
Machine Learning

Lesson 03 Notes

Neural Networks

M: I'm excited to tell you about neural networks today. You may be familiar with neural networks 
because you have one, in your head.
C: I do?
M: Well, yeah. I mean, you have a network neurons. Like, you know neurons, like brain cells. 
Let me, I'll draw you one.
C: Okay.
M: So this is my template drawing, a nerve cell, a neuron. You've got billions and billions of 
these inside your head. And most of them have a pretty similar structure, the main part of the 
cell called the cell body. And then there's this thing called an axon which kind of is like a wire 
going forward to a set of synapses which are kind of little gaps between this neuron and some 
other neuron. And what happens is, information spike trains
C: Woo woo!
M: Travel down the axon. When the cell body fires it has an electrical impulse it travels down 
the, the axon 
and then 
causes across 
the synapses 
excitation to 
occur on other 
neurons 
which 
themselves 
can fire. Again 
by sending 
out spike 
trains. And so they're very much a kind of a computational unit and they're very, very 
complicated. To a first approximation, as is often true with first approximations they're very 
simple. Sort of by definition of first approximation. So what, in the field of artificial neural 
networks we have kind of a cartoonish version of the neuron and networks of neurons and we 
actually put them together to compute various things. And one of the nice things about the way 
that they're set up is that they can be tuned or changed so that they fire under different 
conditions and therefore compute different things. And they can be trained through a learning 
process. So that's what we're going to talk through if you haven't heard about this before.
C: Okay.
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M: So we can replace this sort of detailed version of a neuron with a very abstracted way kind of 
notion of a neuron. And here's how it's going to work. We're going to have inputs that are kind 
of you know, think of them as firing rates or the strength of inputs. X1, X2, and X3 in this case. 
Those are multiplied by weight, w1, w2, w3 correspondingly. And so the weights kind of turn up 
the gain or the sensitivity of the neuron, this unit, to each of the inputs respectively. Then what 
we're going to do is we're going to sum them up. So we're going to sum over all the inputs. The 
strength of the input times the weight, and that's going to be the activation. Then we're going to 
ask is that greater than or equal to the firing threshold. If it is then we're going to say the output 
is one and if it's not, we're going to say the output is zero. So this is a particular kind of neural 
net unit called a Perceptron. Which is a very sexy name because they had very sexy names in 
the 50s. So this whole neuron concept gets boiled down to something much simpler, which is a 
linear sum followed by a threshold. Thresholding operation, right? So it's worth thinking. What 
sort of things can networks of these kinds of units compute? So, let's see if we can figure some 
of those things out.

Quiz: Artificial Neural Networks

M: Alright just to make sure that you understand. Lets think through an example. Lets imagine, 
that we've got a neuron. We got one of these perception units. And the
input is 1, 0, -1.5. For the three different, inputs in this case. And the corresponding weights, 
are ½, ⅗, and 1. The threshold, let's say is 0, meaning that it should fire, if the weighted sum 
is above 0, or equal to 0, and otherwise, it should not fire. So, what I'd like you to compute, is 
based, on these numbers, what the output ,why would be in this case.

Answer

M: Alright Charles you want to help us kind of work through this example?
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C: Sure. So ,we multiply x1 times w1 so that gives us a 1/2
M: Um-huh.
C: We multiply 0 times 3/5 which would get a 0 and we multiply -1.5 times 1. Which will give us -
3/2. And so, the answers negative. Whatever it is.
M: It is right, so it's, this was negative ahead, -1.5 plus a 1/2, so it should be negative one.
C: Right.
M: And, but that's not the output that we should actually produce, right? That's the activation. 
What do we do with the activation?
C: Well we see if the activation is above our threshold fata, which in this case is 0, and it is not 
So the output should be 0.
M: Good.

How Powerful is a Perceptron Unit

M: Alright. Well we'd like to try to get an understanding of how powerful one of these perceptron 
units are. So, what is it that they actually do? So they, they return, in this case either 0 or 1
as a function of a bunch of inputs. So let's just for simplicity of visualization, let's just imagine 
that we've got 2 inputs, X1 and X2. So Charles, how could we represent the region in this input 
space that is going to get an output of 0 versus the region that's going to get an output of 1.
C: Order the weights.
M: Right. So indeed, the weights matter. So let's, let's give some concrete values to these 
weights. And let's just say, just making these up that weight 1 is a half, weight 2 is a half, and 
our threshold data is three quarters. So now what we want to do is again, break up this space 
into where's it going to return 1 and where's it going to return 0.
C: Okay, so I think I know how to figure this out. So there's 2 sort of extreme examples, so let's 
take a case where X1 is 0.
M: X1 is 0. Okay, good. So that's this Y axis.
C: Alright. So if X1 is 0, what value would X2 have to be in order to break a threshold of three 
quarters? Well, the weight on X2 is a half.
M: Mm-hm.
C: So then, the value of X2 would have to be twice as much as the threshold which in this case 
is 1.5.
M: Right. So we're trying to figure out where is it, if X1 is 0, where does X2 need to be so that 
we're exactly at the threshold. So that's going to be.
C: Right.
M: The X2 times the weight, which is half has to exactly equal the threshold which is three 
quarters. So, if we just solve that out, you get X2 equals a dividing line. So anywhere above 
here, what's it going to return?
C: It will return, it will break the threshold, and so it will return a 1.
M: These are all going to be 1s and then below this these are all going to be 0s.
C: Right.
M: Alright. Well now we have a very, very skinny version of the picture. Well what else can we 
do?
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C: Well we can do the same thing that we just did except we can swap X2 and X1 because, 
they have the same weight. So, we could say X2 equal to 0 and figure out what the value of X1 
has to be.
M: Good, and that seems like it would be exactly the same algebra, and so we get X1 is 3 
halves, gives us at the one and a half point above here are going to be 1s and below here are 
going to be 0s. Okay, so now we've got 2 very narrow windows, but what we notice is that the 
relationships are all linear here. So solving this linear inequality gets us a picture like this. So 
this perceptron computes a kind of half plane right? So, so the half of the plane that's above this 
line, the half plane that's above this line is getting us the 1 answers and below that line is giving 
us a zero answers.
C:  So Michael can we generalize from this, so you're telling me that because of the linear 
relationship drawn out by a perceptron that perceptrons are always going to compute lines.
M: Yeah. Always going to compute, yeah these half planes right. So there's a dividing
line where you're equal to the threshold and that's always going to be a linear function and then 
it's going to be you know, to the right of it or to the left of it, above it or below it but its always 
halves at that point.
C:  Okay, so perception is a linear function, and it computes hyperplanes.
M: Yeah, which maybe in some sense it doesn't seem that interesting, but it turns out we're 
already in a position to compute something fascinating. So let's do a quiz.

Quiz: How Powerful is a Perceptron Unit

M: So this example that we, you know, created just at random actually is it computes an 
interesting function. So let's, let's focus on just the case where our X1 is in the set zero, one 
and X2 is in the set zero, one. So those are the only inputs that we care about, combinations of 
those. What is Y computing here? What is the name of that relationship that function that's 
being 
computed? 
And so, just 
as a hint, 
there's a nice 
short one-
word answer 
to this if you 
can kind of 
plug it 
through and 
see what it is 
that it's 
computing. 

Answer
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M: Charles, can you figure this out?
C: Yes, I believe I can. So, the first thing to note is that because we're sticking with just 0 and 1, 
and not all possible values in between, we're thinking about a binary function. And the output is 
also binary. Which makes me think of Boolean functions, where zero represents false and one 
represents true, which is a common trick in machine learning.
M: Alright, so and let me, let me mark those on the picture here. So we're talking about the only 
four combinations are here. And you're saying in particular. That we're interpreting these as 
combinations of true and false.
C: Right
M: False, false, true, false, false, true, and true, true.
C: Exactly and if you look at it the only way that you get something above the line is when both 
are true.
M: Also take conjunction. You know we're setting these numerical values but it actually has 
gives us a way of specifying a kind of logic key.
C: Right. So here's a question for you Michael. Could we do OR?
M: That's a very good question. OR looks a lot like AND in this space, it, it seems like it ought to 
be possible. So let's let's do that as a quiz. 

Quiz: How Powerful is a Perceptron Unit OR 

M: Alright, so we're going to go in the opposite direction now. And we're saying, we're going to 
tell you what we want y to be, we want y to be the OR function. So it should be outputting
a one if either x one or x two is one, and otherwise it should output a zero. And what you need 
to do is fill in numbers for weight one, weight two, and theta so that it has that semantics. Now, 
just so you know, there is no unique answer here. There's a whole bunch of answers that will 
work, but we're going to check to see that you've actually typed in one that, that works.

Answer
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M: Alright Charles, let's, let's figure this one out. It turns out, as I said, there's lots of different 
ways to make this work, but, what we're going to do is move that line that we had for 
conjunction. If we, what we really want to do now is figure out how to move it down so that these 
three points are in the green zone. They're going to output 1 because they're the only one that's 
left in the zero zone in the red zone is the zero, zero case.
C: Right.
M: So, How are we going to be able to do that?
C: Well, since we want it to be case that either X2 or X1, being one get you above the line, then, 
we need a threshold and a set of weight that put either one of them over. You don't have to 
have both of them. You only need one of them.
M: Okay.
C: So, let's imagine a case where X1 is one and X2 is 0. Oh, you're right. There's a whole lot of 
answers, so a weight of 1, for X1, would give you a 1. Right?
M: Yes
C: And so, if we made the threshold 1, that would work.
M: What about weight 2?
C: Well, we do exactly the same thing. So, we set weight 2 equal to 1. That means that in the 
case where both of them are 0, you get 0 plus 0, which gives you something less than 1. If one 
of them is 1 and the other is 0, you get 1, which gives you right at the threshold. If both of them 
are one then you get two, which is still greater than one.
M: Good, alright, that seems like it worked. The other way we could do it is keeping the weights 
where they were before, that just moves this line nice and smoothly down. Right? So before, we 
had a, a threshold one and a half. Now we need a threshold of a half. That ought to do it.
C: Yep.
M: Or even less, as long as it's greater than zero. So, a quarter should work, as well.
Can we do NOT?
C: What's NOT of two variables?
M: That's a good question. Let's do NOT of one variable.
C:  Okay.

Quiz: How Powerful is a Perceptron Unit NOT 

M: Maybe you should help me finish this picture here. So what we've got is X1 is our variable
and so we can take on any sort of values. And I marked -1, 0, and 1 here. And if we're doing 
NOT then what should the output be for each of these different values of X1? So if X1 is 0, then 
we want the output to be 1. And if X1 is 1, we want the output to be 0. Alright, so now what we'd 
like you to do is say okay, what should weigh 1 and what should theta be so that we get this 
kind of NOT behavior.
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Answer

M: Alright Charles, you were about to say, how we could do this.
C: We need to flip 0 and 1, which suggests that either our weight or our threshold needs to be 
negative. The threshold is above, it's going to end up being our weight being negative. If we 
have a 0, we want to turn that into something above the threshold and if it's a one, we want it to 
be below the threshold. So, why don't we make the weight negative one.
M: Okay.
C: And that turns a 0 into a 0 and it will turn a 1 into a -1. Alright.
M: And so, then the threshold just has to be 0.
C: So that would mean that anything, I see, so anything that's negative will be greater than, zero 
or negative would be greater than or equal to the threshold. And anything on the other
side of that. would be under the threshold. So we get this kind of dividing line at one, so were 
taking advantage of the fact the equation had a greater than or equal to in it. So, yeah,
right, that ought to be a NOT. So we've got AND, OR and NOT that are all expressible as 
perceptron units.
M: Hey that's great because if we have AND, OR, and NOT, then we can represent any 
Boolean function.
C: Well, do we know that? We know that if we combine them together, we combine these 
perceptron units together can we express any perceptron, or sorry, any boolean function that we 
want using a single perception?
M: What do we normally do in this case? What's the most evil function we can think of?
C: Yes indeed. We'll when we're working on decision trees, the thing that was so evil was the 
XOR parity more generally.
M: Right.
C: So, alright. Maybe if we can do that, we can do anything. So, let's, let's give it a shot. 

Quiz: XOR as Perceptron Network

M: Alright so here's what we're going to do. We're going to try to figure out how to compute 
XOR. Instead of a single perceptron, which we know is impossible, we can do it as a
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network of perceptron. To make it easier for you, here's how we're going to set it up. We've got 
x1 and x2 as our inputs We've got two units. This first unit is just going to compute and add and 
we already know how to do that. We've already figured out what weights need here. And what 
the threshold needs to be, so that the output will be the AND of those two inputs. So, that's all 
good. It turns out the second unit, with three inputs, X1, X2, and the AND of X1 and X2 we can 
use to set the weights on that so that the output is going to be XOR. So, what we'd like you to 
do is, figure out how to do that. How do you set this weight - Is the input of X1, this way which is 
the and input, and this way which is the X2 input, and the threshold. So that it's going to actually 
compute an XOR. And, and just so you know, this is not a trick question. You really can do it 
this time.

Answer

M: So, okay, so, how we, how we going to solve this?
C: Okay, so, I guess the first thing to do is if you look at the table you have at the bottom, it tells 
us what the truth tables are for AND and XOR, alright? So, we know that Boolean functions, can 
all be represented as combinations of AND, OR, and NOT. So, I'm going to recommend you feel 
out that empty column with OR.
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M: So, OR is like that.
C: Right. And you'll notice, if you look at AND, OR and XOR. OR looks just like XOR except at 
the very last row.
M: In the second, okay good, uh-huh, and in that row.
C: Right, and, AND on the other hand, tells us a one only on the last row. So what, I'm going to 
suggest that we really want that last node to do in your drawing, is to compute the or of X1 or 
X2. And produce the right answer, except in the case of the last row, which we only want to turn 
off when and happens to be true. So really what that node is computing OR minus AND.
M: Alright, so how do we make this OR minus AND? So the way we did OR before well we did 
it a couple of different ways. But one is we gave weights of one on the two inputs. And then a 
threshold of one. And that made, ignoring everything else at the moment, this unit will now turn 
on if either x1 or x2 are on. And otherwise it will stay off.
C: Right. So what's the worst case? The lowest value that you can get. Is when one of those is 
one and one of those is zero, which means that the sum into those will be, in fact, one.
M: Yeah.
C: Right? So, if the AND comes out as being true, it's going to give us some positive value. So, 
if we just simply have a negative wait there, that will subtract out. Exactly in the case ,when 
AND is on. It's not going to quite give us the answer we want, but it's a good place to start to 
think about it.
M: Alright, so like just a negative weight, like negative one.
C: Mm-hmm.
M: Alright. So does that work?
C: Not quite.
M: Alright, and why doesn't it work? Because well certainly when AND is off then we really are 
just getting the OR, that's all good.
C: Yeah.
M: But if both x1 and x2 are both on, then the sum here is going to be two minus the one that 
we get from the AND which is still one.
C: So, minus one isn't enough?
M: Minus with both, maybe we can do more than that. Maybe we can do minus two. What 
happens if we do minus two? Then we've got X1 and X2 if they're both on. Then we get a sum 
of one minus two plus one or zero. Which is less than our threshold so it will output zero. And in 
the other two cases, right, when AND is off then it just acts like OR. So this actually kind of does 
the right thing. Its actually OR minus kind of AND times two. [LAUGH]
C: Right. And there you go. And of course there's an infinite number of solutions to this.

Perceptron Training

M: Alright. So in the examples up to this point, we've be setting the weights by hand to make 
various functions happen. And that's not really that useful in the context of machine learning. 
We'd really like a system that given examples, finds weights that map the inputs to the outputs. 
And we're going to actually look at two different rules that have been developed for doing 
exactly that, to figuring out what the weights ought to be from training examples. One is called 
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the the Perceptron Rule, and the other is called gradient descent or the Delta Rule. And the 
difference between them is the perception rule is going to make use of the threshold outputs, 
and the, the other mechanism is going to use unthreshold values. Alright so what we need 
to talk about now is the perception rule for how to set the weights of a single unit. So that it 
matches some training set. So we've got a training set, which is a bunch of examples of x. 
These are vectors and we have y's which are zeros and ones which are the, the output that we 
want to hit. And what we want to do is set the, set the weights so that we capture this, this same 
data set. And we're going to do that by, modifying the weights over time.
C: Oh, Michael, what's the series of dashes over on the left.
M: Oh, sorry, right. I should mention that, so one of the things that we're going to do here is
were going to give a learning rate for the weights W, and not give a learning rule for Theta But 
we do need to learn the theta. So there's a, there's a very convenient trick for actually learning 
them by just treating it as another kind of weight. So if you think about the way that the 
thresholding function works. We're taking a linear combination of the W's and X's, then we're 
comparing it to theta. But if you think about just subtracting theta from both sides, then, in some 
sense theta just becomes another one of the weights, and we're just comparing to zero. So 
what, what I did here was take the actual data, the x's, and I added what is sometimes called a 
bias unit. So basically the input is one always to that. And the weight corresponding to it is going 
to correspond to negative theta ultimately. This just simplifies things so that the threshold can 
be treated the same as the weights. So from now on, we don't have to worry about the 
threshold. It just gets folded into the weights, and all our comparisons are going to be just to 
zero instead of theta. Centric, yeah. It certainly makes the math shorter. So okay, so this is what 
we're going to do. We're going to iterate over this training set, grabbing an x, which includes the 
bias piece, and the y. Where y is our target X is our input. And what we're going to do is we're 
going to change weight i, the weight corresponding to the ith unit, by the amount that we're 
changing the weight by. So this is sort of a tautology, right. This is truly just saying the amount 
we've changed the weight by is exactly delta W - in other words the amount we've changed the 
weight by. So we need to define that what that weight change is. The weight change is going to 
be find as falls. We're going to take the target, the thing that we want the output to be. And 
compare it to, what the network with the current weight actually spits out. So we compute this, 
this y hat. This approximate output y. By again summing up the inputs according to the weights 
and comparing it to zero. That gets us a zero one value.So we're now comparing that to what 
the actual value is. So what's going to happen here, if they are both zero so let's, let's look at 
this. Each of y and y that can only be zero and one. If they are both zeros then this y minus y 
hat is zero. If they're both ones and what does that mean? It means the output should have 
been zero and the output of our current. Network really was zero, so that's, that's kind of good. 
If they are both ones, it means the output was supposed to be one and our network outputted 
one, and the difference between them is going to be zero. But in this other case, y minus y hat, 
if the output was supposed to be zero, but we said one, our network says one, then we get a 
negative one. If the output was supposed to be one and we said zero, then we get a positive 
one. Okay, so those are the four cases for what's happening here. We're going to take that 
value multiply it by the current input to that unit i, scale it down by the sort of thing that is going 
to be cut the learning rate and use that as the the weight update change. So essentially what 
we are saying is if the output is already correct either both on or both off. Then there's going to 
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be no change to the weights. But, if our output is wrong. Let's say
that we are giving a one when we should have been giving a zero. That means the total here is 
too large. And so we need to make it smaller. How are we going to make it smaller? Which ever 
input XI's correspond to, very large values, we're going to move those weights very far in
a negative direction. We're taking this negative one times that value times this, this little learning 
rate. Alright, the other case is if the output was supposed to one but we're outputting a zero, that 
means our total is too small. And what this rule says is increase the weights essentially to try to 
make the sum bigger. Now, we don't want to kind of overdo it, and that's what this learning rate 
is about. Learning rate basically says we'll figure out the direction that we want to move things 
and just take a little step in that direction. We'll keep repeating over all of the input output pairs. 
So, we'll have a chance to get into really building things up, but we're going to do it a little bit at 
a time so we don't overshoot. And that's the rule. It's actually extremely simple. Like, you,
actually writing this in code is, is quite trivial. And and yet, it does some remarkable things. So 
let's imagine for a second that we have a training set that looks like this. It's in two dimensions, 
again, so that it's easy to visualize. That we've got. A bunch of positive examples, these green 
x's and we've got a bunch of negative examples these red x's, and were trying to learn basically 
a half plane right? Were trying to learn a half plane that separates the positive from the negative 
examples. So Charles do you see a, half plane that we could put in here that would do the trick?
C: I do.
M: What would it look like?
C: It's that one.
M: By that one do you mean, this one?
C: Yeah. That's exactly what I was thinking, Michael.
M: That's awesome! Yeah, there are isn't a whole lot of flexibility in what the answer is in this 
case, if we really want to get all greens on one side and all the reds on the other. If there is such 
a half plane that separates the positive from the negative examples, then we say that the data 
set is linearly separable, right? That there is a way of separating the positives and negatives 
with a line. And what's cool about the perception rule, is that if we have data that is linearly 
separable. The Perceptron Rule will find it. It only needs a finite number of iterations to find it. In 
fact, which I guess is really the same as saying that it will actually find it. It won't
eventually get around to getting to something close to it. It will actually find a line, and it will stop
saying okay I now have a set of weights that, that do the trick. So that's happens if the data set 
is in fact linearly separable and that's pretty cool. It's pretty amazing that it can do that, it's a 
very simple rule and it just goes through and iterates and, and solves the problem. So. Charles 
Sened solves the problem. So.
C: I can think of one. What if it is not linearly separable?
M: Hmm, I see. So, if the data is linearlly separable, then the algorithm works, so the algorithm 
simply needs to only be run when the data is linearlly separable. It's generally not that easy tell 
actually, when your data is linearly separable especially, here we have it in two dimensions, if 
it's in 50 dimensions, know whether or not there is a setting of those perimeters that makes it 
linearly separable, not so clear.
C: Well there is one way you could do it.
M: Whats that?
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C: You could run this algorithm, and see if it ever stops. I see, yes of course, there's a problem 
with that particular scheme, right, which says, well for one thing this algorithm never stops, 
so wait, we need to, we need to address that. But, but really we should be running this loop 
here, while, there's some error so I neglected to say that before. But what you'll notice is if 
you continue to run this after the point where it's getting all the answers right. It found a set of 
weights that lineally separate the positive and negative instances what will happen is when it 
gets to this delta w line that y minus y hat will always be zero the weights will never change we'll 
go back and update them by adding zero to them repeatedly over and over again. So. If it ever 
does reach zero error, if it ever does separate the data set then we can just put a little condition 
in
there and tell it to stop filtering So what you are suggesting is that we could run this algorithm 
and if it stops then we know that it is linearly separable and if it doesn't stop Then we know that 
it's not linearly separable, right? By this guarantee.
M: Sure.
C: The problem is we, we don't know when finite is done, right? If, if this were like 1,000 
iterations, we could run it for 1,000 if it wasn't done. It's not done, but all we know at this point 
is that it's a finite number of iterations, and so that could be a thousand, 10 thousand, a million, 
ten million, we don't know, so we never know when to stop and declare the data set not linearly 
separable.
M: Hmm, so if we could do that, then we would have solved the halting problem, and we would 
all have nobel prizes Well, that's not necessarily the case. But it's certainly the other direction is 
true. That if we could solve the halting problem, then we could solve this.
C: Hm.
M: But it could be that this problem might be solvable even without solving the halting problem.
C: Fair enough. Okay.

Gradient Descent

M: So we are going to need a learning algorithm that is more robust to non-linear separability or 
linear non-separability. Does that sound right?
C: Non-linear separability
M: Non?
C: Yeah think of it. Left parenthesis, linear sep, spreadability left parenthesis.
M: There we go, that's right, negating the whole phrase, very good. So Gradient descent is 
going to give us an algorithm for doing exactly that. So, what we're going to do now is think 
of things this way. So what we did before was we did a summation over all the different input 
features of the activation on that input feature times the weight, w, for that input feature. And we 
sum all those up and we get an activation. And then we have our estimated output as whether 
or not that activation is greater than or equal to zero. So let's imagine that the output is not 
thresholded when we're doing the training, and what we're going to do instead is try to figure 
out the weight so that the non thresholded value is, as close to the target as we can. So this 
actually kind of brings us back to the regression story. We can define an error metric on the 
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weight vector w. And the form of that's going to be one half, times the sum over all the data in 
the dataset, of what the target was supposed to be for that particular example. Minus what the 
activation actually was. Right? The activation being the dot product between the weights and 
the input and we're going to square that. We're going to square that error and we want to try to 
now minimize that. 
C: Hey Michael, can I ask you a question?
M: Sure.
C: Why one half of that?
M: Mm. Yes. It turns out that it turn, in terms of minimizing the error this is just a constant and it 
doesn't matter. So why do we stick in a half there? Let's get back to that.
C: Okay.
M: Just like in the regression case we're going to fall back to calculus. Right, calculus is going to
tell us how we can push around these weights, to try to push this error down. Right, so we 
would like to know. How does changing the weight change the error, and lets push the weight 
in the direction that causes the error to go down. So we're going to take the partial derivative 
of the, this aerometric with respect to each of the individual weights, so that we'll know for 
each weight which way we should push it a little bit to move in the direction of the gradient. 
So that's the partial derivative with respect to weight wi, of exactly this error measure. So to 
take this partial derivative we just use the chain rule as we always do. And what is it to take 
the derivative of something like this, if you have this quantity here. We take the power, move 
it to the front, keep this thing, and then take the derivative of this thing. So this now answers 
your question, Charles. Why do we put a half in there? Because down the line, it's going to 
be really convenient that two and the half canceled out. So, it's just going to mean that our 
partial derivative is going to look simpler, even though our error measure looked a little bit more 
complicated. So what we're left with then, is exactly what I said,
the sum over all these data points of what was inside this. Quantity here times the derivative of
that, and here I expanded the a to be, the definition of the a. Now, we need to take the partial 
derivative with respect to weight w i of this sum that involves a bunch of the ws in it. So, when 
don't match the w i, that derivative is going to be zero because changing the weight won't have 
any impact on it. The only place where this changing this weight has any impact is at x of i. So 
that's what we end up carrying down. This summation disappears. And all that's left is just the 
one term that matches the weight that we care about. So this is
what we're left with. Now the derivative of the error with respect to any weight w sub i. Is exactly 
this sum. The sum of the difference between the activation and the target output times the 
activation on that input unit
C: You know? That looks exactly like, almost exactly like the rule that we use with the 
perceptrons before.
M: It does indeed! What's the difference? Well, actually let's Let's write this down. This is now 
just a derivative, but let's actually write down what our weight update is going to be because 
we're going to take a little step in the direction of this derivative and it's going to involve a 
learning rate.

Comparison of Learning Rules
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M: So here's our update rules what they end up being. The gradient descent rule we just 
derived says what we want to do is more the weights in the negative direction of the gradient. 
So if we negate that expression that we had before and take a little step in that direction we get 
exactly this expression. Multiply the input on that weight times the target minus the activation. 
Whereas in the perceptron case what we were doing is taking that same activation, thresholding 
it. Like, determining whether it's positive or negative. Putting in a zero or a one. And putting 
that in here, that's what y hat is. So really it's the same thing except in one case we have done 
the thresholding and in the other case we have not done the thresholding. But we end up with 
two different algorithms with two different behaviors. The perceptron has this nice guarantee. A 
finite convergence, which is a really good thing, but that's only in the case where we have linear 
separability. Whereas the gradient descent rule is good because, calculus. I guess that's not 
really an answer is it. It's, the gradient descent rule is good because it's more robust to data sets 
that are not linearly separable, but it's only going to converge in the limit. To a local optimum. 
Alright is that, is that the story there Charles?
C: As far as I'm concerned.

Quiz: Comparison of Learning Rules

M: So once we see these two things next to each other, it kind of raises the question, why, don't 
we just use a gradient descent type on an error metric that's defined in terms of y hat instead of 
the activation a? because y hat is the thing, that we really want to match the output. We don't 
really want the activation to match the output. There's no need for that. So, it seemed there's a, 
bunch of different possible reasons for that. It could be, well we don't do that, because, it would 
just be computationally compatible. It's too much work. Another possibility would be to do the 
gradient descent, you'd have to be able to take the derivative and if we use it in this form, it's not 
differentiable. So, we can't take the derivative. Another one
is, well sure we can do all that, it's not intractable and its not, not differentiable. But, if we do that
then the weights tend to grow too fast, until you end up getting unstable answers, and then, the 
last possible choice that we will give you is. You can do that but you can get multiple different 
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answers and the different answers, behave differently and so this is really just to keep it from 
being ill defined.

Answer

M: So why don't we do gradient descent on y hat?
C: Well there could be many reasons but the main reason is it's not differentiable. It's a 
just discontinuous function. There's no way to take the derivative at the point where it's 
discontinuous. 
M: So this activation thing. The change from activation to y hat has this big step function jump in 
it, right, at zero. So once the activation goes positive, actually at zero. It
jumps up to one. And before that, it's, it's not. So the derivative is basically zero, and then that. 
Not differentiable, and then zero again. So really, the zero's not giving us any direction to push, 
in terms of how to fix the weights. And the undefined part, of course, doesn't really give us any 
information either. So this, this algorithm doesn't really work, if you. Try to take the derivative 
through this discontinuous function. But it does kind of, you know. What if we made this, more 
differentiable? Like, what is it that makes this so undifferentiable? It's this, it's this really pointy 
spot, right. So you could imagine a function that was kind of like this, but then instead of the 
point spot, it kind of smoothed out a bit. Mm, like that. So kind of a softer version of a threshold, 
which isn't exactly a threshold. But it leaks this differentiable.
C:  Hm.
M: So that would kind of force the algorithm to put its money where its mouth is. Like if that 
really is the reason, that the problem is non differentiable, fine. We'll make it differentiable. Now, 
how do you like it? I don't know, how do we like it now?
C: Well, I'll tell you how much I like it when you show me a function that acts like that.

Sigmoid

M: Challenge accepted. We're going to look at a function called the sigmoid. Sigmoid meaning 
s-like, right, sig, sigma-ish, sigmoid. So we're going to define the sigmoid using the letter sigma 
and it's going to be applied to the activation just like we were doing before, but instead of 
thresholding it at zero, what it's instead going to do is compute this function of one over one plus 
e to the minus a, and what do we know about this function? Well, it ought to be clear that as the 
activation gets less and less, we'd want it to go to zero, and in fact it does, right. So, as a goes 
to negative infinity, the negative goes to infinity. E to the infinity is something really, really big. 
So it's one over which is almost zero. So, the sigmoid function goes toward, this function that 
we defined here, goes to zero as the activation goes. To negative infinity, that's great, that's just 
like threshold, and as the activation gets really really large, we're talking about e to the minus 
something really large, which is like e to the
almost, or like e to the negative infinity which is like almost zero, so one over one plus zero is 
essentially one. So on the one limit, it go towards zero, and the other limit it goes towards one, 
and in fact we can just draw this so you can see what it really looks like you know, minus five 
and below it's essentially at zero, and then it makes this kind of gradual, you can see why it's 

Copyright © 2014 Udacity, Inc. All Rights Reserved.



sigmoid s-shaped curve, then it comes back up to the top and it's basically at one by the time it
get to five. So instead of just an abrupt of transition to zero, we had this gradual transition 
between negative five and five. And this is great because it's differentiable, so. What do
you think Charles, does this answer your question?
C: It does, I buy that.
M: Alright good so if we have units like this now we can take derivatives which means we can 
use this gradient decent idea all over the place. So not only is this function differentiable but 
the derivative itself has a very beautiful form. In particular it turns out... That if you take the 
derivative of this sigma function, it can be written as the function itself times one minus the 
function itself. So this is just, this is just really elegant and simple. So, if you have, you know, the 
sigma function in your code, there's nothing special that you need for the derivative. You could 
just compute it this way. So we would, it's not a bad exercise to go through and do this. Practice 
your calculus, we just did this together but it's not that fun to watch. So I would suggest doing it 
on your own, and if you have any trouble we'll, we'll provide additional information for you to, to 
help you work that out.
C: But when you do it on your own make sure that no one is watching.
M: Well they can watch, they just probably won't enjoy it very much. So, so can we say anything 
about why this form kind of makes sense? So, so what's neat about this is. As we, as our 
activation gets very negative, then our sigma value gets closer and closer to zero. And if you 
look at what our derivative is there, it's something like zero times something like one minus zero, 
whereas the derivative as you get to very large as, that's like sigma's going to one. And you 
get 1 times So you can see the derivatives flatten out for very large and very negative a's. And 
when a is like, zero, so what happens when a is like zero? Boy, what does happen when a is 
like zero? Charles, what happens if we plug zero into this sigma function?
C: You get one half.
M: Is that obvious? Oh, I see, because e to the minus a, that's zero, so e to the zero is one, 
one over one plus one, so a half. And then our derivative at that point is a half times a half, or a 
quarter, so that's kind of neat.
C: Mm-hm.
M: So this is really in a very nice form for being able to work with it.
C: But it's probably worth saying that. Surely you could use other functions that are different, 
and there might be good reasons to do that. This one just happens to be a very nice way of 
dealing with the threshold in question.
M: Yeah and there's other ways that are also nice. So again, the main properties here are that 
as activation gets very negative it goes to zero, as activation gets very positive it goes to one, 
and there's this smooth transition in between, there's other ways of making that shape.

Neural Network Sketch

M: Alright so we're now in a great position to talk about what the network part of the neural 
network is about. So now the idea is that we can construct using exactly these kind of sigmoid 
units, a chain of relationships between the input layer, which are the different components of x, 
with the output. Y, and the way this is going to happen is, there's u, other layers of, of units in 
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between. That each one is computing the weighted sum, signoided, of the layer before it. These 
other layers of units are often referred to as hidden layers, because you can kind of see the 
inputs, you can see the outputs. This other stuff is less constrained. Or indirectly constrained. 
And what's happening is that each of these units, it’s taking the weights, multipied by the things 
coming into it, put it through the sigmoid and that's your activation, that's your output. So, so 
what's cool about this is, in the case
where all these are 
sigmoid units this 
mapping from input to 
output. Is differentiable 
in terms of the weights, 
and by saying the 
whole thing is 
differentiable, what I'm 
saying is that we can 
figure out for any given 
weight in the network 
how moving it up or 
down a little bit is going 
to change the mapping 
from inputs to outputs. 
So we can move all 
those weights in the 
direction of producing 
something more like the output that we want. Even though that there's all these sort of crazy 
non linearities in between. And so, this leads to an idea called backpropagation, which is really 
just at its heart, a computationally beneficial organization of the chain rule. We're just computing 
the derivatives with respect to all the different weights in the network, all in one convenient way, 
that has, this, this lovely interpretation of having information flowing from the inputs to the 
outputs. And then error information flowing back from the outputs towards the inputs, and that 
tells you how to compute all the derivatives. And then, therefore how to make all the weight 
updates to make, the network produce something more like what you wanted it to produce. So 
this is where learning is actually taking place, and it's really neat! You know, this 
backpropagation is referring to the fact that the errors are flowing backwards. Sometimes it is 
even called error backpropagation.
C: Nice, so here's a question for you Michael. What happens if I replace the sigmoid units 
with some other function and, and let's say that function is also differentiable. Well, if it's 
differentiable, then
we can still do this basic kind of trick that says we can compute derivatives, and therefore we 
can move weights around to try to get the network to produce what we want it to produce.
M: Hmm. That's a big win. Does it still act like a preceptron?
C: Well, even this doesn't act exactly like a preceptron, right? So it's really just analogous to a 
preceptron, because we're not really doing the hard thresholding, we don't have guarantees of 
convergence in finite time. In fact, the error function can have many local optima, and what we 
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mean by that is this idea that we're trying to set the weight so that the error is low, but you can 
get to these situations where none of the weights can really change without making the error 
worse. And you'd like to think we're done. We've made the error as low as we can make it, but 
in fact it could actually just be stuck in a local optima, that there's a much better way of setting 
the weights It's just we have to change more than just one weight at a time to get there.
M: Oh so that makes sense, so if we think about the sigmoid and the error function that we 
picked right. The error function was sum of squared errors, so that looks like a parabola in some 
high dimensional space, but once we start combining them with others like this over and over 
again then we have an error space where there may be lots of places that look low but only look 
low if you're standing there but globally would not be the lowest point.
C: Right, exactly right and so you can get these situations in just the one unit version where the 
error function as you said is this nice little parabola and you can move down the gradient and 
when you get down to the bottom you're done. But now when we start throwing these networks 
of units together we can get an error surface that looks just in its cartoon form looks crazy like 
this, that there's, it's smooth but there's these places where it goes down, comes up again and 
goes down maybe further, comes up again and doesn't come down as far and you could easily 
get yourself stuck at a point like this where you're not at the global minimum. Your at some local 
optimum.

Optimizing Weights

M: So one of the things that goes wrong, when you try to actually run gradient descent on a 
complex network with a lot of data is that you can get stuck in these local minima and then you 
start to wonder, boy is there some other way that I can optimize these weights. I'm trying to find 
a set of weights for the neural network that tries to minimize error on the training set. And so, 
gradient descent is one way to do it, and it can get stuck, but there's other kinds of advanced 
optimization methods that become very appropriate here. And in fact, there's a lot of people in 
machine learning who think of optimization and learning as kind of being the same thing. What 
you're really trying to do in any kind of learning problem is solve this high order, very difficult 
optimization problem to figure out what the the learned representation needs to be. So, I need to 
mention in passing some kinds of advanced methods that people have brought to bear, there's 
things like using momentum terms in the gradient, which basically, where the idea in momentum 
is, as we're doing gradient descent. So let's imagine this is our error surface, we don't want to 
get stick on this ball here, we want to kind of pass all the way through it to get to this ball, so 
maybe we need to just continue in the direction we've been going. So, instead of thinking of it as 
a kind of physical analogy. Instead of just going to the bottom of this hill and getting stuck, it can 
kind of bounce out and pop over and come to, what might be a lower, minima, later. There's a 
lot of work in using higher order derivatives to, to better optimize things instead of just thinking 
about the, way that individual weights change the error function to look at combinations of 
weights. Hamiltonions and what not. There's various ideas for randomized optimization, which 
we're going to get to in a sister course, that can be applied to, to, to make things more robust. 
And sometimes it's worth thinking, you know what, we don't really want to just minimize the 
error on the training set, we may actually want to have some kind of penalty for using, using a 
structure that's too complex. I mean this, this ,uh, when did we, when did we see something like 
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this before Charles?
C: When we were doing regression, and we were talking about over fitting.
M: So right. That's right. It came up in regression but something similar will also happen in the 
decision tree section.
C: Sure. We, we had a, we had a issue with decision trees where if we had, we let the tree grow 
too much to explain every little quirk in the data. You'd overfit. We came up with a lot of ways of 
dealing with that, like pruning. Not going too far deeply into the tree. You can either do that by 
filling out the tree and then backing up so you only have a little bit of small error Or by stopping 
once you've reached some sort of threshold as you grow the tree out. That's really the same as 
giving some kind of penalty for complexity.
M: Yes, exactly, right. So complexity in the tree setting has to do with the size of the tree, in 
regression it had to do with the order of the polynomial. What do you suppose it would mean in 
the neural net setting? And, and how would you predict, what negative attributes it might have. 
So, what's, what's a more or less complex network?
C: Well, there's two things you can do with networks, you can add more and more nodes, and 
you can add more and more layers.
M: Good. So, right. So the more nodes that we put into network, the more complicated the 
mapping becomes from input to output, the more local minima we get, the more we have 
the ability to actually model the noise, which brings up exactly the same overfitting issues. It 
turns out there's another one that's actually really interesting in the neural net setting which, I 
think didn't occur to people in the early days but it became clear and clear over time, which is 
that , you can also have a complex network, just because the numbers, the weights, are very 
large. So same number of weights, same number of nodes, same number of layers, but larger 
numbers often leads to more complex networks and the possibility of overfitting. Sometimes we 
want to penalize a network not just by giving it fewer nodes or layers but also by keeping the 
numbers in a reasonable range. Does that make sense?
C: Makes perfect sense.

Restriction Bias

M: So this brings up the issue of what neural nets are more or less appropriate for. What is the 
restriction bias, and the inductive bias of this class of classifiers, and regression algorithms? So 
Charles, can you remind us what restriction bias is?
C: Well, restriction bias Tells you something about the representational power of whatever data 
structure it is that you're using. So in this case the network of neurons. And it tells you the set of 
hypotheses that you're willing to consider.
M: Right, so if there's a great deal of restriction, then there's lots and lots of different kinds of 
models that we're just not even considering. We're, we're restricting our view to just a subset of 
those. So In the case of neural nets, what restrictions are we putting?
C: Well, we started out with a simple perceptron unit, and that we decided was linear. So we 
were only considering planes. Then we move to networks, so that we could do things like XOR, 
and that allowed us to do more. Then we started sticking Sigmoids and other arbitrary functions 
and to nodes so that we could represent more and more, and you mention that if you let weights 
get big and we have lots of layers and lots of nodes they can be really complex. So, it seems 
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to me that we are actually not doing much of a restriction at all. So let me ask you this then 
Michael. What kind of functions can we represent, clearly we can represent boolean functions, 
cause we did that. Can we represent continuous functions? That's a great question to ask, that's 
what we should try to figure that out. So, in the case, as you said, Boolean functions, we can. If 
we give ourselves a complex enough network with enough units, we can basically map all the 
different sub components of any Boolean expression to threshold like units and basically build a 
circuit that can compute whatever Boolean function we want. So that one definitely can happen. 
So what about continuous functions? So what is it? What is a continuous function? A continuous 
function is one where, as the input changes the output changes somewhat smoothly, right? 
There's no jumps in the function like that.
M: Well, there's no discon, there's no discontinuities, that's for sure.
C: Alright, now if we've got a continuous function that we're trying to model with a neural 
network. As long as it's connected, it has no, no discontinuous jumps to any place in the space, 
we can do this with just a single hidden layer. As long as we have enough hidden units, as long 
as there's enough units in that layer. And, essentially one way to think about that is, if we have 
enough hidden units, each hidden unit can worry about one little patch of the function that, that 
it needs to model. And they, the patches get set at the hidden. And at the output layer they get 
stitched together. And if you just have that one layer you can make any function as long as it's 
continuous. If it's Arbitrary. We can still represent that in our neural network. Any mapping from 
inputs to outputs we can represent, even if it's discontinuous, just by adding one more hidden 
layer, so two total hidden layers. And that gives us the ability to not just stitch these patches at 
their seams, but also to have big jumps between the patches. So in fact, neural networks are 
not very restrictive in terms of their bias as long as you have a sufficiently complex network 
structure, right, so maybe multiple hidden layers and multiple units. So that worries me a little 
bit Michael, because it means that we're almost certainly going to overfit, right? We're going 
to have arbitrarily complicated neural networks and we can represent anything we want to. 
Including all of the noise that's represented in our training set. So, how are we going to avoid 
doing that?
M: Excellent question. So, this is exactly what worries me. But, it is the case though, that when 
we train neural networks, we typically give them some bounded number of hidden units and we 
give them some bounded number of layers. And so, it's not like any fixed network can actually 
capture any arbitrary function. So any fixed network can only capture whatever it can capture, 
which is a smaller set. So going to neural nets in general doesn't
have much restriction. but any given network architecture actually does have a bit more 
restriction. So that's one thing, the other is hey, well we can do with overfitting what we've done 
the other times we've had to deal with overfitting. And that's to use ideas like, cross validation. 
And we used cross validation to decide. How many hidden layers to use. We can use it to 
decide how many nodes to put in each layer. And we can also use it to decide when to stop 
training because the weights have gotten too large. So, and this is, it's probably worth pointing 
this out that this is kind of a different, different property from the other classes of supervised 
learning algorithms we've looked at so far. So in a decision tree, you build up the decision tree 
and you may have overfit. In regression, you solve the regression problem, and again that may 
have overfit. What's interesting about neural network training is it's this iterative process that 
you started out running, and as it's running, it's actually errors going down and down. So, in this 
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standard kind of graph, we get the error on the training set dropping as we increase iterations. 
It's doing a better and better job of modeling the training data. But, in classic style, if you look at 
the error in the, in some kind of held-out test set, or maybe in a cross validation set, you see the 
error starting out kind of high and maybe dropping along with this, and at some point it actually 
turns around and goes the other way. So here, even though we're not changing the network 
structure itself, we're just continuing to improve our fit, we actually get this pattern that we've 
seen before, that the cross validation error can turn around and at this low point, you might want 
to just stop training your network there. The more you train it, possibly the worse you'll do. It's 
reflecting this idea that the complexity of the network is not just in the nodes and the layers, 
but also in the magnitude of the weights. Typically what happens in this turnaround point is 
that some weights are actually getting larger and larger and larger. So, just wanted to highlight 
that difference between neural net function approximation of what we see in some of the other 
algorithms

Preference Bias

M: Alright, you know the issue that we want to make sure
that we think about each time we introduce a new kind
of supervised learning representation is to ask what its preference bias
is. So Charles, can you remind us what preference bias is?
C: Mike researcher bias tells you what it is you are able to represent. Preference bias tells 
you something about the algorithm that you are using to learn. That tells you, given two 
representations, why I would prefer one over the other. So, perhaps you think back what 
we talked about with decision trees, we preferred trees where nodes near the top had high 
information gain We preferred correct trees. We preferred trees that were shorter to ones 
that were longer unnecessarily and so on and so forth. So that actually brings up a point here 
which is, we haven't actually chosen an algorithm. We talked about how derivatives work, how 
backpropagation works, but you missed telling me one very important thing, which is how do we 
start? You tell me how to update the weights but, how do I start out with the weights? Do they all 
start at zero? Do they all start out at one? How do you usually set the weights in the beginning? 
M: Yes indeed. We did not talk about that, that's, it's really important. You can't run this 
algorithm without initializing the weights to something. Right? We did talk about how you update 
the weights but they don't just you know, just start undefined and you, you can't just update 
something that's undefined. So we have to set the initial weights to something. So pretty typical 
thing for people to do, is small, random, values. So why do you suppose we want random 
values?
C: Because we have no particular reason to pick one set of values over another. So you start 
somewhere in the space. Probably helps us to avoid local minimum.
M: Yea kind of. I mean there's also the issue if we run the algorithm multiple times if we get 
stuck, we like it not to get stuck exactly there again, if you run it again. So it gives some 
variability, which is a helpful thing in avoiding local minimal. And what do you suppose, it's 
important to start with small values.
C: Well you just said. In our discussion before that if the weights get really big that can 
sometimes lead to overfitting, because it let's you represent arbitrarily complex functions.
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M: Good. And so, and what is that tell us about what the preference bias is then?
C: Well if we start out with small random values. That means we are starting out with low 
complexity. So that means we prefer Simpler explanations to more complex explanations. And 
of course the usual stuff like we prefer correct answers to incorrect answers, and so on and so 
forth.
M: So, you'd say that neural networks implement a kind of bias that says prefer correct over 
incorrect but all things being equal, the simpler explanation, is preferred.
C: Well, if you have the right algorithm. If the algorithm starts with small, random values and 
tries to stop, you know, when you start over-fitting Then you, cause you're going to start out with 
the simpler explanations first before you allow your weights to grow. so you, about that.
M: So this reminiscent of the principal that is known as Occan's razor which is often stated 
as entities should not be multiplied unnecessarily. And given that we're working with neural 
networks, there's a lot of unnecessary multiplication that happens. [LAUGH] But, in fact, this 
actually is referring to exactly what we've been talking about. So this unnecessarily is, one 
interpretation of this is that, "Well, when is it necessary?" It's necessary if you're getting better
explanatory power, you're fitting your data better. So unnecessarily would mean, well we're 
not doing any better at fitting the data. If we're not doing any better at fitting the data, then 
we should not multiply entities. And multiply here means make more complex. So don't make 
something more complex unless you're getting better error, or if two things have similar error 
Choose the simpler one, use the one that's less complex. That has been shown to, if you 
mathematize this and you use it in the context of supervised learning, that we're going to get 
better generalization error with simpler hypotheses.
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