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=, Introduction
ﬂ In this lesson we’ll take a deeper look at the two key parts of Hadoop - how it stores the
. data, and how it processes it. Let’s start by seeing how data is stored.
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Files are stored in something called the Hadoop Distributed File

System, which everyone just refers to as HDFS. As a developer, D 15 TRI 6UT ED
this looks very much like a regular filesystem -- the kind you’re

used to working with on a standard machine. But it's helpful to F g \,6

understand what’s going on behind the scenes, so that’s what 6”"

we’re going to talk about here. 5 V5T

When a file is loaded into HDFS, it’s split into chunks, which we call ‘blocks’. Each block is pretty
big; the default is 64 megabytes. So, imagine we’re going to store a file called ‘mydata.txt’, which
is 150 megabytes in size. As it's uploaded to the cluster, it’s split into 64 megabyte blocks, and
each block will be stored on one node in the cluster. Each block is given a unique name by the
system: it’s actually just ‘blk’, then an underscore, then a large number. In this case, the file will
be split into three blocks: the first will be 64 megabytes, the second will be 64 megabytes, and
the third will be the remaining 22 megabytes.
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There’s a daemon, or piece of software, running on each of these cluster nodes called the



DataNode, which takes care of storing the blocks.

Now, clearly we need to know which blocks make up the file. That's handled by a separate
machine, running a daemon called the NameNode. The information stored on the NameNode is
known as the ‘metadata’.
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QUIZ - Are there problems?

That’s fine as far as it goes, but there are some problems with this. Take a look at the diagram,
and see if you can spot where we might run into trouble.

[ 1 Network failure between nodes
[ ] Disk failure on DataNode

[ 1 Not all DataNodes are used

[ ]Block sizes are different

[ ]1Disk failure on NameNode

Answer:

‘Some nodes are not used’ is not a problem, since they can be used for different files, neither is
different block size. Network and disk failures are certainly a problem, let’s look into this in more
detail

Data Redundancy

The problem with things right now is that if one of our nodes fails, we’re left with missing data for
the file. If this node goes away, for example, we’ve got a 64 megabyte hole in the middle of



mydata.txt. And, of course, similar problems with any other files which have blocks stored on
that node.

To solve this problem, Hadoop replicates each block three times as it’s stored in HDFS. So
blk_1 doesn'’t just live here, it's also stored perhaps here and here. blk_2 isn’t just here, but also
maybe here and here. And similarly for blk_3. Hadoop just picks three random nodes, and puts
one copy of the block on each of the three. Well, actually, it's not a totally random choice, but it's
close enough for us right now.

DATA ReOUNDANCY
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Now, if a single node fails, it's not a problem because we have two other copies of the block on
other nodes. And the NameNode is smart enough that if it sees that any of the blocks are
under-replicated, it will arrange to have those blocks re-replicated on the cluster so we’re back to
having three copies of them again.

QUIZ - Any problems now?
OK, so, we've taken care of what happens if one of our DataNodes fails. But there’s another
obvious single point of failure here. What happens if the NameNode has a hardware problem?

data on HDFS may be inaccessible [ ]
data on HDFS may be lost forever [ ]
there is no problem [ ]



Answer:
If there is a network failure, the data will not be accessible temporarily. If the disk of the single
NameNode would fail, data on HDFS would be lost permanently

NameNode High Availability

For a long time, the NameNode was a single point of failure in Hadoop. If it died , the entire
cluster was inaccessible. And if the metadata on the NameNode was lost, the entire cluster’s
data was lost. Sure, you've still got all the blocks on the DataNodes, but you've no way of
knowing which block belongs to which file without the metadata. So to avoid that problem, people
would configure the NameNode to store the metadata

not just on its own hard drive but also somewhere else

on the network using NFS, which is a method of

mounting a remote disk on the NameNode. That way, D NT
even if the NameNode burst into flames, there would be 4

a copy of the metadata somewhere else on the v

network. N Pin® R DRk

Active and Standby NameNode
These days, the problem of the NameNode

being a single point of failure has been solved.
ﬂ Most production Hadoop clusters now have two

NameNodes: one Active, and one Standby. The

Active NameNode works as before, but the

Standby can be configured to take over
NA mEN 0 De Nﬂme N DDE ) automatically if the Active one fails. That way,
(ALT | “-6) (9 1 AN D B Y the cluster will keep running if any of the nodes

-- even one of the NameNodes -- fails.

lan’s now going to show you a demonstration of how to use HDFS.

DEMO of HDFS

training @lecalhost: ~ /udacity training/'data

File Edit ‘iew Search Terminal Help
[training@localhost data]s ls
access_log.gz purchases.txt
[training@localhost datals hlj

So, here | have a directory on my local machine, which contains a couple of files, and | want to
put one of them into hdfs. All of the commands which interact with the Hadoop file system start

with Hadoop FS. So first of all, let's see what we
[training@localhost datals ls

access_log.gz purchases.txt
[training@localhost data)$ hadoop fs -ls
[training@localhost datals |



have in hdfs to start with. | do that by saying hadoop fs minus Is. That gives me a listing of what's
in my home directory on the Hadoop cluster. Because I'm logged in to the local machine as a
user called training, my home directory in hdfs is /user/training. And as you can see, there's
nothing there. So now, let's upload our purchases.txt file. We do that with hadoop fs minus put
purchases.txt. Hadoop fs minus put takes a local file and places it into hdfs.

[training@localhost datal$ hadoop fs -put purchases.txt

Since I'm not specifying a destination filename, it'll be uploaded with the same filename. So, it
takes a few seconds to upload. And now | can do another hadoop fs minus Is, and we can see
that that file is now in hdfs.

[traininﬁélucalhnst data)s hadcnb fs -1s
Found 1 items
“MW=F==r=- 1 training supergroup 211312924 2013-09-12 21:16 purchases.txt

| can take a look at the last few lines of the file by saying, hadoop fs minus tail, and then the
filename, and that just displays the last few lines on the screen for me.
[training@localhost datal$ hadoop fs -tail purchases.txt

31 17:59 Norfolk Toys 164.34 MasterCard

2012-12-31 17:59 Chula Vista Music 388.67 Visa

2812-12-31 17:59 Hialeah Toys 115.21 MasterCard

20812-12-31 17:59 Indianapolis Men's Clothing 158.28 MasterCard
2012-12-31 17:59 Morfolk Garden 414.89 MasterCard

2812-12-31 17:59 Baltimore DVDs 467 .3 Visa

2812-12-31 17:59 Santa Ana Video Games 144.73 Visa
2012-12-31 17:59 Gilbert Consumer Electronics 354.66 Discover
2012-12-31 17:59 Memphis Sportimg Goods 124.79 Amex

2012-12-31 17:59 Chicago Men's Clothing 386.54 MasterCard
2012-12-31 17:59 Birmingham CDhs 118.84 Cash

2012-12-31 17:59 Las Vegas Health and Beauty 428.46 Amex
2012-12-31 17:59 Wichita Toys 383.9 Cash

2012-12-31 17:59 Tucson Pet Supplies 268.39 MasterCard
2012-12-31 17:59 Glendale Women's Clothing 68.85 Ame x
20812-12-31 17:59  Albuguergue Toys 345.7 MasterCard
2812-12-31 17:59 Rochester DVDs 399.57 Amex

2012-12-31 17:39 Greensboro Baby 217.21 Dilscover

20812-12-31 17:59  Arlington Women's Clothing 134.95 MasterCard
2812-12-31 17:59 Corpus Christi DVDs 441.61 Discover

There's also a hadoop fs minus cat, which will display the entire contents of the file and we'll use
that later. There are plenty of other hadoop fs commands and as you'll probably have started to
realize, they closely mirror standard UNIX file system commands. So, if | want to rename the file,
for example, | can say hadoop fs minus mv, which moves purchases.txt, in this case, to
newname.txt.

[training@localhost data]$ hadoop fs -mv purchases.txt newname.txt
[training@localhost datal$ hadoop fs -ls

Found 1 items

~MW-F--F-- 1 training supergroup 211312924 20813-89-12 21:16 newname.txt
[training@localhost data)$ hadoop fs -rm newname.txt

If | want to delete a file, hadoop fs minus rm will remove that file for me. So, let's get rid of

Copyright © 2014 Udacity, Inc. All Rights Reserved.



newname.txt from hdfs.

[training@localhost daEaIS'haauup'fs -rm newname.txt
Deleted newname.txt

| create a directory in hdfs by saying hadoop fs minus mkdir and then the directory name, and
now let's upload purchases.txt and place it in the myinput directory so that it's ready for
processing by hdfs. Once I've done that, hadoop fs minus Is myinput will show me the contents
of that directory. And just as | expected, there's the file.

[training@localhost datal$ hadoop fs -mkdir myinput

[traiming@localhost data]$ hadoop fs -put purchases.txt mylnput

[training@localhost data)$ hadoop fs -ls

Found 1 items

drwxr-xr-x - training supergroup 8 2013-89-12 21:16 mylilnput
[training@localhost datal$ hadoop fs -ls myinput

Found 1 items

~MW=F==F=-- 1 training supergroup 211312924 2013-09-12 21:16 myinput/purchases.txt
[training@localhost datals i

MapReduce

Thanks, lan. OK, now we’ve seen how files are stored in HDFS, let’s discuss how
g that data is processed with MapReduce. Say | had a large file. Processing that
serially from the top to the bottom could take a long time.

Instead, mapreduce is designed to be a very parallelized way of r:,f.;) l
managing data, meaning that your input data is split into many pieces, and each @ J
piece is processed simultaneously. To explain, let's take a real-world scenario. E"Ej I

Let's imagine we run a retailer with thousands T
of stores around the world. And we have a 1 2012-01-01 Miami Music 12.15

: ; 2012-01-02 NYC T 3.10
ledger which contains all the sales from all the | B ’ STl ot P S
stores, organized by date. We’ve been asked 3°DR-
to calculate the total sales generated by each 5’""5

store over the last year. } > I >

Now, one way to do that would be just to start / LoNDeN 25. a9

at the beginning of the ledger and, for each 15

entry, write the store name and the amount next to it. For the next m 14 mi G 2. 15
entry, | need to see if I've already got that store written down; if | N \[ & .10

have, | can add the amount to that store. If not, | write down a new
store name and that first purchase. And so on, and so on.

Hash
ashtables Vxﬁ\/ PV ALUE



Typically, this is how we’d solve things in a traditional computing environment: we’d create some
kind of associative array or hashtable for the stores then process the input file one entry at a
time.

What problems do you see with such approach, if you run this on 1 TB of data?
[ 1 itwill not work

[ 1 you might run out of memory

[ 1itwill take a long time

[ ]1the end result might be incorrect

Answer:

First of all, you got millions and millions of sales to process. So it's going to take an awfully long
time for your computer to first read the file from a disk and then to process. Also, the more
stores you have, the longer it takes you to check my total sheet, find the right store, and add the
new value to the running total for that store. But again, it would take a long time and you may
even run out of memory to hold your array if you really do have a huge number of stores. So
instead, let's see how you would do this as a MapReduce job.

Mappers and Reducers

MAPPER S We'll take the staff in the accounts department
i ?\ % and split them into two groups, We'll call them the
Mappers and the Reducers. Then we’ll break the
REOuceELs ledger down into chunks, and give each chunk to
% % one of the Mappers. All of the Mappers can work at
the same time, and each one is working on just a
small fraction of the overall data.

Here’s what a Mapper will do. They will take the first record in their chunk of the ledger, and on an
index card they’ll write the store name as the heading. Underneath, they’ll write the sale amount
for that record. Then they’ll take the next record, and do the same thing. As they’re writing the
index cards, they’ll pile them up so that all the cards for one particular store go on the same pile.
By the end, each Mapper will have a pile of cards per store.

MAPPER S

. _ % % T
a& afl &

Once the Mappers have finished, the Reducers can collect their sets of cards. We tell each
Reducer which stores they’re responsible for. The Reducers go to all the Mappers and retrieve



the piles of cards for their own stores. It’s fast for them to do, because each Mapper has
separated the cards into a pile per store already. Once the Reducers have retrieved all their
data, they collect all the small piles per store and create a large pile per store. Then they start
going through the piles, one at a time. All they have to do at this point is add up all the amounts
on all the cards in a pile, and that gives them the total sales for that store, which they can write
on their final total sheet. And to keep things organized, each Reducer goes through his or her set
of piles of cards in alphabetical order.

REOWUCELS
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MapReduce

And that's MapReduce! The Mappers are programs which each deal with a relatively small
amount of data, and they all work in parallel. The Mappers output what we call ‘intermediate
records’, which in this case were our index cards. Hadoop deals with all data in the form of
records, and records are key-value pairs. In this example, the key was the store name, and the
value was the sale total for that particular piece of input. Once the Mappers have finished, a
phase of MapReduce called the ‘Shuffle and Sort’ takes place. The shuffle is the movement of
the intermediate data from the Mappers to

the Reducers and the combination of all the m AP REDH ce

small sets of records together, and the sort
is the fact that the Reducers will organize m ——

the sets of records -- the piles of index V J, ! '\ﬁ ff_m‘f’ 'j ':
cards in our example -- into order. Finally, KCLORV S/ N
the Reduce phase works on one set of SHUFFLE AND ( KE LUE
records -- one pile of cards -- at a time; it 503!”‘({

gets the key, and then a list of all the values, .

it processes those values in some way RC Ducekr 5 LEY, VA Llﬂ-gs
(adding them up in our case) and then it l’

writes out its final data for that key.

2eESULTS



QUIZ: Final result

Since the intermediate data is only sorted per Reducer, how could we get the final results in total
sorted order?

[ ]can’t be done
[ 1 have only one Reducer
[ 1 merge the result files after the job

Answer:

You could either have a single reducer, or merge the result files after the job

QUIZ: Two reducer problem

Assume you have a job which has two Reducers. The Mappers output the following keys:
Apple, Banana, Carrot, Grape

Which keys will go to the first of the two Reducers?

[ 1Apple and Banana

[ 1Apple and Carrot

[ ] Carrot and Grape

[ 1Apple and Grape

[ 1 We don’t know, but two will go to each Reducer

[ 1 We don’t know, and it's possible that one Reducer will not get any of the keys

Answer:

Since there is no guarantee that each reducer will get same number of keys, it might be that one
of them will get none. For more information on how this works see the links instructor notes.

Daemons of MapReduce

So we'’ve seen conceptually how MapReduce works. In the next lesson, we’ll talk about how to
actually write code to perform MapReduce jobs on the cluster, but before we do that it's useful to
know where the code will actually run.

Just as with HDFS, there are a set of daemons -- which are

basically just pieces of code which run all the time -- that control

MapReduce on the cluster. When you run a MapReducejob, you

submit the code to a machine called the JobTracker. That splits the

work into Mappers and Reducers, and those Mappers and Reducers will run on the cluster
nodes. Running the actual Map tasks and Reduce tasks is handled by a daemon called the



i A TaskTracker, which runs on each of the slave nodes in the
¢ g ‘/’[/.T”,ﬂt(: y £ 2.5 cluster. Notice that since the TaskTrackers run on the same
- machines as the DataNodes, the Hadoop framework will be able
_f" "! to have Map tasks work on pieces of data that are stored on the
same machine, which will save a lot of network traffic.

As we saw, each Mapper processes a portion of the input data known as an ‘InputSplit’, and by
default Hadoop will use an HDFS block as the InputSplit for each Mapper. It will try to make sure
that a Mapper works on data which is on the same machine as the block itself, so in an ideal
world, the Mapper which processes a block will run on one of the machines which actually
stores that block. If block 2 needs processing, for example, it will ideally be processed on this
machine, this machine, or this machine. That won'’t always be possible, because the
TaskTrackers on all three machines may already be busy, in which case the data will be
streamed to another node for processing, but it should happen the majority of the time.

The Mappers read the input data, and produce intermediate data which the Hadoop framework
then passes to the Reducers -- that’s the shuffle and sort. The Reducers process that data, and
write their final output back to HDFS.

phemoNS  OF MAPReDulE
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o

So let’s have lan run a job on our cluster.



Running a Job

It's often the case that MapReduce code is written in Java. However, to make things a little easier
for us, we've actually written our mapper and reducer in Python instead. And we can do that
thanks to a feature called Hadoop streaming, which allows you to write your code in pretty much
any language you'd like. So first of all, let's double-check that we have our input data in HDFS.
So, if | Hadoop fs minus Is, then there's my input directory. And if | look at that directory, then yes,
there's purchases.txt in there. And in my local directory, | have mapper.py and reducer.py, that's
the code for the mapper and reducer, written in Python. We'll look at the actual code in the next
lesson.

training @localhost: - /'udacity_training/code

File Edit Yiew Search Terminal Help

[training@localhost code]$% hadoop fs -1s

Found 1 items

drwxr-xr-x - training supergroup 6 2013-89-12 21:16 myinput
[training@localhost code]$ hadoop fs -1ls myinput

Found 1 items

cW=[==[== 1 training supergroup 211312924 2813-89-12 21:16 myinput/purchases.txt
[training@localhost code]% ls

[training@localhost codel$ [

Okay, to submit the job we have to give this rather cumbersome command. We say hadoop jar,
a path to a jar, then | specify the mapper, | specify the reducer, | need to say -file, for both the
mapper and the reducer code. | specify the input directory in HDFS and | specify the output

directory to which the reducers will write their output data. And we're calling that joboutput.

[training@localhost code]$ hadoop jar fusr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming-2.§
@-mrl-cdh4.1.1.jar -mapper mapper.py -reducer reducer.py -file mapper.py -file reducer.py -input myinput -¢
tput joboutput

| hit Enter and off we go. Hadoop's pretty verbose, as you can see. As the job runs, you'll see a
bunch of output which shows us how far along the job is. It turns out that for this job Hadoop will
be running four mappers. And our virtual machine here can only run two at a time. So the job is
going to take longer than it would on a larger cluster. Actually, that's worth mentioning here. With
the size of the data we have for this example which is only 200 megs, realistically, we could
probably have solved this problem faster by just importing the data into a relational database and
querying it from there. And that's often the case when we're developing and testing code.
Because the test data sets are pretty small, Hadoop isn't necessarily the optimal tool for the job.
But when we're done testing and we need to process our full production data, that's when
Hadoop really comes into its own. So, as you can see the job is now nearly complete, and when
the job has finished we'll see that the last line tells me that the output directory is called
joboutput.



training ®lecalhost: - judacity_training/code

Eile Edit Yiew Search Jerminal Help

13/09/12 21:23:25 INFO snappy.LoadSnappy: Snappy native library loaded

13/89/12 21:23:25 INFO mapred.FileInputFormat: Total input paths to process : 1

13/89/12 21:23:25 INFO streaming.Streamlob: getLocalDirs(): [/var/lib/hadoop-hdfs/cache/training/mapred/lo
1

13/89/12 21:23:25 INFO streaming.Streamlob: Running job: job 201309111631 @08l

13/69/12 21:23:25 INFO streaming.StreamJob: To kill this job, run:

13/89/12 21:23:25 INFO streaming.Streamlob: UNDEF/bin/hadoop job -Dmapred.job.tracker=0.0.06.8:8021 -kill
b 261369111631 8661

13/89/12 21:23:25 INFO streaming.StreamJob: Tracking URL: http://0.90.0.08:50038/jobdetails.jsp?jobid=job 20
89111631 eeel

13/69/12 21:23:26 INFO streaming.Streamlob: map 8% reduce 8%

13/89/12 21:23:36 INFO streaming.Streamlob: map 16% reduce 8%

13/89/12 21:23:39 INFO streaming.StreamJob: map 24% reduce 0%

13/09/12 21:23:42 INFO streaming.StreamJob: map 33% reduce 0%

13/89/12 21:23:46 INFO streaming.Streamlob: map 42% reduce 9%

13/69/12 21:23:49 INFO streaming.Streamlob: map 50% reduce 0%

13/89/12 21:23:59 INFO streaming.Streamlob: map 75% reduce 0%

13/09/12 21:24:80 INFO streaming.Streamlob: map 85% reduce 25%

13/69/12 21:24:83 INFO streaming.StreamJob: map 94% reduce 25%

13/89/12 21:24:86 INFO streaming.Streamlob: map 1808% reduce 25%

13/09/12 21:24:89 INFO streaming.Streamlob: map 100% reduce 33%

13/89/12 21:24:12 INFO streaming.Streamlob: map 1068% reduce 73%

13/89/12 21:24:15 INFO streaming.Streamlob: ®map 186% reduce Bl%

13/89/12 21:24:18 INFO streaming.Streamlob: map 166% reduce B89%

13/89/12 21:24:21 INFO. streaming.Streamlob: map 100% reduce 96%

13/89/12 21:24:24 INFO streaming.Streamlob: map 1980% reduce 180%

13/89/12 21:24:26 INFO streaming.Streamlob: Job complete: job 201389111631 866l

13/89/12 21:24:26 INFO streaming.Streamlob: Output: joboutput

Let's take a look at what we've got in there. Hadoop fs minus Is, shows me that yes | do have a
job output directory. And if we look at the job output directory, you'll see that it contains three
things. It contains a file called _SUCCESS, which just tells me that the job has successfully
completed. It contains a directory called _logs, which contains some log information about what
happened during the job's run. And then, it contains a file called part-00000. That file is the output
from the one reducer that we had for this job.

[training@localhost code]$ hadoop fs -1s
Found 2 items

drwxr-xr-x - training supergroup 6 26813-89-12 21:24 joboutput
drwxr-xr-x - training supergroup 0 2013-89-12 21:16 myinput
[training@localhost code]$ hadoop fs -ls joboutput

Found 3 items

“fW=F==r-- 1 training supergroup 8 2013-89-12 21:24 joboutput/ SUCCESS
drwxr-xr-x - training supergroup 0 2813-09-12 21:23 joboutput/_logs
“MW=r==r-- 1l training supergroup 2296 2013-09-12 21:24 joboutput/part-00000

[traininaflaralhnet rodelt hadonn f<ll
Let's take a look at that by saying hadoop fs minus cat part 00000, and we'll pipe that to less on

our local machine.
[training@localhost codel$ hadoop fs -cat joboutput/part-00000 IL“-,,E

That's the contents of that file, which is the output from our reducer. It's the sum total sales
broken down by store exactly as we want it.
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Albuquerque 10052311.42 El Paso 10016409.97 Memphis 10038565.32

Anaheim 10076416. 36 Fort Wayne 10132594.02 Mesa  10053642.6 portiand aene/s35307)
Anchorage 9933500.4 Fort Worth 10120830.65 Miami 9947316.07 i .. ot
Arlington 10072207.97 Fremont 10053242.36 Milwaukee 10064482.65 Richmond 9992941.59
Atlanta 9997146.7 Fresno 9976260.26 Minneapolis 10011757.78 Riverside 10006695 .42
Aurora 9992970.92 Garland 10071043.92 Nashville 9961450.51 Rochester 10067606i92
Austin 10057158.9 Gilbert 10062115.19 New Orleans 9949257.75 Sacramento 10123468.18
Bakersfield 10031208.92 Glendale 10044493.97 New York 10085293.55 Saint Paul 10057233.57
Baltimore 10096521.45 Greensboro 10033781.39 Newark 10144052.8 San Antonio 10014441.7
Baton Rouge 10131273.23 Henderson 10053416.05 Norfolk 10088563.17 San Bernardino 9965152.04
Birmingham 10076606.52 Hialeah 10047052.76 North Las Vegas 10029652.51 San Diego 9966038.39
Boise 10039166.74 Honolulu 10006273.49 o0akland 9947292.52 San Francisco  9995570.54
Boston 10039473.28 Houston 10042106.27 Oklahoma City  10118986.25 san Jose 9936721.41
Buffalo 10001941.19 Indianapolis 10090272.77 Omaha 10026642.34 Santa Ana 16050369.93
Chandler 9919559. 86 Irvine 10084867.45 Orlando 10074922.52 Scottsdale 10037929.85
Charlotte 10112531.34 Irving 10133944.08 Philadelphia 10190080.26 Seattle 9936267.37
Chesapeake 10038504 .92 Jacksonville 10072003.33 Phoenix 10079676.7 Spokane 10083362.98
Chicago 10062522.07 Jersey City 9920141.87 Pittsburgh 10090124 .82 St. Louis 16002165.14
Chula Vista 9974951, 34 Kansas City 9968118.73 Plano  10046103.61 st. £5te’5b“'9 9986495.54
Cincinnati 1013950574 Laredo 10144604.98 Portland 10007635.77 §t°c t°"1016642812306412'64
Cleveland 10067835 .84 Las Vegas 10054257.98 Raleigh 10061442.54 TZngO 6898 7R Ag
Colorado Springs 10061105.87 Lgxinqton 10084510.95 Reno 10079955.16 Tucson 9998252.47
Columbus 10035241.03 Lincoln 10069485.4 Richmond 9992941.59 Tulsa 10064955.9

Corpus Christi 9976522.77 Long Beach 10006380.25 Riverside 10006695.42 Virginia Beach 10086553.5
pallas 10066548.45 Los Angeles 10084576.8 Rochester 10067606.92 Washington 10139363.39
Denver 10031534.87 Louisville 10008566.47 Sacramento 10123468.18 Wichita 10083643.21
Detroit 9979260.76 Lubbock 9958119.15 Saint Paul 10057233.57 Winston-Salem  10044011.83
purham 10153890.21 Madison 10032035.54 San Antonio 10014441.7

Incidentally, if you want to retrieve data from HFDS and put it onto your local disk, you can do that
with Hadoop fs minus get. Hadoop fs minus get is the opposite of Hadoop fs minus put. It just
pulls data from HDFS and puts it on the local disk. So as you can see, now | have my local file.txt

on my local disk And | can manipulate that however I'd like.

[training@localhost code]$ hadoop fs -get joboutput/part-00000 mylocalfile.txt
[training@localhost code]$ 1s

[training@localhost code]$ less mylocalfile.txt

That Hadoop job command we typed was pretty painful to have to remember. So to save you
time, we've created an alias in the demo virtual machine that you'll be downloading. You can just
type hs followed by four arguments, the mapper script, the reducer script, the input directory,
and the output directory.

[training@localhost code]$ hs mapper.py reducer.py myinput joboutput

Here's one important thing to note, though. When you're running a Hadoop job, the output
directory must not already exist. And as you can see, if we try and run the command with an

existing directory. In this case, job output. Hadoop refuses to run the job.

packageloblar: [mapper.py, reducer.py, /tmp/hadoop-training/hadoop-unjar7772862338865304886/) [] /tmp/strea
job275688370291485201. jar tmpDir=null

13/09/12 21:27:26 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications s
ould implement Tool for the same.

13/09/12 21:27:26 INFO mapred.JobClient: Cleaning up the staging area hdfs://0.0.08.08:8028/var/Llib/hadoop-hd
s/cache/mapred/mapred/staging/training/.staging/job 2013689111631 @882

13/89/12 21:27:26 ERROR security.UserGroupInformation: PriviledgedActionException as:training (auth:SIMPLE)
cause:org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://0.0.0.0:8020/user/traini
g/joboutput already exists

13/09/12 21:27:26 ERROR streaming.Streamlob: Error launching job , Output path already exists : Output dire
tory hdfs://0.0.0.0:8020/user/training/joboutput already exists

Streaming Command Failed!

This is actually a feature of Hadoop. It's designed to stop you inadvertently deleting or overwriting
data that's already in the cluster. But as you can see, if we specify a different directory, which
doesn't already exist, then the job will begin just fine.
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Processing Logs

The example we just talked about was calculating the average sales per store. And there are lots
of other things we can do with MapReduce that are actually quite similar, conceptually, to that.
For example, log processing is really quite similar. Imagine you have a set of log files from a
Web server which look like this, and you want to know how many times each page has been hit.

PROCESSING LOGS
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Well, it’s really similar to the sales per store. Your Mapper will read a line of the log file at a time,
and will extract the name of the page -- like index. htmI for example
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will get the keys, and a list of all the
values for each particular key. They can
then just add all the ‘1’s up for a key and that will tell them the total number of hits to that page on
the Web site. Simple, but far more efficient than writing a stand-alone program to go through all
the logs from start to finish if you have hundreds of gigabytes to process.

Practice makes perfect
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N And that’s just the start of what you can do with MapReduce. Things like fraud
=4} detection, recommender systems, item classification... there are many, many
applications of MapReduce, but they all start with those simple concepts. And they all
share some basic characteristics: there’s a lot of data to be processed, and the work
can be parallelized -- you don’t have to just start at the beginning and slog through to the end.

Perhaps the hardest thing to learn when you’re new to Hadoop is how to solve problems by
thinking in terms of MapReduce. It's a very different way of processing data compared to how
you’re probably used to working and, honestly, the best way to learn is by practice. In the next
lesson we’ll write the code to solve our sales-by-store problem, and you’ll start to work on other
MapReduce problems.

Virtual Machine Setup

We’ve provided a virtual machine with CDH, Cloudera’s distribution of Hadoop, pre-installed. We
say that this VM is running a cluster in ‘pseudo-distributed mode’. That means it's a complete
Hadoop cluster running on a single machine. It’s a great way to write and test code, because it
really is a complete Hadoop cluster... just one which is running on a single machine. The VM
also contains our sample datasets and sample solutions to the problems we’re going to ask you
to solve. If you haven't already downloaded it, now would be a good time to do so. You can find
instructions on how to do that in the Instructor Notes for this lesson.

Once you've downloaded and started up the VM, we’d like you to try uploading a data set into
HDFS and running a MapReduce job yourself. The exercise instructions document in the
Instructor Notes section gives you step-by-step instructions on what to do (Instructions
document). Have fun!

Conclusion

So, that’s the end of the lesson. You learned about how Hadoop uses HDFS to store data, and
the basic principles behind MapReduce. In the next lesson, we’ll look at the MapReduce code
itself; by the end of the lesson you'll be ready to write your own programs to analyze data.

Number of Reducers

One thing worthy of note is that you, as a developer, specify how many Reducers you want for
your job. The default is to have a single Reducer, but for large amounts of data it often makes
sense to have many more than one. Otherwise, that one Reducer will end up having to process
a huge amount of data from the Mappers. The Hadoop framework decides which keys get sent


https://docs.google.com/document/d/1v0zGBZ6EHap-Smsr3x3sGGpDW-54m82kDpPKC2M6uiY/edit?usp=sharing
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to each Reducer, and there’s no guarantee that each Reducer will get the same number of keys.
The keys which go to a particular Reducer are sorted, but each Reducer writes its own file into
HDFS. So if, for example, we had four keys: a, b, ¢, and d, and two Reducers, then one Reducer
might get keys a and d, the other might get b and c. So the results would be sorted within each
Reducer’s output, but just joining the files together wouldn’t produce completely sorted output.
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QUIZ:

Before we move on, though, which of the following types of problem do you think are good
candidates to solve with MapReduce?

[ ] Detecting anomalous behavior from a log file

[ ] Calculating returns from a large number of stock portfolios

[ 1 Very large matrix inversion

[ 1(...something else)

Answer: The answer is that all but matrix multiplication are good candidates to solve with
MapReduce. The reason matrix inversion is not, is that matrix manipulation tends to require
holding the entire contents of both matrices in memory at once, rather than processing individual
portions. You can do it with MapReduce, but it turns out to be quite difficult.



