
Machine Learning

Lesson 01 Notes

Difference between Classification and Regression

C: Today we are going to talk about supervised learning. But, in particular what
we're going to talk about are two kinds of supervised learning, and one particular way to
do supervised learning. Okay, so the two types of supervised learning that we typically think 
about are classification and regression. And we're going to spend most of the time today talking 
about classification and more time next time talking about regression. So the difference between 
classification and regression is fairly simple for the purposes of this discussion. Classification is 
simply the process of taking 
some kind of input, let's call it 
x. And I'm going to define 
these terms in a couple of 
minutes. And mapping it to 
some discrete label. Usually, 
for what we're talking about, 
something like, true or false. 
So, what's a good example of 
that? Imagine that I have a nice 
little picture of Michael.So what 
do you think, Michael? Do you 
think this is a male or a female?
M: So you're, you're classifying me as male or female based on the picture of me and I would 
think you know, based on how I look I'm clearly male.
C: Yes. In fact, manly male. So, this would be a classification from pictures to male. And this 
is where we're going to spend most of our time talking about it first as a classification task. So 
taking some kind of input, in this case pictures, and mapping it to some discrete number of 
labels, true or false, male or female, car versus cougar, anything that, that you might imagine 
thinking of.
M: Car versus cougar?
C: Yes. Okay, so that's classification. We'll return to regression in a little bit later during this 
conversation. But, just as a preview, regression is more about continuous value function. So, 
something like giving a bunch of points. I want to give in a new point. I want to map it to some 
real value. So we may pretend that these are examples of a line and so given a point here, 
I might say the output is right there. Okay, so that's regression but we'll talk about that in a 
moment. Right now, what I want to talk about is classification.
M: Would an example of regression also be, for example, mapping the pictures
of me to the length of my hair? Like a number that represents the length of my hair?

Copyright © 2014 Udacity, Inc. All Rights Reserved.



C: Absolutely, for the purposes of the sort of things that we're going to
be worried about you can really think of the difference between classification and regression is
the difference between mapping from some input to some small number of discrete values 
which
might represent concepts. And regression is mapping from some input space to some real 
number. Potentially infinite number of real numbers.

Quiz: Supervised Learning

You have three questions here and we divided the world up into some input to some learning
algorithm, whatever that learning algorithm is. The output that we're expecting and then a box 
for you to tell us whether its classification or regression. So, the first question, the input is
credit history, whatever that means, the number of loans that you have, how much money you 
make, how many times you've defaulted, how many times you've been late, the sort of things 
that make up credit history, and the output of the learning algorithm is rather you should lend 
money or not. So you're a bank, and you're trying to determine whether given a credit history, I
should lend this person money, that's question one. Is that classification, or is that regression? 
Question two you take as input a picture like the examples that we've given before. And the 
output of your learning system is going to be whether this person is of high school age, college 
age, or grad student age. The third question is very similar. The input is again a picture. And the 
output is, I guess, of the actual age of the person, 17, 24, 23 and a half, whatever. So take a 

moment and try to decide whether these are classification tasks or regression tasks.

Copyright © 2014 Udacity, Inc. All Rights Reserved.



Answer

M: Alright, so, let's see what happened here. So, what you're saying is in some cases the 
inputs are discrete or continuous or complicated. In other cases the outputs could be discrete 
or continuous or complicated. But I think what you were saying is what matters to determine 
if something is classification or regression is whether the output is from a discrete small set or 
whether it's some continuous quantity. Is that right?

C: Right, that's exactly right. The difference between a classification task or a regression task is
not about the input, it's about the output. If the output is continuous then it's regression and if the 
output is small discrete set or discrete set, then it is a classification task. So, with that in mind, 
what do you think is the answer to the first one?
M: So, lend money. If it was something like predicting a credit score, that seems like a more 
continuous quantity. But this is just a yes no, so that's a discrete class, so I'm going to go with 
classification.
C: That is, correct. It is classification and the short answer is, because it's a binary task. True, 
false. Yes, no. Lend money or don't lend money. So it's a simple classification test. Okay,
with that in mind, what about number two?
M: Alright, so number two. It's trying to judge something about where they fall on a scale, high 
school, college, or grad student. But all of, the system is being asked to do is put
them into one of those three categories, and these categories are like classes, so it's 
classification.
C: That is also exactly right. Classification. We moved from binary to trinary in this case, but 
the important thing is that it's discrete. So it doesn't matter if it's high school, college grad, 
professor, elementary school, any number of other ways we might decide where your status of 
matriculation is is a small discrete set. So, with that in mind, what about number three?

Copyright © 2014 Udacity, Inc. All Rights Reserved.



M: Alright, so the input is the same in this case. And the output is kind of the same except 
there's, well there's certainly more categories because there's more possible ages than just 
those three. But when you gave the example you did explicitly say that ages can be fractional 
like, you know, 22.3. So that definitely makes me think that it's continuous, so it should be 
regression.
C: Right, I think that is exactly the right thing, you have a continuous output. Now, I do want 
to point something out. That while the right answer is regression, a lot of people might have 
decided that the answer was classification. So, what's an argument? If I told you in fact the 
answer was classification, what would be your argument for why that would be?
M: I mean, you know, if you think about ages as being discrete. You just say, you know, you can 
one or two or three or, you know, whatever up to set. There isn't really, you know, usually we 
don't talk about fractional ages. So it seems like you could think of it as a set of classes.
C: Right. So let's imagine. So, how old are people? Let's imagine we only cared about years, so 
you're either one or two or three or four or five. Or maybe you can be one and a half, and two 
and a half, and three and a half. But, whatever, it's, it's not all possible real number values. And 
we know that people don't live beyond, say, 250. Well, in that case, you've got a very large
discrete set but it's still discrete. Doesn't matter whether there's two things in your set, three 
things in your set, or in this case 250 things in your set, it's still discrete. So, whether it's 
regression, or classification,depends upon exactly how you define your output and these things
become important. I'm going to argue that in practice, if you were going to set up this problem, 
the easiest way to do it would be to think about it as a real number and you would predict 
something like 23.7. And so it's going to end up being a regression task and we can might, 
maybe think about that a little bit more as we move along. So either answer would be 
acceptable depending upon what your explanation of exactly what the output was. You buy 
that?
M: That makes sense.

Classification Learning One

C: Before we get into the details of that, I want to define a couple of terms. Because we're going 
to be throwing these terms out all throughout the lessons. And I want to make certain that we're 
all on the same page and we mean the same thing. But we're returning to this again and again 
and again. So, the first term I want to introduce is the notion of instances. So, instances, or 
another way of thinking about them is input. Those are vectors of values, of attributes. That 
define whatever your input space is. So they can be pictures and all the pixels that make up 
pictures like we've been doing so far before. They can be credit score examples like how much 
money I make, or how much money Michael makes. So whatever your input value is, whatever 
it is you're using to describe the input, whether it's pixels or its discrete values, those are your 
instances, the set of things that you're looking at. So you have instances, that's the set of inputs 
that you have. And then what we're trying to find is some kind of function and that is the concept 
that we care about. And this function actually maps inputs to outputs, so it takes the instances, 
it maps them in this case to some kind of output such as true or false. This is the, the categories 
of things that we're worried about. And for most of the conversation that we're going to be 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



having, we're going to be thinking about binary classification, just true and false. But the truth is, 
this would work whether there were three outputs, as we did with high school, college, or grad 
school, or whether there were 250 as we were contemplating for ages. But the main thing here 
is the concept, is the function that we care about that's going to map pictures, for example  true 
or false.
M: So okay, I get, I get the use of the word," instance", right?" Instance" is just, like, a single 
thing that's out there. But I have an intuitive notion of what a concept is. How does that relate to 
this more formal notion? Like, can we connect this to the intuitive notion of what a concept is? 
C: I guess so. So a concept, I don't know. How would you want to put that? So a concept is 
something that, I mean were talking about is a notion of a function, so what it means formally is 
that you have some input, like a picture, and it immediately inputs maps anything in that input 
space to some particular defined output space, like true or false, or male or female, or credit 
worthy or not. Intuitively a concept is an idea describes a set of things. OK, so we can talk about 
maleness or femaleness. We can talk about short and tall; we can talk about college students 
and grad students. And so the concept is the notion of what creditworthiness is, what a male is, 
what a college student is.
M:  Okay, I think I see that. So essentially if you want to think about  the concept of tallness, one 
way to define it is to say, Well in general if you give me something I can tell you rather or not its 
tall so it's going to map those somethings to am I tall or not. True or false.
C: Right, exactly and so really when you think about any concept and we talk about
this in generally AI is effectively a way of saying is effectively a set of things. That are apart of 
that concept. So, you can have a concept of a car and if I gave you "cars" you would say these 
things are in it and if I gave you "non-cars" you would say they are not. And so a concept is, 
therefore by definition, a mapping between objects in a world and membership in a set, which 
makes it a function.

Classification Learning Two

C: So with that, with that notion of a concept as functions or as mappings from objects to 
membership in a set we have a particular target concept. And the only difference between a 
target concept and the general notion of concept is that the target concept is the thing we're
trying to find. It's the actual answer. So, a function that determines whether something is a car
or not, or male or not, is the target concept. Now this is actually important, right, because we 
could say that. We have this notion in our head of things that are cars or things that are males, 
or thing, or people who are credit worthy but unless we actually have it written down somewhere 
we don't know whether it's right or wrong. So there is some target concept we're trying to get of 
all the concepts that might map pictures or people to true and false.
M: Okay, so if you trying to teach me what tallness is so you have this kind of concept in mind 
of these, these things are tall and these things are not tall. So you're going to have to somehow 
convey that to me. So how are you going to teach me?

Copyright © 2014 Udacity, Inc. All Rights Reserved.



C: Well that's what comes up with the 
rest of these things that we're defining 
here. So let me tell you what the next 
four things are then you can tell me 
whether that answers your question.
M: Got it.
C: OK, so we've got a notion of 
instances, input, we've got a notion of 
concepts. Which take input and maps 
into some kind of output. And we've got 
the sum target constant, some specific 
function, some particular idea that we're 

trying to find, we're trying to represent. But out of what? So that's where the hypothesis comes 
in. And in fact I think it's better to say hypothesis class. So that's the set of all concepts that 
you're willing to entertain. So it's all the functions I'm willing to think about.
M: So why wouldn't it just be all possible functions?
C: It could be all possible functions and that's a perfectly reasonable hypothesis class. The
problem with that is that if it is all possible functions it may be very, very hard for you. Figure 
out which function is the right one given finite data. So when we actually go over decision 
trees next I think it will be kind of clear why you need to pick a specific hypothesis class. So 
let's return to that in a little bit but it's an excellent question. So, conceptually in the back of 
your head until we, we come to specific examples, you can think of hypothesis class as simply 
being all possible functions in the world. On the other hand, even so far just the classification 
learning, we already know that we're restricting ourselves to a subset of all possible functions in 
the world, because all possible functions in the world includes things like x squared, and that's 
regression. And we've already said, we're not doing regression. So already hypothesis classes 
all functions we care about and maybe it's all classification functions. So we've already picked 
a subset. So we got all these incidences, got all these concepts, we want to find a particular 
concept and we've got this set of functions we're willing to look at. So how are we going to 
determine what the right answer is. So if you try to answer Michael's question that we do that in 
machine learning is with a sample or another name for which I prefer is a training set.

Classification Learning Three

C: So what's a training set? Well a training set is a set of all of our inputs, like pictures of
people, paired with a label, which is the correct output. So in this case, yes, this person is credit 
worthy.

M: You can tell I'm creditworthy based on my curly hair. 
C: Versus someone who has no curly hair and therefore is obviously not creditworthy. And if you 
get bunches and bunches of examples of input and output pairs, that's a training set. And that's 
what's going to be the basis for you figuring out what is the correct concept or function.

Copyright © 2014 Udacity, Inc. All Rights Reserved.



M: I see. So instead of just telling me what tall means, you're going to give me lots of examples 
of, this is tall, this is not tall, this is tall, this is not tall. And that's the way that you're explaining 
what the target concept is.
C: Right. So if you want to think about this in the real world, it's as if we're walking down the 
street and I'm pointing out cars to you, and non-cars to you, rather than trying to give you a 
dictionary that defines exactly what a car is. And that is fundamentally inductive learning as we 
talked about before. Lots and lots of examples, lots of labels. Now I have to generalize beyond 
that. So, last few things that we we talk about, last two terms I want to introduce are candidate, 
and testing set. So what's a candidate? Well a candidate is just simply the, a concept that you 
think might be the target concept. So, for example, I might have, right now, you already did this 
where you said, oh, okay I see, clearly I'm creditworthy because I have curly hair. So, you've 
effectively asserted a particular function that looks at, looks for curly hair, and says, if there's 
curly hair there, the person's credit worthy. Which is certainly how I think about it. And
people who are not curly hair, or do not have curly hair are, in fact, not creditworthy. So, that's 
your target concept. And so, then, the question is, given that you have a bunch of examples, 
and you have a particular candidate or a candidate concept, how do you know whether you are 
right or wrong? How do you know whether it's a good candidate or not? And that's where the 
testing set comes in. So a testing set looks just like a training set. So here our training set, we'll 
have pictures and whether someone turns out to be creditworthy or not. And I will take your 
candidate concept and I'll determine whether it does a good job or not, by looking at the testing 
set. So in this case, because you decided curly hair matters, I have drawn, I have given you two 
examples from a training set, both of which have curly hair, but only one of which is deemed 
credit worthy.
Which means your target concept is probably not right.
M: So to do that test I, guess you can go through all the pictures in the testing set, apply the 
candidate concept to see whether it says true or false, and then compare that to what the 
testing set actually says that answer is.
C: Right, and that'll give you an error. So by the way, the true target concept is whether you 
smile or not.
M: Oh. That does make somebody credit-worthy.
C: It does in my world. Or at least I, wish it did in my world. Okay. So, by the way an important 
point is that the training set and the testing set should not be the same. If you learn from 
your training set, and I test you only on your training set, then that's considered cheating in 
the machine learning world. Because then you haven't really shown the ability to generalize. 
So typically we want the testing set set to include lots of examples that you don't see in your 
training set. And that is proof that you're able to generalize.
M: I see. So, like, if you're a teacher and you're telling me, you give me a bunch of fact and then 
you test me exactly on those facts, I don't have to have understood them. I just
can regurgitate them back. If you really want to see if I got the right concept, you have to see
whether or not I can apply that concept in new examples.
C: Yes, which is exactly why our final exams are written the way that they are written. Because 
you can argue that I've learned something by doing memorization, but the truth is you haven't. 
You've just memorized but here you have to do generalization. As you remember from our last 
discussion, generalization is the whole point of machine learning.

Copyright © 2014 Udacity, Inc. All Rights Reserved.



Example 1 Dating

C: All right, so we've defined our terms, we know what it takes to do at least supervised 
learning. So now I want to do a specific algorithm and a specific representation, that allows us to 
solve
the problem of going from instances to, actual concepts. So what we're going to talk about next 
are decision trees. And I think the best way to introduce decision trees is through an example. 
So, here's the very simple example I want you to think about for a while. You're on a date with 
someone. And you come to a restaurant. And you're going to try to decide whether to enter the 
restaurant or not. So your input, your instances are going to be features about the restaurant. 
And we'll talk a little bit about what those features might be. And the output is whether you 
should enter or not. Okay, so it's a very simple, straightforward problem but there are a lot of 
details here that we have to figure out.
M: It's a classification problem.
C: It's clearly a classification problem because the output is yes, we should enter or no, we 
should move on to the next restaurant. So in fact, it's not just a classification problem, it's those 
binary classification problems that I said that we'd almost exclusively be thinking about for the 
next few minutes. Okay. So, you understand the problem set up?
M: Yes, though I'm not sure exactly what the pieces of the input are.
C: Right, so thats actually the right next question to ask. We have to actually be specific now 
about a representation. Before I was drawing squiggly little lines and you could imagine what 
they were, but now since we're really going to go through an example, we need to be clear 
about
what is it mean to be standing in front of the restaurant. So, let's try to figure out how we would 
represent that, how we would define that. We're talking about, you're standing in front of a 
restaurant or eatery because I can't see the reliably small restaurant. And we're going to
try to figure out whether we're going to go in or not. But, what do we have to describe our 
eatery? What do we have? What are our attributes? What are the instances actually made of? 
So what are the features that we need to pay attention to that are going to help us to determine 
whether we should yes, enter into the restaurant. Or no, move on to the next restaurant. So, any 
ideas Michael?
M: Sure. I guess there's like the type of restaurant.
C: Okay, let's call that the type. So it could be Italian, it could be French, it could be Thai, it 
could be American, there are American restaurants, right?
M: Sure.
C: Greek, it can be, Armenian. It can any kind of restaurant you want to. Okay, good. So that's 
something that probably matters because maybe you don't like Italian food or maybe you're
really in the mood for Thai. Sounds perfect. Okay anything else?
M: Sure. How about whether it smells good?
C: You know, I like cleanliness. Let's be nice to our eateries and let's say atmosphere. So is it
fancy? Is it a hole-in-the-wall? Those sorts of things. You could imagine lots of things like 
that, but these things might matter to you and your date. Okay, so, we know the type of the 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



restaurant that we have, we know whether it's fancy, whether it's casual, whether it's a hole 
in the wall. Some of the best food I've ever had are in you know, well-known hole in the walls. 
Those sorts of things. Anything else you can think of?
M: Sure, Sometimes, I might like looking inside and seeing whether there's people in there and 
whether they look they're having a good time.
C: Right. So that's an important thing. So let's just say if it's occupied. Now why might that 
matter in reality? Well it matters because if it's completely full and you may have to wait for a 
very long time, you might not want to go in. On the other hand. If you're looking at a restaurant
you've never heard of, and there's only two people in it, and it's Friday at 7 p.m. Maybe that 
says something about something. Maybe you want it to be quiet. You know, those sorts of 
things might matter. Okay, so we've got atmosphere, we've got occupied. Anything else you can 
think of?
M: I have been out of the dating market for a while, but I guess how hard I am trying to work to 
impress my date.
C: Perfect. So do you have a hot date or not? Or, this is someone who you really, really, really 
want to impress and so, maybe it matters then, it's even more important whether it's a fancy 
restaurant or a hole in the wall, or whether it's French or whether it's an American restaurant. 
Notice, by the way, that the first two sets that we have have multiple possible categories here.
So it could be Italian, French, Thai, American, so on and so forth. Atmosphere is something that 
can have many, many possible values, but the last two things that we talked about were
all binary. Either it's occupied or it's not. Yes or no or, you have a hot date or you don't. And I
think we could go on like this for a long time but, let's try to move on to maybe a couple of other 
features and then try to actually figure out how we may actually solve this.

Representation

C: Alright, so Michael. Last set of features that that's come up
with three or four, three or four more features and then move on.
M: Sure. So come up with a couple. Alright, so I could, sometimes I'll look at the menu that's
posted outside, and I'll see if the, you know? How pricey it is. Okay, so cost. Right, so cost can 
be represented as discrete input. By the way, it could also be represented as an actual number.
Right? We could say, look it's cheap, it's moderately expensive, it's really expensive or you 
could have a number which is the average cost of an entry. And it doesn't really matter for, for 
what we're talking about now but just some way of representing cost. 
C: Okay. Just give me one or two more features but I want to give me some features that don't 
have anything to do with the restaurant itself but might still be important.
M: So, whether I'm hungry?
C: I like that. Here's another one. What's the weather like. Is it raining outside? Which is a 
different sense of atmosphere because if it's raining outside, maybe it's not your favorite choice 
but you don't want to walk anymore. Okay, so we have a ton of features here. We've gone 
through a few of them. Notice that some of the specifically have to do with the restaurant and 
some of them have to do with things that are external to the restaurant itself but you can 
imagine that they're all important. Or possibly important to whether you should enter into the 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



restaurant or not. Agreed? And there's a bunch of features you could imagine coming up with 
that probably have nothing to do with whether you should enter into the restaurant or not. Like, 
how many cars are currently parked across the country. Probably doesn't have an impact on 
whether you're going to enter into a specific restaurant or not. Okay. So, we have a whole 
bunch of features and right now we're sticking with features we think that might be relevant. And 
we're going to use those to make some kind of decision. So, that gets us to decision trees. So, 
the first thing, that, that we want to do is, we want to separate out what a decision tree is from 
the algorithm that you might use to build the decision tree. So the first thing we want to think 
about is the fact that a decision tree has a specific representation. Then only after we 
understand that representation and go through an example, we'll start thinking about an 
algorithm for finding or building a decision tree. Okay, so a decision tree is a very simple thing. 
Well, you might be, might be surprised to know it's a tree, the first part of it. And it looks kind of 
like this. So, what I've drawn for you is example. Sample generic, decision tree. And what you'll 
see is three parts to it. The first thing you'll see is a circle. These are called nodes, and these 
are in fact, decision nodes. So, what you do here, is you pick a particular attribute and you ask a 
question about it. The answer to that question, which is its value for what the edges represent in 
your tree. Okay. So we have these nodes which represent attributes, and we have edges which 
represent value. So let's be specific about what that means. So here's a particular attribute we 
might pick for the top node here. Let's call it hungry. That's one of the features that Michael 
came up with. Am I hungry or not? And there's only two possible answers for that. yes, I'm 

hungry, true, or false, I am not 
hungry. And each of these nodes represent some attribute. And the edges represent the answers for 
specific values. So it's as if I'm making a bunch of decisions by asking a series of 
questions. Am I hungry? And if the answer is yes, I am hungry, then I go and I ask a different 
question. Like is it rainy outside? And maybe it is rainy and maybe it's not rainy, and let's say if it isn't 
rainy then I want to make a decision, and so these square boxes here are the actual output. 
Okay so you're hungry, yes, and it's not raining, so what do you do? So, let's just say you go in. 
True, I go in so, when it's, I'm hungry and it's not raining, I go in.
M: That truth is answering a different 
question. It's not in the nodes I 
guess. So, in the leaves, the t and f 
means something different.

C: That's right. It's the out, that's exactly right. The, the leaves, the little boxes, the leaves of 
your decision tree is your answer. What's on the on the edges are the possible values that your 
attribute can take on. So, in fact, let's try to, let's make that clear by picking a different by picking 
another possible attribute. You could imagine that if I am not hungry, what's going to matter a lot 
now is say, the type of restaurant, right. Which we said there were many, many types of
restaurants. So if I'm not hungry, then what matters a lot more is the type of restaurant,
and so I'll move down this path instead and start asking other questions. But ultimately what 
this decision tree allows me to do is to ask a series of questions and depending upon those 
answers, move down the tree, until eventually I have some particular output answer, yes I go in 
the restaurant, or no I do not

Copyright © 2014 Udacity, Inc. All Rights Reserved.



Quiz: Representation

Okay, so we've now seen an abstract example of decision trees. So let's make certain that we 
understand it with a concrete example. So, to your right is a specific decision tree that looks 
at some of the features that we talked about. Whether you are occupied or not, whether the 
restaurant is occupied or not what type of restaurant it is. Your choices are pizza, Thai, or 
other. And whether the people inside look happy or not. The possible outputs are again binary 
either you don't go or you do go, into the restaurant. On your left is a table which has six of 
the features that we've talked about. Whether the restaurant is occupied or not, the type of 
restaurant, whether it's raining outside or not, whether you're hungry or not. Whether you're on 
a hot date and whether the people inside look happy, and some values for each of those. And 
what we would like for you to do is to tell us what the output of this decision tree would be in 
each case. Each row of this is a different time that we're stopping at a restaurant, and the, the 
little values there summarize what is true about this particular situation. And, and you're saying 
we need to then trace through this decision tree and figure out what class is. 

Answer

Copyright © 2014 Udacity, Inc. All Rights Reserved.



C: Now the nice thing about a decision tree sort of conceptually and intuitively, is that it really 
is asking a series of questions. So, we can simply look at these rows over here and the values 
that our features have and we can just follow down the path of the tree. So, in the first case. We 
have true. We have true for occupied, which means we want to go down the right side of the 
tree. And check on the type. So in the first case, the type is pizza. And so we go down the first 
branch and that means. We do not go down the tree. So, the output is no go.
M: So, okay, so now, I got a different answer. So, I looked at this and I said happiness is true. 
And, the bottom box says happiness true, you go.
C:Right. So, you got that wrong, you got what I'm going to tell you is the wrong answer by going 
from the bottom of the tree up. The way decision trees work is you always start at the root of the 
tree. That is the very top of the tree. And you ask the questions in that order. If you start at the 
bottom, you can't go up. 
M: So I'll do the second instance. The second instance, you say that we need to start at the 
top of the tree where it says occupied. And so now I look at the instance and the instance says 
that it's false for occupied, so we go down that left branch and we hit no go. Oh wait but now I 
haven't look at any of the other nodes.
C: You don't have to look at any of the other nodes because it turns out that if it's not occupied 
you just don't go into a restaurant. So you're the type of person who doesn't like to be the only 
person in a restaurant. So that's a no-go. That's an important point, Michael. Actually, you might 
also notice that this whole tree, even if you look at every single feature in the tree, only has 
three of the attributes. It only looks at occupied. Type and happiness.
M: I see. So hot date is sort of irrelevant which is good, because in this case it's not really 
changing from instance to instance anyway.
C: True. And neither is hungry you might notice. Although raining does in fact change
a little bit here and there. But it apparently it doesn't matter.
M: Because you always take an umbrella.
C: Got it. Okay, so let's quickly do the other three and see if we we come to the same 
conclusion.
M: Alright. Well all the instances that have occupied false we know those are no go, right away.
So we can do it kind of out of order. And the other ones are both occupied. One is tie and one 
is other. For the tie one we go. The other one, oh I see, for the other one we have to look at 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



whether there's happiness or not, and in this instance happiness is true. So we get on the right 
branch and we go.
C: Exactly it. So we notice hot date doesn't matter, hungry doesn't matter and rainy doesn't 
matter. And the only thing that matters are whether you're occupied, what type of restaurant 
you're at and whether you're happy or not. Or whether the, the patrons in the restaurants are 
restaurant is, are happy or not. But, here's the other thing about this. It's not just about the 
features. Let's tie it back in to the other things, that we mentioned in the beginning. This, in our 
case, this table actually represents our testing set. It's the thing that we're going to look at to 
determine whether we were right or wrong. These are the examples that we're going to do to 
see whether we generalize or not. And this particular tree here is our candidate concept. So 
there's lots and lots and lots of other trees that we might have used. We might have used a 
tree that also took, asked questions about whether it was rainy or not or asked questions about 
whether you were on a hot date or not. But we didn't. We picked a specific tree that had only 
these three features and only asked in this particular way. So what we're going to talk about 
next. Is how we might decide whether to choose this tree over any of the other possible number 
of trees that we might have chosen instead.

Quiz: Best Attribute

C: Alright, so let's take a moment to have a quiz where we really delve deeply into what it 
means to have a best attribute. So something Michael and I have been throwing around that 
term, let's
see if we can define it a little bit more crisply. So, what you have in front of you are three 
different attributes that we might apply in our decision tree for sorting out our instances. So, at 
the top of the screen what you have is you have a cloud of instances. They are labelled either 
with red x or a green o, and that represents the label so that means that they are part of our 
training set, so this is what we're using to build and to learn our Decision Tree. So, in the first 
case you have the set of instances being sorted into two piles. There are some xs and some os 
on the left and some xs and some os on the right. And the second case you have that same set 
of data being
sorted so that all of it goes to the left and none of it goes to the right. And in the third case you 
have that same set of data that's sorted so that a bunch of the xs end up on the left and a

Copyright © 2014 Udacity, Inc. All Rights Reserved.



bunch of the os end up on the right. What I want you to do is to rank each one, where one is the 
best and three is the least best attribute to choose. Go.

Answer

M: So, did you say one was the best. 
C: One is the best and three is the least best. 
M: Alright, so I am really excited about the third cloud structure. The third attribute to be split on. 
Because what it does is it takes all our x's and o's that need to have different labels and it puts 
them into two different buckets. One where they all get to be red x's and the other where they all 
get to be green o's. So I would say the far right one is ranked number one.
C: I would agree with you and in fact I would say that we're done.
M: Yeah, it's perfect.
C: It is perfect, agreed. One is perfect. Or 3 is perfect in this case, because I gave it a one.
M: Alright, so then, I think the worst one is also easy to pick, because if you look at the middle 
attribute, the attribute that's shown in the middle, we take all the data, and we put it all on 
the left. So we really have just kicked the can down the road a little bit. There's nothing  this 
attribute splitting has done. So, I would call that the worst possible thing you could do. Which is 
to basically to do nothing.
C: Okay. So what about the first attribute?
M: So this one is sort of in between that it splits things so you have smaller sets
of data to deal with, but it hasn't really improved our ability to tell the reds and the greens apart.
So in fact, I'd almost want to put this as three also but I'll put it as two. Okay. I think an argument 
could be making it three. 
C: An argument could be made for making it two. Your point is actually pretty good, right? We 
have eight red things and eight green things up here. And the kind of distribution between 
them, sort of half red and, half red x's, half green o's, we have the same distribution after we 
go through this attribute here. So it does some splitting, but it's still, well you still end up with 
half red, half green, half x, half o. So, that's not a lot of help, but it's certainly better than doing 
absolutely nothing.
M: Well is it though? I mean, it seems it could also be the case. That what we've done

Copyright © 2014 Udacity, Inc. All Rights Reserved.



is that we're now splitting on that has provided no valid information, and therefore can only 
contribute to overfitting.
C: Do you want to change your answer? I would accept either two or a three as an answer here.
I think you can make an argument either way. And I think you actually made both arguments.

Decision Tree Expressiveness 

C: So, we saw before when we looked at AND and OR versus XOR that in the case of AND 
and OR we only needed two nodes but in the case of XOR we needed three. The difference 
between two and three is not that big, but it actually does turn out to be big if you start thinking 
about having more than simply two attributes. So, let's look at generalized versions of OR and 
generalized versions of XOR and see if we can see how the size of the decision tree grows 
differently. So in the case of an n version of OR. That is we have n attributes as opposed to just 
two. We might call that the any function. That is a function where any of the variables are true 
then the output is true. We can see that the decision tree for that has a very particular and kind 
of interesting form. Any ideas Michael about what that decision tree looks like?
M: So, well. So going off of the way you described OR in the two case. We can start with that. 
And you. You pick one of the variables. And if its true then yeah. Any of them is true since the 
leaf is true.

C: What happens if its false?
M: Well, then we have to 
check what everything that's 
left. So then we move on to 
one of the other attributes 
like A2 and again, if it's true, 
it's true and if it's false then 
we don't know. This could 
take some time.
C: Oh that was actually an 
interesting point. Let's say if 
there were only three, we 
would be done. But wait, 
what if there were five?

M: Then we need one more node.
C: What if there were n?
M: Then we need n minus 4 more nodes.
C: Right, so what you end up with in this case is a nice little structure around the
decision tree. And how many nodes do we need?
M: Looks like one for each attribute, so that would be n.
C: n nodes, exactly right. So we have a term for this sort of thing, the size of the decision tree is, 
in fact, linear. In n. And that's for any. Now what about an n version of XOR?
M: So XOR is, if one is true but the other one's not true then it's true. And if they're both true. 
Yeah I don't. It's not clear how to generalize that.

Copyright © 2014 Udacity, Inc. All Rights Reserved.



C: So, while the usual general version of this we like to think of as parity. All parity is a way of 
counting, so there's usual two forms of parity that we worry about. Either even parity or odd 
parity. So let's pick one, it doesn't matter. Let's say odd and all that works out to be in this case 
is, if the number of attributes that are true is an odd number, then the output of the function is 
true, otherwise it's false. Okay, so, how would we make that decision tree work?
M: Ooh. Well, we got to split on something and there all the same, so let's split on A1 again. So 
what do we do if A1 is true, versus being false.
M: We don't know much if A1 is true. We have to look at everybody else.
C: Right. So let's look at A2. What if A2 is true versus false?
M: Well if A1 and A2 are true then, then the output is going to be whatever the parity of all the 
remaining variables are. So you still have to do that.
C: Uh-huh, yup. And I'm already running out of room, so let's pretend there's only three 
variables. What's the output?
M: All right, so the far left. Is there's three trues which is odd so the output is true. The next leaf 
over, only two trues. A1 is true, A2 is true, but A3 is false, so that's two trues which is is even 
so the answer's false. Is this pattern continuing? Now we've got. No, so then it's false again 
because we've got two trues and a false to get to the next leaf. And we've got one true to get to 
the next leaf so that's true. Oh, that looks like XOR.
C: It looks just like XOR. In fact, each one of these sub trees is kind of a version of XOR isn't 
it? Now what we have is, we have to do the same thing on the right. So we gotta redo A2, and 
we're going to be in the same situation before. And we're going to start drawing on top of each 
other.
M: So, what's the answer to the one on the very right. Where all of them are false.
C: So that's an even number of trues. Zero is even. So that's false. Okay, so in the case where 
only A3 is true, it's true and we just keep going on and on and on again. Now imagine what 
would happen, in fact let me ask you Michael, what would happen if we had four attributes 
instead of three.
M: We get a whole another, a whole other level of this tree.
C: Yep. We have it just goes on and on and on and nobody wants to think about it anymore. So, 
how many nodes do you think there are?
M: Well, for three there was one, two, three, four, five, six, seven. Which seems suspiciously like 
one less than the power of two.
C: Mm-hm. And that is exactly right. You need more or less 2 to the n nodes. Or 2 to the n, 
maybe, minus 1. So let's just say big O of 2 to the n. Everyone watching this is a computer 
scientist so they know what they're doing. Okay so, you need an exponential therefore, as 
opposed to linear number of nodes. So very quickly you run out of room here. You very, very 
quickly have a really big tree because it's growing exponentially. So, XOR is an exponential 
problem and is also known as hard. Whereas OR, at least in terms of space that you need, it's 
a relatively easy one. This is linear. We have another name for exponential and that is evil. Evil, 
evil, evil. And it's evil because it's a very difficult problem. There is no clever way to pick the 
right attributes in order to give you an answer. You have to look at every single thing. That's 
what make this kind of problem difficult. So, just as a general point, Michael, I want to make, is 
that we hope that in our machine learning problems we're looking at things that are more like 
any than we are looking at things that are more like parity because otherwise, we're going to 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



need to ask a lot of questions in order to answer the, the parity questions. And we can't
be particularly clever about how we do it.
M: Though, if we were kind of clever and added another attribute, which is like, the sum of all 
the other attribute values, that would make it not so bad again. So maybe it's just a kind of, bad 
way of writing the problem down.
C: Well, you know, what they say about AI is that the hardest problem is coming up with
a good representation. So what you just did is, you came up with a better representation,
where you created some new pair, new variable. Let's call it B, which is just the sum
of all of the As, where we pretend that I don't know, true is one and false is zero. This is actually 
a really good idea. It's also called cheating because you got to solve the problem by picking the 
best representation in the first place. But you know what? It's a good point, that in order for a 
machine running to work, you either need an easy problem or you need to find a clever way of 
cheating.

Quiz: Decision Tree Expressiveness

C: All right, so what that last little exercise showed is that XOR, in XOR parody, is hard. It's 
exponential. But that kind of provides us a little bit of a hint, right? We know that XOR is hard 
and we know that OR is easy. At least in terms of the number of nodes you need, right? But, 
we don't know, going in, what a particular function is. So we never know whether the decision 
tree that we're going to have to build is going to be an easy one. That is something linear, say. 
Or a hard one, something that's exponential. So this brings me to a key question that I want to 
ask, which is, exactly how expressive is a decision tree. And this is what I really mean by this. 
Not just what kind of functions it kind of represent. But, if we're going to be searching over all 
possible decision trees in order to find the right one, how many decision trees do we have to 
worry about to look at? So, let's go back and look at, take the XOR case again and just speak 
more generally. Let's imagine that we once again, we have n attributes. Here's my question to 
you, Michael. How many decision trees are there? And look, I'm going to make it easy for you, 
Michael. They're not just attributes, they're Boolean attributes. And they're not just Boolean 
attributes, but the output is also Boolean. Got it?

Copyright © 2014 Udacity, Inc. All Rights Reserved.



M: Sure. But how many trees? So it's, I'm going to go with a lot.
C: Okay. A lot. Define a lot.
M: So, alright, well, there's n choices for which node to split on first. And then, for each of those, 
there's n minus 1 to split on next. So I feel like that could be an n factorial kind of thing. And 
then, even after we've done all that, then we have an exponential number of leaves. And for
each of those leaves, we could fill in either true or false. So it's going to be exponential in that 
too.
So you said we have to pick each attribute at every level. And so you see something that you 
think is probably going to be, you know? Some kind of commutatorial question here. So, let's 
say n factorial, and that's going to just build the nodes. That's just the nodes. Well, once you 
have the nodes, you still have to figure out the answers. And so, this is exponential because 
factorial is exponential. And this is also exponential. Huh. So let's see if we can write that down. 
So let me propose a way to think about this. You're exactly right the way you're thinking. So, 
let's see if we can be a little bit more concrete about it. So, we have Boolean inputs and we 
have Boolean
outputs, so this is just like AND, it's just like OR, it's just like XOR, so, whenever we're dealing 
with Boolean functions, we can write down a truth table. So let's think about what the truth table 
looks like in this case.
C: Alright, so, let's look at the truth table. So what a truth table will give me is, for, the way a 
truth table normally works is you write out, each of the attributes. So, attribute one, attribute two, 
attribute three, and dot dot dot. And there's n of those, okay? We did this a little earlier. When 
we did our decision tree. When we tried to figure out whether I was on a hot date or not. And 
then you have some kind of output or answer. So, each of these attributes could take on true or 
false. So one kind of input that we may get would be say all trues. Right? But we also might get 
all trues, except for one false at the end. Or maybe the first one's false and all the rest of them
are true, and so on, and so forth. And each one of those possibilities is another row in our table. 
And that can just go on for we don't know how long. So we have any number of rows here and 
my question to you is how many rows? Go.

Answer

C: What's the answer Michael? How many rows do we have?
M: So if it was just one variable we're splitting on, then 
it need to be true or false, so, that's two rows. If it was 
two variables, then there's four combinations and 
three, would be eight,
combinations. So, generalizing the end, it ought to be 
2 to the n.
C: That's exactly right, there are 2 to the n different 
rows. And, that's what always happen when
we're dealing with n, you know, n attributes, n boolean attributes. There's always 2 to the 
n possibility. Okay, so I get just halfway there and I get to your point about, combinatorial 
choices, among the attributes but that's only the number of rows that we have. There's another 
question ,we need to ask which is, exactly how big is the truth table itself?

Copyright © 2014 Udacity, Inc. All Rights Reserved.



Quiz: Decision Tree Expressiveness 2

C: Alright, so here's the 
question for you. We 
know we have 2DN, 
different possible 
instances we might 
see. That is two to the 
end, different ways we 
might assign different 
values to the attributes. 
But, that still doesn't 
tell us how many 
decision trees we may 
have, or how many 
different functions we 
might have. So, if we have 2DN rows, here's my question. How many different ways might we fill 
out. This column over here of outputs? Remember, an output can be
either true or false. Go.

Answer

M: Alright. So again, a lot feels like a good answer, it's already written down on the left. But it's
also wait, wait, may be we can quantify this. So if it were. Maybe one way to think about this 
is if each of the, each of those empty boxes there, is either true or false. It's kind of like a bit. 
And we're asking how many different bit patterns can we make? And in general, it's two to the 
number of positions, but here the number of positions is 2 to the n. So it ought to be 2, to the 2 
to the n. Which is that the same as 4 to the n?
C: No.
M: Okay.
C: But you're right. It's 2 to the 2 to the n. So it's a double exponential and it's not the same thing 
as 4 to the nth. It's actually 2 to the 2 to the nth. Now how big of a number do you think that is 
Michael?
M: I'm going to just say a lot.
C:  It is, in fact, a lot and I'm going, I actually, I'm going to look over here, and I'm going to tell 
you. That for even a small value of n, this gets to be a really big number.
M: So for, for one, it's 2 to the 2 to the 1, which is 4. That's not a big number. For two, it's 2 to 
the 2 to the 2. So 2 to the 2 is 4, so it's 2 to the 4, which is 16.
C: What about three?
M: Alright, so that's two to the 8th, which is 256?
C: So that's growing pretty fast, don't you think? What if I told you that for n equals 
18466744073709551616.
M: Holy monkeys.

Copyright © 2014 Udacity, Inc. All Rights Reserved.



C: Yes, that is in fact the technical term for this number, it's a holy monkey. It is a very, very big 
number. So 2 to the n grows very fast. We already called that evil. 2 to the 2 to the n is a double 

exponential and it's super evil. It grows very, very, very, very, 
very fast. So what's the point of this exercise, Michael?
M: It's to point that the space of decision trees, the 
hypothesis space that we've chosen, is very expressive 
because there's lots of different functions that you can 
represent. But that also means we have to have some clever 

way to search among them. And that gets us back to our
notion of an algorithm with actually going to very smartly go through and pick out which decision 
tree. Because if we aren't very smart about it and we start eliminating whole decision trees 
along the way. Then we're going to have to look it to billions upon, billions upon, billions upon, 
billions upon, billions of possible decision choice.

ID3

So now, we have an intuition of best, and how we want to split. We've, we've looked over, 
Michael's proposed, the high-level algorithm for how we would build a decision tree. And I think 
we have enough information now that we can actually do, a real specific algorithm. So, let's 
write that down. And the particular algorithm that Michael proposed is a kind of generic version 
of something that's called ID3. So let me write down what that algorithm is, and we can talk 
about it. Okay, so here's the ID3 algorithm. You're simply going to keep looping forever until 
you've solved the problem. At each step, you're going to pick the best attribute, and we're going 
to define what we mean by best. There are a couple of different ways we might, we might define 
best in a moment. And then, given the best attribute that splits the data the way that we want, it 
does all those things that we talked about, assign that as a decision attribute for node. And then 
for each value that the attribute A can take on, create a descendent of node. Sort the training 
examples to those leaves based upon exactly what values they take on, and if you've perfectly 
classified your training set, then you stop. Otherwise, you iterate over each of those leaves, 
picking the best attribute in turn for the training examples that were sorted into that leaf, and you 
keep doing that. Building up the tree until you're done. So that's the ID3 algorithm. And the key 
bit that we have to expand upon in this case, is exactly what it means to have a best attribute. 
All right, what exactly is it that we mean by best attribute? So, there are lots of possibilities, that 
you can come up with. The one that is most common, and the one I want you to think about 
the most, is what's called information gain. So information gain is simply a mathematical way to 
capture the amount of information that i want to gain by picking particular attribute. But what it 
really talks about is the reduction in the randomness, over the labels that you have with set of 
data, based upon the knowing the value of particular attribute. So the formula's simply this. The 
information gain over S and A where S is the collection of training examples that you're looking 
at. And A, as a particular attribute, is simply defined as the entropy, with respect to the labels, of 
the set of training examples, you have S, minus, sort of, the expected or average entropy that 
you would have over each set of examples that you have with a particular value.
M: So what we're doing, we're picking an attribute and that attribute could have a bunch of 
different values, like true or false, or short, medium, tall?

Copyright © 2014 Udacity, Inc. All Rights Reserved.



C: Right and that's represented by v.
M: Okay, each of those is a different v. And then we're saying okay, for over those leaves, we're 
going to do this entropy thing again and we are right. So what is entropy?
C: So, we'll talk about entropy later on in the class in some detail and define it exactly and 
mathematically. And some of you probably already know what, what entropy is, but for those of 
you who don't, it's exactly a measure of randomness. So if I have a coin, let's say a two-headed 
coin. It can be heads or tails, and I don't know anything about the coin except that it's probably 
fair. If I were to flip the coin, what's the probability that it would end up heads or tails?
M: A half.
C: It's a half, exactly, if it's a fair coin it's a half. Which means that I have no basis, going into 
flipping the coin, to guess either way whether it's heads or it's tails. And so that has a lot of 
entropy. In fact it has exactly what's called one bit of entropy. On the other hand, let's imagine 
that I have a coin that has heads on both sides. Then, before I even flip the coin, I already know 
what the outcome's going to be. It's going to come up heads. So what's the probability of it 
coming up with heads? 
M: It's one.
C: So that actually has no information, no randomness, no entropy whatsoever. And has zero 
bits of entropy. So, when I look at this set of examples that I have, and the set of labels I have, I 
can count the number that are coming up, lets say, red x's. Versus the ones that are coming up 
green o's. And if those are evenly split, then the entropy of them is maximal, because if I were 
to close my eyes and reach for an instance, I have no way of knowing beforehand whether I'm 
more likely to get an x or I'm more likely to get an o. On the other hand, if I have all the x's in 
together, then I already know before I even reach in that I'm going to end up with an x. So as 
I have more of one label than the other the amount of entropy goes down. That is I have more 
information going in. Does that make sense, Michael?
M: I think so can we say what the formula is for this or not?
C: Sure. What is the formula for it? You should 
remember.
M:  I'm not sure what the notation ought to be with these 
S's but it has something to do with P(log)P.
C: So the actual formula for entropy, using the same 
notation that we're using for information game is simply 
the sum, over all the possible values that you might see, 
of the probability of you seeing that value, times the log of the probability of you seeing that 
value, times minus one. And I don't want to get into the details here. We're going to go into a lot 
more details about this later when we get further on in the class with randomize optimization, 
where entropy's going to matter a lot. But for now, I just, you have, I want you to have the 
intuition that this is a measure of information. This is the measure of randomness in some 
variable that you haven't seen. It's the likelihood of you already knowing what you're going to get 
if you close your eyes and pick one of the training examples, versus you not knowing what 
you're going to get. If you close your eyes and you picked one of the training examples. Okay?
M: Alright. So, well, so, okay, so then in the practice, trees that you had given us before, it was 
the case that we worked, we wanted to prefer splits that I guess, made things less random, 
right? So if things were all mixed together, the reds and the greens, after the split if it was all 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



reds on one side and all greens on the other. Then each of those two sides would have what? 
They would have very low entropy, even though when we started out before the split we had 
high entropy.
C: Right, that's exactly right. So if you remember the three examples before. One of them, it was 
the case that all of the samples went down the left side of the tree. So the amount of entropy 
that we had, didn't change at all. So there was no gain in using that attribute. In another case, 
we split the data in half. But in each case, we had half of the x's and half of the
o's together, on both sides of the split. Which means that the total amount of entropy actually 
didn't change at all. Even though we split the data. And in the final case, the best one, we still 
split the data in half, but since all of the x's ended up on one side and all of the o's ended up 
on the other side, we had to entropy or no randomness left whatsoever. And that gave us the 
maximum amount of information gain.
M: So is that how we're choosing the best attribute? The one with the maximum gain?
C: Exactly. So the goal is to maximize over the entropy gain. And that's the best attribute.

ID3 Bias

C: So, we've got a whole bunch of trees we have to look at, Michael. And were going to have 
to come up with some clever way to look through them. And this get's us back, something that 
we've talked about before, which is the notion of bias. And in particular, the notion of inductive 
bias. Now, just as a quick refresher, I'm want to remind you that there is two kind of biases we 
worrying about when we think about algorithms that are searching through space. One is what's 
called a restriction bias. The other is called preference bias. So a restriction bias is nothing more 
than the hypothesis set that you actually care about. So in this case, with the decision trees, the
hypothesis set is all possible decision trees. Okay? That means we're not considering, y equals 
2x plus non-boolean functions of a certain type. We're only considering decision trees, and all 
that they can represent. And nothing else. Okay? So that's already a restriction bias and it's 
important. Because, instead of looking at the infinite number uncountably infinite number of 
functions that are out there, that we might consider. We're only going to consider those that can 
be represented by a decision tree over in, you know, all the cases we've given so far discrete 
variable. But a preference bias is something that's just as important. And it tells us what source 
of hypotheses from this hypothesis set we prefer, and that is really at the heart of inductive bias. 
So Michael, given that, what would you say is the inductive bias of the ID3 algorithm? That is, 
given a whole bunch of decision trees, which decision trees would ID3 prefer, over others?
M: So, it definitely tries, since it's, since it's making it's decisions top down. It's going to be more 
likely to produce a tree that has basically good splits near the top than a tree that has bad splits
at the top. Even if the two trees can represent the same function.
C: Good point. So good splits near the top. Alright. And you said something very important there 
Michael. Given two decision trees that are both correct. They both represent the function that 
we might care about. It would prefer the one that had the better split near the top. Okay, so any 
other preferences? Any other inductive bias on the ID3 algorithm.
M: It prefers ones that model the data better to ones that model the data worse.
C:  Right. So this is one that people often forget: it prefers correct ones to incorrect ones. So, 
given a tree that has very good splits at the top but produces the wrong answer. It will not take 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



that one over one that doesn't have as good splits at the top, but does give you the correct 
answer. So that's really, those are really the two main things that are the inductive bias for ID3. 
Although, when you put those two together, in particular when you look at the first one, there's 
sort of a third one that comes out as well, which is ID3 algorithm tends to prefer shorter trees to 
longer trees. Now, that preference for shorter trees actually comes naturally from the fact that 
you're doing good splits at the top. Because you're going to take trees that actually separate 
the data well by labels, you're going to tend to come to the answer faster than you would if 
you didn't do that. So, if you go back to the example where we went before, where one of the 
attributes doesn't split the data at all, that is not something that ID3 would go for, and it would in 
fact create a longer and unnecessarily longer tree. So it tends to prefer shorter trees over longer 
trees. So long as they're correct and they give you good splits near the top of the tree.

Decision Trees Continuous Attributes

C: Alright. So, we've actually done pretty well. So through all of this, we finally figured out what 
decision trees actually are. We know what they represent. We know how expressive they are. 
We have an algorithm that lets us build the decision trees in an effective way. We've done just 
about everything there is to do with decision trees, but there is still a couple of open questions 
that I want to think about. So, here's a couple of them and I want you to, to think about and then 
we'll discuss them. So, so far all of our examples that we've used. All the the things we've been 
thinking about for good pedagogical reasons. We had not only discreet outputs but we also had 
discrete inputs. So one question we might ask ourselves, is what happens if we have,
continuous attributes? So Michael, let me ask you this. Let's say we had some continuous
attributes. We weren't just asking whether someone's an animal or whether they're human or 
whether it's raining outside or we really cared about age or weight or distance or anything else 
that might have a continuous attribute. How are we going to make that work in a decision tree?
M: Well, I guess the literal way to do it would be for something like age to have a branching 
factor that's equal to the number of possible ages.
C: Okay, so that's one, one possibility. So we stick in age and then we have one. 1.0, we have 
one for 1.1, we have one for 1.11, we have one for 1.111
M: Ahh, I see. Alright. Well, at the very least, okay. What if, what if we only included ages that 
were in the training set? Presumably there's at least a finite number of those. Oh, we could 
do that. We could just do that, except what are we going to do then when we come up with 
something in the future that wasn't in the training session.
M: Oh, right. Can we look at the testing set?
C: No were not allowed to look at the testing set. That is cheating, and not the kind of good 
cheating that we do when we pick a good representation.
M: Okay, fair enough. Well we could, we could do ranges. What about ranges? Isn't that the 
way we cover more than just individual values?
C: Give me an example. Say ages you know, in the 20s.
M: Okay, so, huh. How would we represent that
with a decision tree? You could do like age, element sign, bracket. 20, 21, or 29 or 30 right
per end.

Copyright © 2014 Udacity, Inc. All Rights Reserved.



C: Yeah it's too much. Why don't I just say age is between or less is, let's see, greater than or 
equal to, 20 and, less than 30. And just draw a big oval for that. Alright? So that's a range, so 
that's all numbers between, 20 and 30 inclusive of 20 but not 30 right and what's good about 
that is that's a question.
M: So, I guess the good news there is that now we know how to evaluate attributes like that 
because we have a formula from three that tells you what to do but seems like there's an awful 
lot of different ones to check.
C: Right, and in fact if it's truly a continuous variable, there are in principal an infinite number of 
them checked. But we can do now the sort of cheating you wanted to do before. We can just 
look at the training set, and we could try to pick questions that cover the sorts of data in
the training set. So, for example, if all of the values are in the 20s, then there is no point of even 
asking the question. You will start just instead splitting upon values that were, say less than
where you might do that. You might look at all of the values that show up in the training set, and 
say well, I am going to do a binary search. So, I am just going to create an attribute for Less 
than half of whatever is in the training set or greater than half of whatever the range is in the 
training set. Does that make sense?
M: Yeah, that's clever.
C: Right. Thank you. I just made that up on the spot. Okay, so you do those sorts of things and 
that's how you would deal with continuous attributes.

Quiz: Decision Trees Other Considerations

So, here's the next question I want to ask you, simple true or false question. Does it make 
sense
to repeat an attribute along any given path in the tree? So, if you we pick some attribute like 
A, should we ever ask a question about A again? Now, I mean something very specific about, 
by that. I mean, down a particular path of the tree, not just anywhere else in the tree. So, in 
particular, I mean this. So, I ask a question about A, then I ask a question about B, and then I 
ask a question about A again. That's the question I'm asking. Not whether A might appear more 
than once in the tree. So, for example, you might have been the case where A shows up more
than once in the tree, but not along the same path. So, in the second case over here, A shows 
up more than once, but they really don't really have anything to do with one another because 
once you've answered B, you will only ever ask the question about A once. So, my question to 
you is, does it make sense to repeat A more than once along a particular path in the tree? Yes 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



or no?

Answer

M: So, alright. Does it make sense to repeat, an attribute along a path in
the tree? So, it seems like it could be no point in that, you know, if we're looking at attributes 
like, you know, is a true, then later we would ask again is a true because we would already have 
known the answer to that.
C: Right, and by the way, information gain will pick that for you automatically.
M:  It doesn't have to be a special thing in the algorithm if you consider an attribute that you've 
already split on, then you're not going to gain any information, so it's going to be the worst thing, 
to split on. But it seems like maybe you're trying to lead us on because we're in the continuous 
attributes portion of our show.
C: Okay, well what's the answer there? Is the answer not also false?
M: Well we wouldn't want to ask the same question, about the same attribute. So, we wouldn't 
have age between 20 and 30, and then later ask age so we might have a different range, on 
age later in the tree.
C: So, that's exactly right, Michael. So, the answer is no, it does not make sense ,to repeat 
an attribute along a path of the tree, for discrete, value trees. However, for continuous valued 
attributes, it does make sense. Because, what you're actually doing, is asking a different 
question. So, one way to think about this, is that the question is age in the 20's or not. Is actually 
a discrete valued attribute that you've just created, for the purposes of the decision tree. So, 
asking that question doesn't make sense but asking a different question, about age, does in fact 
make sense. So once you know that you are not in the 20's you might ask well am I less than 
20 years old? Maybe a teenager or am I greater than 40. How old am I, 44? Greater than 44, in 
which case, I'm old.

Decision Trees Other Considerations 

C: So, we've answered the thing about continuous attributes. Now, here's another thing. When 
do we really stop?
M: When we get all the answers right. When all the training examples are in the right category 
class.
C: Right, so the the answer in the algorithm is when everything is classified correctly.
That's a pretty good answer, Michael. But what if we have noise in our data? What if it's the 
case that we have two examples of the same object, the same instance, but they have two 
different labels? Then this will never be the case.
M: Oh. So, then our algorithm goes into an infinite loop.
C: Which seems like a bad idea.
M: So we could just say, or we've run out of attributes.
C: Or we've run out of attributes. That's one way of doing it. In fact that what's going to
have to happen at some point, right? That's probably a slightly better answer. Although that
doesn't help us in the case where we have continuous attributes and we might ask an infinite 
number of questions. So we probably need a slightly better criteria. Don't you think?

Copyright © 2014 Udacity, Inc. All Rights Reserved.



M: So, what got us down this path, was thinking about what happens if we have noise. Why 
would we be worried about having noise anyway?
C: Well, I guess the training data might have gotten corrupted a little bit or maybe somebody 
copied something down wrong.
M: Right, so since that's always a possibility, does it really make sense to trust the data 
completely, and go all the way to the point where we perfectly classify the training data? But 
Charles, if we can't trust our data, what can we trust?
C: Well, we can trust our data, but we want to verify. The whole point is generalization. And if 
it's possible for us to have a little bit of noise in the data, an error here or there, then we want to 
have some way to deal to handle that possibility, right?
M:  I guess so.
C: I mean, we actually have a name for this, right? When you get really, really, really good at 
classifying your training data, but it doesn't help you to generalize, we have a name for that.
M: Right. That sounds like overfitting.
C: Exactly. We have to worry about overfitting. Okay, step one, have a different personality with 
maximal information gain. Okay, so we don't want to, we don't want to overfit. So we need to 
come up with some way of overfitting. Now the way you overfit in a decision tree is basically by
having a tree that's too big, it's too complicated. All right. Violates Occam's Razor. So,
what's a kind of, let's say, modification to something like ID3 to our decision tree algorithm that 
will help us to avoid overfitting?
M: Well last time we talked about overfitting, we said cross-validation was a good way of dealing 
with it, which, it allowed us to choose from among the different, say degrees of the polynomial.
So maybe we could do something like that? I don't know. Try all the different trees and, see 
which one has the lowest cross validation error? Maybe there's too many trees.
C: Maybe, but that's a perfectly reasonable thing to do, right? You take out a validation set. You 
build a decision tree, and you test it on the validation set and you pick whichever one has the 
lowest error in the validation sect, that's one way to avoid it. And then you have, don't have to 
worry about this question about stopping, you just grow the tree on the training set minus the 
validation set until it does well on that. And you check it against the cross valid, you check it 
against the validation set, and you pick the best one. That's one way of doing it, and that would 
work perfectly fine. There is another way you can do it that's more efficient. Which is, you
do the same idea validation, except that you hold out a set and every time you decide whether 
to expand the tree or not, you check to see how this would do so far in the validation set. And if 
the error is low enough, then you stop expanding the tree. That's one way of doing it.
M: So is there, is there a problem in terms of, I mean if we're expanding the tree depth for 
search wise, we could be at, you know, we could be looking at one tiny little split on one side of 
the tree before we even look at any, anything on the other side of the tree.
C: That's a fine point. So how would you fix that?
M: Maybe expand breadth first?
C: Yeah, that would probably do it. Anything else you could think of? Well, so, you could do 
pruning, right? You could go ahead and do the tree as if you didn't have to worry about
over-fitting, and once you have the full tree built, you could then do a kind of, you could do 
pruning. You could go to the leaves of the tree and say, well, what if I collapse these leaves 
back up into the tree? How does that create error on my validation set? And if the error is too 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



big, then you don't do it. And if it's very small, then you go ahead and do it. And that should help 
you with overfitting. So, that whole class of ways of doing it, is called pruning. And there's a 
whole bunch
of different ways you might prune. But pruning, itself, is one way of dealing with overfitting, and 
giving you a smaller tree. And it's a very simple addition to the standard ID3 algorithm.

Decision Trees Other Considerations Regression

C: So another consideration we might want to think about with decision trees but you're not 
going to go into a lot of detail but I think might be worth at least mentioning is the problem of 
regression. So, so far we've only been doing classification where the outputs are discrete, but 
what if we were trying to solve something that looked more like x squared or two x plus 17 or 
some other continuous function. In other words, a regression problem. How would we have to 
adapt decision trees to do that? Any ideas Michael?
M: So these are now continuous outputs, not just continuous inputs.
C: Right, maybe the outputs are all continuous, maybe the outputs are discrete, maybe they're a 
mix of both.
M: Well it certainly seems like out rule of using, information gain is going to run into trouble 
because it's not really clear how you measure information on these continuous values. So, I 
guess you could measure error some other way. Well it's
not error, it's trying to measure how mixed up things are? Oh so ,maybe
something like variance? Cause in a continuous space you could talk about if
there's a big spread in the values that would be measured by the variance.
C: Oh good. So what you really have now is a question about splitting. What's the splitting 
criteria?
M: I guess there's also an issue of what you do in the leaves.
C:  Right. So, what might you do in the leaves?
M: I guess you could do some sort of more standard kind of fitting algorithm. So, like, report the 
average or, or do some kind of a linear fit.
C: Is any number of things you can do. By the way ,that's worth pointing out on the, on the 
output that if we do pruning like we did before, we have errors, we did actually say when we 
talked about that how you would report an output. Right? If you don't have a clear answer where 
everything is labeled true or everything is labeled false, how do you pick? So something like an 
average would work there.
M: I don't know, I mean, it seems like it depends on what we're trying to measure with the tree. 
If the tree is, we're trying to get as many right answers as we can, then you probably want to do 
like a vote in the leaves.
C: Right, which ,at least, if the only answer is true or false, that would look more like an average 
I guess. Right, so you pick, you do a vote. So we do a vote, so we do pruning. We do have to 
deal with this issue of the output. Somehow ,and something like a vote mixing. And here, when 
you have a regression, then I guess average is a lot like voting.
M: Yeah, in a continuous phase.
C: Yeah. So either way we're doing a kind of voting. I like that.

Copyright © 2014 Udacity, Inc. All Rights Reserved.


