]	Apple and Banana
]	Apple and Carrot
]	Carrot and Grape
]	Apple and Grape
]	We don't know, but two will go to each Reducer
1	We don't know, and it's possible that one Reducer will not get any of the keys

Answer:

Since there is no guarantee that each reducer will get same number of keys, it might be that one of them will get none. For more information on how this works see the links instructor notes.

Daemons of MapReduce

So we've seen conceptually how MapReduce works. In the next lesson, we'll talk about how to actually write code to perform MapReduce jobs on the cluster, but before we do that it's useful to know where the code will actually run.

Just as with HDFS, there are a set of daemons -- which are basically just pieces of code which run all the time -- that control MapReduce on the cluster. When you run a MapReducejob, you submit the code to a machine called the JobTracker. That splits the work into Mappers and Reducers, and those Mappers and Reducers will run on the cluster nodes. Running the actual Map tasks and Reduce tasks is handled by a daemon called the

TaskTracker, which runs on each of the slave nodes in the cluster. Notice that since the TaskTrackers run on the same machines as the DataNodes, the Hadoop framework will be able to have Map tasks work on pieces of data that are stored on the same machine, which will save a lot of network traffic.

As we saw, each Mapper processes a portion of the input data known as an 'InputSplit', and by default Hadoop will use an HDFS block as the InputSplit for each Mapper. It will try to make sure that a Mapper works on data which is on the same machine as the block itself, so in an ideal world, the Mapper which processes a block will run on one of the machines which actually stores that block. If block 2 needs processing, for example, it will ideally be processed on this machine, this machine, or this machine. That won't always be possible, because the TaskTrackers on all three machines may already be busy, in which case the data will be streamed to another node for processing, but it should happen the majority of the time.

The Mappers read the input data, and produce intermediate data which the Hadoop framework then passes to the Reducers -- that's the shuffle and sort. The Reducers process that data, and write their final output back to HDFS.

DAEMONS OF MAPREDUCE

So let's have lan run a job on our cluster.

Running a Job

It's often the case that MapReduce code is written in Java. However, to make things a little easier for us, we've actually written our mapper and reducer in Python instead. And we can do that thanks to a feature called Hadoop streaming, which allows you to write your code in pretty much any language you'd like. So first of all, let's double-check that we have our input data in HDFS. So, if I Hadoop fs minus Is, then there's my input directory. And if I look at that directory, then yes, there's purchases.txt in there. And in my local directory, I have mapper.py and reducer.py, that's the code for the mapper and reducer, written in Python. We'll look at the actual code in the next lesson.

Okay, to submit the job we have to give this rather cumbersome command. We say hadoop jar, a path to a jar, then I specify the mapper, I specify the reducer, I need to say -file, for both the mapper and the reducer code. I specify the input directory in HDFS and I specify the output directory to which the reducers will write their output data. And we're calling that joboutput.

```
[training@localhost code]$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming-2.00 mrl-cdh4.1.1.jar -mapper mapper.py -reducer reducer.py -file mapper.py -file reducer.py -input myinput -ctput joboutput
```

I hit Enter and off we go. Hadoop's pretty verbose, as you can see. As the job runs, you'll see a bunch of output which shows us how far along the job is. It turns out that for this job Hadoop will be running four mappers. And our virtual machine here can only run two at a time. So the job is going to take longer than it would on a larger cluster. Actually, that's worth mentioning here. With the size of the data we have for this example which is only 200 megs, realistically, we could probably have solved this problem faster by just importing the data into a relational database and querying it from there. And that's often the case when we're developing and testing code. Because the test data sets are pretty small, Hadoop isn't necessarily the optimal tool for the job. But when we're done testing and we need to process our full production data, that's when Hadoop really comes into its own. So, as you can see the job is now nearly complete, and when the job has finished we'll see that the last line tells me that the output directory is called joboutput.

```
training@localhost:~/udacity training/code
File Edit View Search Terminal Help
13/09/12 21:23:25 INFO snappy.LoadSnappy: Snappy native library loaded
13/09/12 21:23:25 INFO mapred.FileInputFormat: Total input paths to process : 1
13/09/12 21:23:25 INFO streaming.StreamJob: getLocalDirs(): [/var/lib/hadoop-hdfs/cache/training/mapred/lo
13/09/12 21:23:25 INFO streaming.StreamJob: Running job: job_201309111631_0001
13/09/12 21:23:25 INFO streaming.StreamJob: To kill this job, run:
13/09/12 21:23:25 INFO streaming.StreamJob: UNDEF/bin/hadoop job -Dmapred.job.tracker=0.0.0.0:8021 -kill
b 201309111631 0001
13/09/12 21:23:25 INFO streaming.StreamJob: Tracking URL: http://0.0.0.0:50030/jobdetails.jsp?jobid=job 20
09111631_0001
13/09/12 21:23:26 INFO streaming.StreamJob:
                                               map 0% reduce 0%
13/09/12 21:23:36 INFO streaming.StreamJob:
                                              map 16% reduce 0%
                                              map 24%
13/09/12 21:23:39 INFO streaming.StreamJob:
                                                        reduce 0%
13/09/12 21:23:42 INFO streaming.StreamJob:
                                              map 33%
                                                        reduce 0%
13/09/12 21:23:46 INFO streaming.StreamJob:
                                              map 42%
                                                        reduce 0%
                                              map 50%
13/09/12 21:23:49 INFO streaming.StreamJob:
                                                        reduce 0%
13/09/12 21:23:59 INFO streaming.StreamJob:
                                              map 75%
                                                        reduce 0%
                                              map 85%
13/09/12 21:24:00 INFO streaming.StreamJob:
                                                        reduce 25%
13/09/12 21:24:03 INFO streaming.StreamJob: map 94% reduce 25%
13/09/12 21:24:06 INFO streaming.StreamJob: map 100% reduce 25%
13/09/12 21:24:09 INFO streaming.StreamJob: map 100%
                                                         reduce 33%
13/09/12 21:24:12 INFO streaming.StreamJob: map 100%
                                                         reduce 73%
13/09/12 21:24:15 INFO streaming.StreamJob: map 100%
                                                         reduce 81%
13/09/12 21:24:18 INFO streaming StreamJob: map 100% reduce 89%
13/09/12 21:24:21 INFO streaming.StreamJob:
                                              map 100% reduce 96%
13/09/12 21:24:24 INFO streaming.StreamJob: map 100% reduce 100%
13/09/12 21:24:26 INFO streaming.StreamJob: Job complete: job 201309111631 0001
13/09/12 21:24:26 INFO streaming.StreamJob: Output: joboutput
```

Let's take a look at what we've got in there. Hadoop fs minus Is, shows me that yes I do have a job output directory. And if we look at the job output directory, you'll see that it contains three things. It contains a file called _SUCCESS, which just tells me that the job has successfully completed. It contains a directory called _logs, which contains some log information about what happened during the job's run. And then, it contains a file called part-00000. That file is the output from the one reducer that we had for this job.

```
[training@localhost code]$ hadoop fs -ls
Found 2 items
drwxr-xr-x - training supergroup
                                            0 2013-09-12 21:24 joboutput
drwxr-xr-x

    training supergroup

                                            0 2013-09-12 21:16 myinput
[training@localhost code]$ hadoop fs -ls joboutput
Found 3 items
                                            0 2013-09-12 21:24 joboutput/_SUCCESS
-rw-r--r-- 1 training supergroup
drwxr-xr-x

    training supergroup

                                            0 2013-09-12 21:23 joboutput/ logs
                                        2296 2013-09-12 21:24 joboutput/part-00000
- rw- r- - r- -
            1 training supergroup
[training@localhost codel$ hadoon fs
```

Let's take a look at that by saying hadoop fs minus cat part 00000, and we'll pipe that to less on our local machine.

```
[training@localhost code]$ hadoop fs -cat joboutput/part-00000 | Less
```

That's the contents of that file, which is the output from our reducer. It's the sum total sales broken down by store exactly as we want it.

```
10016409.97 Memphis
Albuquerque
                 10052311.42
                                      El Paso
                                                                                     10038565.32
                                                                                                          Portland
                                                                                                                          10007635.77
Anaheim
                 10076416.36
                                      Fort Wayne
                                                       10132594.02
                                                                            10053642.6
                                                                    Mesa
                                                                                                          Raleigh
                                                                                                                          10061442.54
Anchorage
                 9933500.4
                                      Fort Worth
                                                       10120830.65
                                                                    Miami
                                                                            9947316.07
                                                                                                                  10079955.16
                                                                                                          Reno
                 10072207.97
Arlington
                                      Fremont
                                                       10053242.36
                                                                    Milwaukee
                                                                                     10064482.65
                                                                                                                          9992941.59
                                                                                                          Richmond
                 9997146.7
                                      Fresno
                                              9976260.26
                                                                                     10011757.78
Atlanta
                                                                    Minneapolis
                                                                                                          Riverside
                                                                                                                          10006695.42
Aurora 9992970.92
                                      Garland
                                                       10071043.92
                                                                    Nashville
                                                                                     9961450.51
                                                                                                          Rochester
                                                                                                                          10067606.92
Austin 10057158.9
                                      Gilbert
                                                       10062115.19
                                                                    New Orleans
                                                                                     9949257.75
                                                                                                                          10123468.18
Bakersfield
                 10031208.92
                                      Glendale
                                                       10044493.97
                                                                    New York
                                                                                     10085293.55
                                                                                                                          10057233.57
                                                                                                          Saint Paul
                                                       10033781.39
                                      Greensboro
                                                                           10144052.8
Baltimore
                 10096521.45
                                                                    Newark
                                                                                                          San Antonio
                                                                                                                          10014441.7
                                                                                     10088563.17
                 10131273.23
                                      Henderson
                                                       10053416.05
                                                                    Norfolk
Baton Rouge
                                                                                                          San Bernardino
                                                                                                                          9965152.04
                                                                                     10029652.51 San Diego
9947292.52 San Franc
Birmingham
                 10076606.52
                                      Hialeah
                                                       10047052.76
                                                                    North Las Vegas
                                                                                                                          9966038.39
        10039166.74
                                      Honolulu
                                                       10006273.49
                                                                    0akland
                                                                                                          San Francisco
                                                                                                                          9995570.54
Boise
                                                       10042106.27
                                                                    Oklahoma City
                                                                                     10118986.25
                                                                                                          San Jose
                                                                                                                          9936721.41
                                      Houston
                                      Indianapolis
Buffalo
                 10001941.19
                                                       10090272.77
                                                                    0maha
                                                                            10026642.34
                                                                                                          Santa Ana
                                                                                                                          10050309.93
                                      Irvine
                                              10084867.45
                                                                    Orlando
                                                                                     10074922.52
                                                                                                          Scottsdale
                                                                                                                          10037929.85
Chandler
                 9919559.86
                 10112531.34
                                      Irving
                                              10133944.08
                                                                    Philadelphia
                                                                                     10190080.26
                                                                                                          Seattle
                                                                                                                          9936267.37
Charlotte
                                                                                                                          10083362.98
                                                       10072003.33
                                                                                                          Spokane
                                      Jacksonville
                                                                                     10079076.7
Chesapeake
                 10038504.92
                                                                    Phoenix
                                                       9920141.87
                                                                                                          St. Louis
                                                                                                                          10002105.14
                 10062522.07
                                      Jersey City
                                                                    Pittsburgh
                                                                                     10090124.82
Chicago
                                                                                                          St. Petersburg
                                                                                                                          9986495.54
Chula Vista
                 9974951.34
                                      Kansas City
                                                       9968118.73
                                                                    Plano
                                                                            10046103.61
                                                                                                                          10006412.64
                                                                                                          Stockton
                                      Laredo 10144604.98
                                                                    Portland
                                                                                     10007635.77
Cincinnati
                 10139505.74
                                                                                                                  10106428.55
                 10067835.84
                                      Las Vegas
                                                       10054257.98
                                                                    Raleigh
                                                                                     10061442.54
Cleveland
                                                                                                          Toledo
                                                                                                                  10020768.88
Colorado Springs
                         10061105.87 Lexington
                                                       10084510.95
                                                                    Reno
                                                                            10079955.16
                                                                                                                  9998252.47
                                                                                                          Tucson
                10035241.03
                                                       10069485.4
                                                                    Richmond
                                                                                     9992941.59
                                      Lincoln
Columbus
                                                                                                                  10064955.9
                                                                                                          Tulsa
                                      Long Beach
                                                       10006380.25
                                                                                     10006695.42
Corpus Christi
                9976522.77
                                                                    Riverside
                                                                                                          Virginia Beach
                                                                                                                          10086553.5
Dallas 10066548.45
                                      Los Angeles
                                                       10084576.8
                                                                    Rochester
                                                                                     10067606.92
                                                                                                          Washington
                                                                                                                          10139363.39
                                      Louisville
                                                       10008566.47
                                                                    Sacramento
                                                                                     10123468.18
Denver
        10031534.87
                                                                                                                          10083643.21
                                                                                                          Wichita
                                      Lubbock
                                                       9958119.15
                                                                    Saint Paul
                                                                                     10057233.57
Detroit
                 9979260.76
                                                                                                          Winston-Salem
                                                                                                                          10044011.83
                                                       10032035.54 San Antonio
Durham 10153890.21
                                      Madison
                                                                                     10014441.7
                                                                                                          (END)
```

Incidentally, if you want to retrieve data from HFDS and put it onto your local disk, you can do that with Hadoop fs minus get. Hadoop fs minus get is the opposite of Hadoop fs minus put. It just pulls data from HDFS and puts it on the local disk. So as you can see, now I have my local file.txt on my local disk And I can manipulate that however I'd like.

```
[training@localhost code]$ hadoop fs -get joboutput/part-00000 mylocalfile.txt
[training@localhost code]$ ls
mapper.py mylocalfile.txt reducer.py
[training@localhost code]$ less mylocalfile.txt
```

That Hadoop job command we typed was pretty painful to have to remember. So to save you time, we've created an alias in the demo virtual machine that you'll be downloading. You can just type hs followed by four arguments, the mapper script, the reducer script, the input directory, and the output directory.

```
[training@localhost code]$ hs mapper.py reducer.py myinput joboutput
```

Here's one important thing to note, though. When you're running a Hadoop job, the output directory must not already exist. And as you can see, if we try and run the command with an existing directory. In this case, job output. Hadoop refuses to run the job.

```
packageJobJar: [mapper.py, reducer.py, /tmp/hadoop-training/hadoop-unjar7772862338865304886/] [] /tmp/strea job275688370291485201.jar tmpDir=null 13/09/12 21:27:26 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications sould implement Tool for the same. 13/09/12 21:27:26 INFO mapred.JobClient: Cleaning up the staging area hdfs://0.0.0.0:8020/var/lib/hadoop-hd s/cache/mapred/mapred/staging/training/.staging/job_201309111631_0002 13/09/12 21:27:26 ERROR security.UserGroupInformation: PriviledgedActionException as:training (auth:SIMPLE) cause:org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://0.0.0.0:8020/user/trainig/joboutput already exists 13/09/12 21:27:26 ERROR streaming.StreamJob: Error launching job , Output path already exists : Output directory hdfs://0.0.0.0:8020/user/training/joboutput already exists Command Failed!
```

This is actually a feature of Hadoop. It's designed to stop you inadvertently deleting or overwriting data that's already in the cluster. But as you can see, if we specify a different directory, which doesn't already exist, then the job will begin just fine.

Processing Logs

The example we just talked about was calculating the average sales per store. And there are lots of other things we can do with MapReduce that are actually quite similar, conceptually, to that. For example, log processing is really quite similar. Imagine you have a set of log files from a Web server which look like this, and you want to know how many times each page has been hit.

PROCESSING LOGS

```
10.50.21.13 - - [03/Dec/2011:12:57:26 -0800] "GET /images/filmpics/0000/1421/RagingPhoenix_2DSleeve.jpeg HTTP/1.1" 200 778954 10.145.15.110 - [03/Dec/2011:12:54:43 -0800] "GET /images/filmpics/0000/2741/SwordsleeveDVD2D.jpg HTTP/1.1" 200 2864536
                             [03/Dec/2011:12:58:16 -0800] "GET /robots.txt-HTTP/1.1" 404-182
10-179-239-175 ---
                             [03/Dec/2011:12:58:16_0800]="GET./images/filmmediablock/710/55MW-48.jpg_HTTP/1.1" 200 155959
10.179.239.175 -
                             [03/Dec/2011:12:58:17 -0800] "GET /displaytitle.php?id=710 HTTP/1.1" 200 4470
10.179.239.175 -
10.158.5.172 - - [03/Dec/2011:12:58:20 -0800] "GET /downloadSingle.php?id=67236fid=696 HTTP/1.1" 200 32768
10.113.178.216 - [03/Dec/2011:13:04:56 -0800] "GET /displaytitle.php?id=613 HTTP/1.1" 200 4298
10.113.178.216 - [03/Dec/2011:13:04:57 -0800] "GET /dssets/css/combined-css HTTP/1-1" 200 6112
                            [03/Dec/2011:13:04:57 -0800] "GET /assets/js/javascript combined.js HTTP/1.1" 200 20404
[03/Dec/2011:13:04:58 -0800] "GET /assets/jmg/home-logo.png HTTP/1.1" 200 3892
[03/Dec/2011:13:04:58 -0800] "GET /images/filmpics/0000/5695/THE_DUEL_ - PACKSHOT_3D_thumb.jpg HTTP/1.1" 200 365
10.113.178.216 - -
10.113.178.216 - -
10.113.178.216 - -
10.113.178.216 - [03/Dec/2011:13:04:58 -0800] "GET /images/clientlogos/0000/0042/Chelsea Films Logo.jpg HTTP/1.1" 200 59191 10.113.178.216 - [03/Dec/2011:13:04:58 -0800] "GET /images/filmpics/0000/5693/THE_DUEL_- PACKSHOT_2D_thumb.jpg HTTP/1.1" 200 515
10.113.178.216 - - [03/Dec/2011:13:05:03 -0800]="GET /assets/css/printstyles.css HTTP/1.1" 200 540
10.241.175.146 - - [03/Dec/2011:13:05:30 -0800] "GET /images/filmpics/0000/1421/RagingPhoenix_2DSleeve.jpeg HTTP#
10.173.28.169 - - [03/Dec/2011:13:06:13 -0800] "GET /images/filmpics/0000/2537/14blades BD 2d jpg HTTP/1.1" 200 353144
10.70.226.36 - - [03/Dec/2011:13:06:58 -0800]
                                                                      "GET /downloadSingle.php?id=6475&fid=680 HTTP/1.1" 200 331
10.124.155.234 - [03/Dec/2011:13:08:46 -0800] "GET /release-schedule/index.php?o=a&r=a&l=8&go=Go HTTP/1.1" 200 4599 10.81.53.37 - [03/Dec/2011:13:11:26 -0800] "GET /images/filmpics/0000/1421/RagingPhoenix_2DSleeve.]peg HTTP/1.1" 200 7
10.118.250.30 - [03/Dec/2011:13:11:39 -000] "GET /downloadSingle.php?id=70836f1d=712 HTTP/1.1" 200 300982
10.110.220.30 - [03/Dec/2011:13:11:39 +0000] 'GET /downloadsingle.php?ld=/003651d=/12 HTTP/1.1' 200 3001
10.91.32.202 - [03/Dec/2011:13:12:38 -0800] 'GET /inages/filmmediablock/618/16.jpg HTTP/1.1' 200 326990
10.245.58.99 - [03/Dec/2011:13:12:58 -0800] 'GET /displaytitle.php?ld=4481 HTTP/1.1' 200 4460
10.245.58.99 - [03/Dec/2011:13:12:58 -0800] 'GET /assets/css/printstyles.css HTTP/1.1' 200 540
10.245.58.99 - [03/Dec/2011:13:12:58 -0800] 'GET /assets/css/combined.css HTTP/1.1' 200 6112
10.245.58.99 - - [03/Dec/2011:13:12:59 -0800] "GET /assets/js/javascript_combined.js HTTP/1.1" 200 20404
10.245.58.99 - [03/Dec/2011:13:12:59 -0800] "GET /assets/img/home-logo.png HTTP/1.1" 200 3892
10.245.58.99 - [03/Dec/2011:13:12:58 -0800] "GET /images/filmpics/0000/3695/Pelican Blood 2D Pack.jpg HTTP/1.1" 200 444923
10.245.58.99 - [03/Dec/2011:13:13:00 -0800] "GET /images/filmmediablock/481/swpb 988.jpg HTTP/1.1" 200 67218
10.245.58.99 - [03/Dec/2011:13:12:59 -0800] "GET /images/filmmediablock/481/pb-0622.jpg HTTP/1.1" 200 132304
10.245.58.99 - [03/Dec/2011:13:13:00 -0800] "GET /images/filmpics/0000/3999/pb-0622_thumb.jpg HTTP/1.1" 200 61483
10.245 58.99 - [03/Dec/2011:13:13:00 -0800] "GET /images/filmpics/0000/4599/PB 3D Pack withIrishCert thumb.jpg HTTP/1.1" 200 302
```

Well, it's really similar to the sales per store. Your Mapper will read a line of the log file at a time, and will extract the name of the page -- like index.html, for example.

```
10.70.226.36 - [03/Dec/2011:13:06:58 -0800] "GET /downloadSingle_np710=64756710 080 HTTP/1.1" 200 331 10.124.155.234 - [03/Dec/2011:13:06:46 -0800] "GET /release-thedule/index.php?o-a6r=a6l=86go=Go HTTP/1.1" 200 4599 10.81.53.37 - [03/Dec/2011:13:11:26 -0800] "GET /images/filmp1c=/0000/1431/BagingPhoenix_20Sleeve.jpeg HTTP/1.1" 200
```

Its intermediate data will have the name of the page as the key, and a 1 as the value, because you've found one hit to the page at that position in the log. When all the Mappers are done, the Reducers will get the keys, and a list of all the values for each particular key. They can

then just add all the '1's up for a key and that will tell them the total number of hits to that page on the Web site. Simple, but far more efficient than writing a stand-alone program to go through all the logs from start to finish if you have hundreds of gigabytes to process.

Practice makes perfect

And that's just the start of what you can do with MapReduce. Things like fraud detection, recommender systems, item classification... there are many, many applications of MapReduce, but they all start with those simple concepts. And they all share some basic characteristics: there's a lot of data to be processed, and the work can be parallelized -- you don't have to just start at the beginning and slog through to the end.

Perhaps the hardest thing to learn when you're new to Hadoop is how to solve problems by thinking in terms of MapReduce. It's a very different way of processing data compared to how you're probably used to working and, honestly, the best way to learn is by practice. In the next lesson we'll write the code to solve our sales-by-store problem, and you'll start to work on other MapReduce problems.

Virtual Machine Setup

We've provided a virtual machine with CDH, Cloudera's distribution of Hadoop, pre-installed. We say that this VM is running a cluster in 'pseudo-distributed mode'. That means it's a complete Hadoop cluster running on a single machine. It's a great way to write and test code, because it really is a complete Hadoop cluster... just one which is running on a single machine. The VM also contains our sample datasets and sample solutions to the problems we're going to ask you to solve. If you haven't already downloaded it, now would be a good time to do so. You can find instructions on how to do that in the Instructor Notes for this lesson.

Once you've downloaded and started up the VM, we'd like you to try uploading a data set into HDFS and running a MapReduce job yourself. The exercise instructions document in the Instructor Notes section gives you step-by-step instructions on what to do (Instructions document). Have fun!

Conclusion

So, that's the end of the lesson. You learned about how Hadoop uses HDFS to store data, and the basic principles behind MapReduce. In the next lesson, we'll look at the MapReduce code itself; by the end of the lesson you'll be ready to write your own programs to analyze data.

Number of Reducers

One thing worthy of note is that you, as a developer, specify how many Reducers you want for your job. The default is to have a single Reducer, but for large amounts of data it often makes sense to have many more than one. Otherwise, that one Reducer will end up having to process a huge amount of data from the Mappers. The Hadoop framework decides which keys get sent

to each Reducer, and there's no guarantee that each Reducer will get the same number of keys. The keys which go to a particular Reducer are sorted, but each Reducer writes its own file into HDFS. So if, for example, we had four keys: a, b, c, and d, and two Reducers, then one Reducer might get keys a and d, the other might get b and c. So the results would be sorted within each Reducer's output, but just joining the files together wouldn't produce completely sorted output.

1

abcd

QUIZ:

Before we move on, though, which of the following types of problem do you think are good candidates to solve with MapReduce?

- [] Detecting anomalous behavior from a log file
- [] Calculating returns from a large number of stock portfolios
- [] Very large matrix inversion
- [] (...something else)

Answer: The answer is that all but matrix multiplication are good candidates to solve with MapReduce. The reason matrix inversion is not, is that matrix manipulation tends to require holding the entire contents of both matrices in memory at once, rather than processing individual portions. You can do it with MapReduce, but it turns out to be quite difficult.