
Machine Learning

Lesson 07 Notes

Quiz: Computational Learning Theory

M: Hey, Charles.
C: Oh, hi Michael.
M: It's funny running into to you here.
C: It is. It's always funny running in to you over the interwebs.
M: So, today, I have the pleasure of telling you about computational learning theory.
C: Hmm, it's my favorite kind of theory.
M: [LAUGH] Well, sure. Now how do you like theory in general?
C: I am happy that there are peolpe that do theory.
M: There we go. Alright. And now you are about to be one of those people, at least for the next
you know, hour.

C: No, no. I am
not doing theory.
You're doing
theory. I'm
listening to you do
theory.
M: No. I am
coaching you
through it. Don't
you understand?
It's about, it's
about the learning
process. Learning
about learning.
C: Fine.

M: So let's start out with a quiz. No wait. So let me let me at least set the stage as to why,
what you know, what it is that we're talking about today and how it's different from what we've
talked about, in the previous days. So mostly what we've been talking about up to this point, is,
algorithms for doing learning. Alright we talked about what, what learning, the machine learning
field was like. And we talked about a number of specific algorithms for building classifiers, and
building regression. And there's a problem with that. Specifically, I have this, this feeling that it's
very, very necessary to always make sure you know what problem you're solving, before you
start proposing algorithms for solving it. And we haven't really nailed down what exactly that
problem is.
C: Hm.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: And that makes things hard. It makes it hard to know, for example, whether or not one
algorithm's better than another.
C: One algorithm's better than another, if it works better.
M: If it works better? Yeah, well, you know, that's not wrong. But I think it still is not a very
helpful definition for designing better algorithms.
C: Okay.
M: So so what we're going to talk about this computational learning theory. And I want to say
that it's not about particular algorithms, it's about some other stuff. But I thought it would be
helpful if we started out by saying. well, what is it that we talked about so far? So one of the
things we talked about so far is algorithms for doing for learning classifiers. So, I wanted to draw
a picture of that, and then I realized maybe that would be actually a useful quiz. So, if you can
imagine that each of these three boxes is the output of a classifier in a two dimensional space.
So it's a two dimensional input space. We've ran a leaner, and when it spits out a classifier, this
is how it classifies the the regions of the space. So I, I use blue lines to separate the square into
regions. The two dimensional space into regions, and then I labeled each region with a minus
or a plus, so you can tell what the classifier was actually doing. Okay. So I'm wondering if you
could fill in underneath each one, what learning algorithm was probably used to, to find this
classifier?
C: Uh. Maybe?
M: You want to give it a shot? It's not, it's not that important to this lecture, but I thought it might
be helpful in just kind of setting the stage.
C: Okay. I'll give it a try.

Answer

M: All right, Charles welcome back, so let's let's see what you've come up with.
C: Okay, so I would choose for the second one support vector machines, and the reason why is
because there seems to be a single line that seems to be in the middle between where the plus
and minus are, so it looks like it's trying to maximize the margin.
M: Yeah, though, those aren't training points. I'm just labeling the regions.
C: Oh never mind. Well then I totally misunderstood. What you’re [LAUGH] to do. I stand by it.
M: Yeah, I think it, I think that's a perfectly fine answer because the sup, support basic vector
machine is going to find a linear separator. And so the output, the classifier that comes out of
it is going to separate any kind of region into pluses and minuses, with some lines separating
them out. That's also true of perceptrons, it's also true of certain kinds of you know, simple
neural nets. So all of those seem like they would be reasonable answers for the middle one.
C: Oh okay well, then given that, I'm going to say the third one is a nearest neighbors method.
M: good. And like what nearest neighbor do you think?
C: K nearest neighbor? [LAUGH]
M: Sure, I was thinking one nearest neighbor.
C: Yeah I was too actually, believe it or not.
M: One nearest neighbor. So we, I don't think we got a chance to draw one of these diagrams
when we were talking about nearest neighbors. But this is called a,

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: Voronoi diagram?
M: Voronoi diagram! Right! Because what, what's happening is, it's breaking up the plane into
the regions that are closest to some particular points.
C: Right.
M: So you give it a set of points, it breaks up the plane into the things closest to that. And in
this particular case our We had, we probably had three points. And one was labeled plus, and
another was labeled plus. One was labeled minus, and so it break the space up into these
sections that way. So this, this should. Voronoi diagrams can be very aesthetically pleasing I
don't think I drew this one particularly well.
C: I think it's perfect. My eyes are closed. I think it's perfect. Given that, that I'm going to say the
first one is decision trees.
M: Ah, very good. Because decision trees split things you know, if you're talking about in, in
a, in a two dimensional space it's going to split at the top node in one dimension. And here it
looks like that's this split. Then maybe, looks like on the left side that's a minus. On the right side
there's another split. On the left side of that it's a plus. On the right side there's another split into
pluses and minuses. You get these sort of interesting nested rectangles. They also can be very
pretty.
C: Right.
M: Very Mondrianish. Yeah, very good. So this is not what we're going to talk about today.
C: Okay, good.

Learning Theory

M: All right, so that quiz maybe was ill-placed, in that it was about what this is not about. What
this is about is computational learning theory. And computational learning theory really gets us
a formal way of addressing three really important questions. One is, what's a learning problem?
Let's, let's define very carefully what it is that we want a learning algorithm to do. If we can do
that, we can actually show that specific algorithms either work or don't work, with regard to the
definition of the problem. And maybe we can even come up with algorithms that solve those
problems better. So that's kind of on the upper-bound side. And then on the lower-bound side
we can also show, for example, in some cases that some problems are just fundamentally
hard. So you, you define a particular learning problem and you discover. Wait, the algorithms
that I'm thinking of don't seem to work. You might actually be able to show that no algorithms,
say, no algorithms in some particular class are ever going to be able to solve them because,
that problem is not solvable by problems in that class. So those problems are fundamentally
hard. So, answering these kinds of questions require that you be fairly careful about defining
things and using mathematical reasoning to, to determine what's going on. So we're going to
focus mostly on that, talk about some algorithms that are not necessarily practical. You wouldn't
necessarily want to use them, but they do help illuminate what the fundamental learning
questions are and, and why certain algorithms are effective and ineffective.
C: Okay, so Michael, so can I ask you a question then?
M: Sure, please.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: So, it sounds to me like you've just justified this in the same way that a computing
theoretician might try to justify theory. Are they related?
M: Right. That's a very good observation. In fact, the, the kinds of analyses and tools that are
used for analyzing learning questions are also the same kinds of tools and mechanisms that are
used in the context of a-, analyzing algorithms in computing. So yeah, that's exactly right.
C: Okay, great.
M: In fact, let's let's, let's leverage that analogy. And we'll do it in the context of a quiz.

Quiz: Resources in Machine Learning

M: So often in the theory of computation, we analyze algorithms in terms of their use of
resources. And it's usually time and space. So like, when we talk about an algorithm running in
say n log n time, we're saying something about this, the time that it takes. So if you say that it
uses n-squared space, we're talking about the, the amount of memory that it takes up as the
function of the
growth of the
inputs. So what sort
of resources do you
suppose might
matter in the
context of
computational
learning theory? So
we're just, we're
trying to select
among algorithms.
We want algorithms that use their resources well. What source of resources would we analyze?
If there's multiple possible answers, just fill in one of them. We'll just see if it's any of the ones
on our list.

Answer

M: All right. So Charles, what do you think would some reasonable resources to try to manage
in a learning algorithm?
C: Okay, well I was thinking of three. Because three is my favorite number. Two of them are
what you already have written up there. Time and space. After all, at the end of the day, it's still
an algorithm. We need to be able to analyze algorithms in terms of time and space.
M: That's right, so if in particular we have a learning algorithm and they, they do more or less
the same things, but one runs in n-squared time and the other runs in exponential time, we'd
really like to have the one that runs in the shorter amount of time. Or, in particular, if there's
a, if we define a learning problem and we say well, We could do this computation, but its MP
hard. Then maybe that's a problematic way of defining the problem. So yeah, time definitely
matters. Space for the same reason. And those are the same things that happen in in, or that
are relevant in regular algorithms. What about anything specific to the machine learning setting?

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: Okay, so that was my third one. So The only thing that matters in machine learning or the
most important thing in machine learning is data. So I would think that another resource that we
care about is the data and in particular the set of training samples that we have.
M: Yes I like the, I like the word samples. Though data is probably pretty good. Thing to stick in
there as well or examples. Those should all be okay.
C: Yes. Indeed. Yeah. We, we want to know, can we learn well with a small amount of samples.
In particular if, our learning algorithm works great in terms of time and space, but in order to
run it you actually have to give Examples of every possible input, then that's not going to be
a very useful algorithm. So, the fewer samples that it can use, the more that it's generalizing
effectively, and the better it is at learning.
M: Oh, that makes sense.

Defining Inductive Learning

M: All right. So we should take a moment to define inductive learning. So inductive learning is
learning from examples. It's the kind of learning problem that we've been looking at the whole
time, But we haven't been very precise about all the various quantities that we want to be able
to talk about. So the number of properties that we actually need to be thinking about when we
go and define what an inductive learning problem is, and measure what an inductive
learning algorithm does. So one of them is just a simple thing like, what's the probability that
the training is actually is going work. You know, whatever it is that it's trying to produce, it may
be that in some cases, because the data is really noisy or just you know, got a, got a bad set
of data, it might not actually work. So, we generally talk about a quantity like 1 minus delta as
the probability of success. Delta here obviously is a probability of failure and this is just 1 minus
that. There's also issues like the number of examples to train on. How many, how much data
does the does the algorithm get to see? Is there a letter you like for that, Charles?
C: no.
M: Okay.
C: Is there a letter you like?
M: I don't know, sometimes I like M for number of samples. But I thought maybe you went, you
would want N because, you know, things tend to grow with N.
C: Yeah. I did want N, but then I thought well, we can't use N because we use N for everything
else.
M: [LAUGH] Fair enough. There's also something that we really haven't talked about yet, but
you could imagine that the complexity of the hypothesis class might matter. Why, why do you
think that could come into play, Charles?
C: Well, if you don't have a very complex hypothesis class, then there's some things, well, do
you mean the complexity of the class or the complexity of the hypotheses in the class?
M: That's a good question. Do we mean the complexity of the class or the complexity of the
hypotheses in the class? Well it depends on how we measure complexity. But the complexity of
the class could be like the sum of the complexities of all the hypotheses in the class, so it could
be both.
C: Hm. Well if, if you mean, you know, a hypothesis class is complex if it has very complex
hypotheses, then you can say, well, if you have a hypothesis class that can't represent much,

Copyright © 2014 Udacity, Inc. All Rights Reserved.

then it will be hard for you to, well, represent much. It will be hard for you to learn anything
complicated. So that could matter.
M: Sure. That's right. Now, could you see a downside to having a complexity class, I'm sorry, a
hypothesis class that is very, very complex?
C: You mean like my daughter? sure. I think you could, it would be much easier to overfit.
M: Right. So getting something that actually works well might be challenging. You might need a
lot more data to kind of nail down what your're, what you're really talking about. So it's a bit of a
double edged sword. All right. So then, there, another issue is, well, you know, it may be easy
to learn if you don't have to learn very well. [LAUGH] So the, the accuracy to which the target
concept is approximated, often written as epsilon, is another thing that's going to be important
in understanding the complexity of a learning algorithm. And and so those, those are kind of
the main complexity related quantities that I, that I wanted to talk about. But there's also some
choices as to how the learning problem is actually framed. There's the manner in which training
examples are presented. And there's the manner in which training examples are selected for
presentation. And we're going to talk about both of these. Let me just first say that when I talk
about the manner in which training examples are presented, there's, there's two that I think are
really, really important to look at. One is batch and that's mostly what we've looked at so far,
that there's a training set that's fixed and handed over to the algorithm in a big bolus, right. A big
group.
C: A big batch.
M: A big batch, exactly. Or it could also be presented on line, so one at a time. So we say to the
training algorithm, or the learning algorithm, here's an example. And then it has to predict what
the label is. And then the algorithm can say, oh here's what the right label is. Let's try again.
Here's another example. And it can go back and forth like that.
C: Mm-hm.
M: We haven't really talked about algorithms that work that way, but it is useful in the context
of computational learning theory to have both kinds of algorithms. They have different sorts of
behavior. All right. So let's talk about the manner in which training examples are selected.

Selecting Training Examples

M: All right, so turns out it, it matters how we select training examples when when a learner
is needing to learn. So let's at least articulate some various ways that training examples could
be selected. And then for each one we might end up with a different answer as to how much
training data is going to be needed, if the training examples are selected in that particular way.
So, so what do you think, Charles? Are there, there any ways you can think of for selecting
training examples?
C: Well, so, I, I, I so here's how I think about it. So, you keep using the word learner, and when
there's a learner there's often a teacher. So, I'm trying to think about this in the different ways
that learners and teachers can interact. So, I'm going to try to think about my, my experience as
a professor. So, there are a couple. Here's one, one is: sometimes the learner asks questions of
the teacher.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: I see, so in this case, the learner would be selecting the training examples. The learner
would say, I, you know, here's, here's an input x, would you please tell me c of x?
C: Right, that's exactly what I mean, right, right. Then there's another case. So the learner asks
questions of the teacher. But sometimes the teacher just goes ahead and gives x, c(x) pairs.
M: And let's say it's, it actually is trying to help the learner.
C: Sure.
M: So it's a, friendly teacher.
C: Okay, I've had some of those.
M: Good, all right so, the, it could be the, the learner asking to try to get data. It could be the
teacher asking to try to lead the learner to something good. And, anything else?
C: Well, so, I like this, this way of thinking about it. Because it sort of makes sense in my world
as a professor, but it doesn't actually sound like either of things is what we've been looking at so
far. What I think we've been looking at so far is that somehow the Xs and the CXs, the training
examples, just come out of nowhere. They come from some underlying distribution. It's just
nature. It's just coming at us from some process that we don't know what that process is.
M: Yeah, I like that. So in some sense there's three individuals that could be asking for
examples. There's the teacher, there's the learner, and there's, like, the world around them.
And, and, the things could come from any of those. I guess another possibility would be
that questions are asked specifically in an evil way. Alright, so all of these different kinds of
distributions or, or ways of selecting training examples are actually going to come into play
in the stuff that we're talking about. Let's let's use the first couple to get a sense of why these
things might be different from each other. So let's go back to this notion of 20 questions.
C: Okay.

Quiz: Teaching Via 20 Questions

 M: Right, so let's go back to, to 20 questions that we talked about a number of lectures ago.
And we're going to consider the following analogy. That
in, in some sense, what is a, what is a
learner? What is an inductive learner trying to do? It's
trying to find the best hypothesis in some class H. And
the hypotheses all map input to yes or no. Let's say that
what we're trying to do
in twenty questions is, deal with our hypothesis class H,
which is maybe a set of possible people. And so, these
are the possible answers to the 20 questions problem.
And, X is the
set of questions that you can actually ask. So X, they're
kind of like training examples. That's how the learner is
getting information about what the right answer is. But no question, in and
of itself, might actually be sufficiently revealing of what the hypothesis is. All right does that,
does that analogy make sense to you, Charles?

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: Makes perfect sense to me.
M: All right, good. So, now lets think about two different cases. One where the teacher is going
to try to select which questions to ask. So the teacher's going to say to the student, here's the
question you should ask me next. To try to figure out which person it is, as quickly as possible.
And then we'll, next we'll look at what happens if the learner's the one asking those questions.
So in some sense, it doesn't seem like it should make a difference, because, you know, in either
case, the learner is going to ask the question and the teacher is going to answer truthfully. Just
in
one case, the learner has to come up with the questions, and in the other case the teacher has
to come up with the questions. So why, why are these different from each other? What does the
teacher have that the learner doesn't have?
C: Well, the teacher actually knows the answer.
M: Indeed. Alright, so let's let's just do a quick quiz and say, how many questions are necessary
for a smart learner to figure out the right person, assuming that the teacher is the one who gets
to feed the learner good questions?
C: Okay.
M: Go.

Answer

M: Alright we're back. So let's, let's, let's think this through, so the teacher gets to suggests to
the student any, any question. The teacher knows the answer, and the teacher would like the
learner to get the answer as quickly as possible. Not requiring the full 20 questions if, if possible.
So what do you think, what do you think the teacher could do as a good strategy here?
C: For 20 questions?
M: Yeah.
C: So, if, if we think of the set of possible people as being these sort of hypotheses. And you
know which of the hypothesis is correct and which is wrong, then presuming the teacher can
keep all this in her head, I guess the right thing to do would be to always pick an X, such that it
gets rid of as many of the hypotheses as possible. But what, what, do I mean by that? I mean, it
gives the most information.
M: Well, but there's a, there's a very strong kind of information that you could get in this
particular case. So, so, so let's imagine that this set of questions is, is this sort of, you can ask
any question in the universe.
C: So, I give you some question, I oof.
M: Let's, let's try this because remember we did this before, you thought of a person, and you
had me ask questions. So I want you to think of a person.
C: Okay.
M: Alright, and I want you to tell me what question I should ask, that's going to figure out who
the person is as quickly as possible.
C: Okay. Is this person as good in his field as his namesake is in his field?
M:Is it Michael Jordan?
C: Yes.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: Is it the Michael Jordan who's a professor at Berkley?
C: Yes.
M: Okay.
C: You could have asked if I say, is it Michael I Jordan?
M: Yeah, I don't think I knew the initials of the two Michael Jordans.
C: For people who don't know Michael I Jordan is a professor at Berkley and one of the giants in
machine learning. And he is literally the Michael Jordan of machinery.
C: Alright, but, but, but you could've done this in one question, right? If you had to ask me, if the
first question was, is the person, and then the actual person. You knew that the answer to that
would be yes. And so I would've gotten it in one step.
C: Hmm, that's true.
M: So, given a, you know a, a sufficiently, helpful teacher. You can, you can do this in one.
C: Well, that make sense, right? So basically, if my questions include, is this the correct
hypothesis, then you should always just ask that question.
M: Right.
C: But that seems, that seems like cheating.
M: [LAUGH] Yeah, I would, I. You're right and all I was really trying to do is show that, it's a
very different problem, when the, the question has to come from the learner's side. That kind of
question from the learner's side would be pure folly. Because it would, it, it, the learner would
not know what person to pick. If the person started, if the learner started to ask questions like,
is the person Michael I Jordan? The answer's very likely to be no. In which case that's not
very helpful. Now, a really helpful teacher could potentially change the target. But that's, that's
definitely cheating.
C: Mmm. OK, fair enough.

Quiz: The Learner

M: All right. So the learner, if the learner is choosing which
questions to ask the learner is in a distinctly more difficult
situation because it doesn't actually know what the right answer
is. So whereas the teacher could ask questions that were
maximally informative. That is to say, whittle down the
hypothesis set to one in a single question. The learner doesn't,
doesn't have that ability. The learner can't know which, what
whether the question that's being asked is going to have a yes
or no answer. So again, assuming that the learner can ask any
question it wants, but doesn't know what the right answer is.
How many questions is it going to need to ask before it can it
has whittled down the set of possible people to just the one that is the right answer? So I gave
four helpful formulae here. All in terms of the number of people that we have to choose from. Is,
do we have to ask questions that is the size of the set of people? Is it going to be more like the
log of size of the set of people? Since there's, you know, lots of difference ways that the person

Copyright © 2014 Udacity, Inc. All Rights Reserved.

can be chosen. Do we have to look at two to the number of people? Or again can the learner be
as powerful as the teacher, and get the whole thing in just a single question? Alright, so, is, is, is
this a little clearer Charles? Can you, can you work this one through?
C: Yeah. I think I can work this one through.

Answer

C: Well so, there's a couple a ways to think about it, but let me just kind of go top down. So,
here's what I'm thinking. I think the same principle applies, where you sort of want to ask the
question that gives you the maximum amount of information. And from the teacher's point of
view, I might be able to pick a question that gives you the answer right away, depending upon
what h is and what x is. But from the learner's point of view, I sort of can't. So what does the
learner know?
M: So, when we ask a question, x, it's going to either have a yes answer. Or a no answer. And
let's say that at any given point in time, we have n possible people that we're trying to reason
about. And then after we choose x, after we choose the question, if the answer is yes then we're
going to have, I don't know, some other number of people. Let's say l. And if the answer is no
then it's going to be n minus l, right? And so you said that in the case of the teacher,
pick a question so that this yes is going to whittle it down so that this is just going to be the one
right answer.
C: That's exactly right. That, that's assuming that x is set up in such a way that you could ask
that kind of question.
M: Basically a question could be of the form, is it this or this or this or this or this? Any pattern of
answers that we want, we can construct the corresponding question.
C: Okay, that makes sense to me and I don't think it changes, my thought process, so, so, that's
good. So I always want to ask the question that's going to give me maximum information. I'm
the learner. I don't know, everything like the teacher does, but what I do know are all of my
hypotheses. Alright. So I know how each hypothesis responds to each of the questions. So, in
general, it seems to me that I should try to eliminate as many hypotheses as I can, okay? That
makes sense?
M: Yeah, I'll write that down. I like that.
C: Now, you could say, that's what the teacher did. But, let's take what the teacher did, the
teacher knew that there was a hypothesis where it would whittle it down that, since the answer
was yes, it would whittle it down to one. But if the answer had been no, it would have only
gotten rid of one. So since the teacher knew the answer the teacher could pick that question.
But as a learner, I don't know the answer, so finding questions that whittle it down to one if the
answer is yes aren't very helpful because the answer might be no.
M: Alright so how many. Let's see so under the assumption the target hypothesis was chosen
from H say, uniformly at random.
C: Right.
M: What's the expected number of hypotheses we can eliminate with a question that has this
form?
C: Well, it's binary. So if you assume that the hypothesis covers every, the hypothesis space

Copyright © 2014 Udacity, Inc. All Rights Reserved.

covers everything. Then the best you can do is eliminate about half of them, on average.
M: Well, so, but in particular, if you have a question like this, x. That, you now, you ask it when
there's n possible people. And then, after you ask it if the answer is yes, you're at l possible
people. And otherwise, you're at n minus l. Which branch are we going to go down?
C: Well, we don't know. It could be either one.
M: ha. But do, can we put a probability on it?
C: Yes if it covers everything. It's about a half and a half. You said it was uniform, right?
Uniformly chosen?
M: The, the right answer, the, the target person is uniformly chosen. But this question isn't, isn't
necessarily of that form, right? This, this question could be very skewed, it might only have one
thing on the left. And n minus 1 on the right like you said.
C: Right, well then I, that's not a very good question to ask.
M: No, that's right. But I wanted, I want to be able to distinguish good from bad questions
by saying we want questions that, that, that are going to leave us with the smallest expected
size set.
C: Oh, well then since all possibilities are there, the smallest the, the best you can hope for is
about a half.
M: Yeah, and in particular, eh, with this, this particular question's going to do, is it's going to
have a probability of n over l of going down the left branch and getting an l. And it's going to
have a probability of n minus l over n of going down the right branch and getting n minus l. And
so that could be one way of actually scoring this, this quesiton The question that has the best
score, as you pointed out, is going to be one where l is about the same as n minus l, in fact, half
would be a really good choice.
C: Right, I thought that's what I said.
M: Yeah.
C: Oh, okay, good.
M: But, but I just wanted to write down the formula.
C: Okay, that makes sense, that makes sense. Okay, no, it's always good to write down the
formula. Okay, so you want to pick questions that roughly split things in half. And if you can do
that every single time, then every single time, you will split the set in half. So you'll start out with
n, then n over 2, then n over 4, then n over 8, then n over, and eventually you'll get to n over n
which will give 1. So you'll only have one, possible answer. And so that'll take you a logarithm
amount of time.
M: Right, so the number of times you can divide a number in half before you get down to one is
exactly the log base two. So if we start with size of h hypotheses, it will take us like log
base two to whittle it down to a single question. This is a lot larger. I mean this is a nice small
number, but it's a lot larger than one, right? You know, one, one is really great. This is you
know, exponentially, no, this is much, much worse than one. But but it's still really good. You
can, you know, it's not considering all the hypothesis. It's very cleverly whittling it down so that it
only has to look at the log of that.
C: Right.

Teacher With Constrained Queries

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: All right. Now, you might get a misleading impression from what I just presented there,
because I did this sort of odd trick that's not really very kosher. Specifically,
when I gave the example of a teacher asking questions to to lead the learner to a particular
hypothesis, I allowed the teacher to ask any possible question in the
universe of possible questions. Right, so the teacher could construct a question, and in this
particular case, that, that specifically had a yes answer for the target hypothesis. And a no
answer everywhere else. And that just simply doesn't happen in any realistic learning questions.
So we need to think a little bit more about the question of what happens when the teacher is
constrained with respect to the kinds of queries that it can suggest. So I'm going to, I'm going
to set up classic computational learning theory hypothesis class, and we'll go through some
examples about what happens when the teacher's constrained in this way. So let's imagine that
our input space is basically k-bit inputs, so x1 through xk, and the hypothesis class and literals
or their negation. So here's a, here's a concrete example. Here's a hypothesis that is in this set.

X1 and x3 and not x5. We're going to connect together
some of these variables, not necessarily all of them. And
some of them can be negated. And, it's all the connectors
have to be ands. All right, so Charles, let's make sure that
that you understand this. So let's let's look at, some inputs.
Alright. So let's say our input is this. X1 is 0. x2 is 1. x3 is
0. x4 is 1. x5 is 1. What is this formula going to evaluate in
this case?
C: Okay so, a 0 is false and 1 is true I assume, because,
that's what we do in these things. X2 and x4 don't matter. I
just have to look at x1, x3, and x5. So, x1 had better be

true, and it isn't, so I already know the answer.
M: It's false. Very good. All right, let's let's try a couple more of these.
C: Okay. So, I would do the same thing I did before. I would look at x1, x3, and x5. So in this
case, x1, cleverly, I've noticed is 1 so, that doesn't give me the answer right away because
you're an evil teacher. x3 is also 1 but x5 is 1, and according to the hypothesis it has to be 0 for
this to be true, so 0. I can do the same kind of thing for the third line, so x1 is true like it needs
to be, but x3 is false instead of being true so also 0. And then in the bottom, let's see. X1 is true,
which it needs to be. X3 is true, which it needs to be, and X5 is false, which it needs to be, so
the output is 1.
M: Very good.
C: All right. I got it.

Quiz: Reconstructing Hypothesis

M: All right, so here, here is, here's a table of examples with the input pattern and the actual
output pattern of the hypothesis we're looking for. But I'm not going to tell you the
hypothesis, you have to figure it out. So the way you're going to do that is, by figuring out for
each variable, does it appear in the conjunction in its positive form, in its negative form

Copyright © 2014 Udacity, Inc. All Rights Reserved.

or it's not there at all? For example if you want to say the hypothesis is X1 and not X5, you
would write something like X1 and not X5, and the other ones are all absent. And just to be
clear Charles, I, I've picked this particular set of examples so that, you particularly, Charles
Isbell PhD, would have the best chance of figuring out the hypothesis with the smallest number
of examples.
C: I appreciate that.
M: Go.

Answers

M: So, what, how do you start with this now, Charles?
C: Okay, so the first thing I'm going to do is, I'm going to look at the first two examples. And the
reason I'm doing that is because I know they both generate true. And so I'm going to look for
variables that are inconsistent. So if I look at X1, for example, it's a one in the first case, and a
zero in the second case. So it can't be the case that it's required in order for this to be true.
And the same would be true for x3. So I'm going to say that neither x1 nor x3 matter. By
contrast, x2, x4, and x5 all have the same values in both of those cases.
M: So we don't know much about them quite yet.
C: No
M: But let's so let's, that seems very well reasoned. So we know that x1 can't be part of this
formula and x3 can't be a part of this formula. So, let's just sort of imagine
that they're not there cause they don't really give us any information any more.
C: Beautiful.
M: Alright, So what's left?
C: So what's left is now to make certain that x2, x4 and x5 are necessary, and particularly
necessary with the, the values that they have. So I guess all I can really do is see if there's
anything else to eliminate. If I were just looking at the first two, I would think that the answer was
not X2, X4, not X5.
M: Alright. so, hang on, not X2, X4, not X5.
C: Right. So, that's what I currently think it is based upon what I just saw.
M: And that would be, that's consistent with the first two examples.
C: Right. And so, now I want to make certain is consistent with the next three examples. This is
the easiest way for me to think about this, anyway. So, let's see. Not X2, X4, so that should be
false, which it is. They're all false, so let's see not X2. But x4, up, that should be false, which it
is. And then I do that same thing. But wait, why isn't that the answer? That can't be the answer.
M: It is the answer, you got it.
C: Huh I got it right.
M: So the thing to notice is that in, in these first two examples we have X2 is false X4 is true and
X5 is false and that's enough to make the conjunction true but making- flipping any one of those
bits is enough to make it false so what I showed in the in the remaining examples is that just by
turning this X2 into an X1 leaving everything else the same we lose it. Similarly if we flip the X4
to zero and leave everything else the same, we lose it. Similarly if we flip x5 to one, and leave
everything else the same, we lose it. So that means that each of these is necessary to make the
conjunction. They're all actually in there.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: That's just what I was thinking. So, in other words, you gave me some positive examples to
eliminate things that were necessary, and then you gave me negative examples to validate that
each of the variables that I saw so far were necessary because getting rid of any one of them,
gave me the wrong answer.
M: Exactly. Let's, let's even write down those two steps. So the first thing was show what's
irrelevant. And how many questions How many queries might we have needed to show that?
C: Well, one per variable.
M: Well actually we only need two because what I did is I, I used, all the relevant ones I kept the
same and all the irrelevant ones I flipped from one to the other. I just have to show you that it's
still, the output is still one even though they have two different values.
C: Oh, no, no. When I said all of them, you know, k of them was because I didn't know that,
what if all of them were irrelevant
M: Then it would still be two. because then I could just show you the all zeroes, and the all ones.
C: You're right. You're right. You just need, oh that's right. That's exactly right.
M: Alright. And then I have to show you that the, that each, the remaining variables is relevant
by flipping it and showing you that the answer is zero. And how many questions did I need to do
for that?
C: Three.
M: Yeah, three in this case cause there were three variables that were used in the formula.
What's the most it could be?
C: Well k, cause all of them could be relevant.
M: Yeah, so it's you know, it's kind of interesting that, that in fact the total number of hypothesis
here is three to the K. Because you know, you can see it right off this table that for each of
the variables, it's either positive, absent or negated. But the number of questions that a smart
teacher had to ask was more like, K plus two.
C: Huh.
M: Which is pretty powerful.
C: Right, so. The smart teacher can help me do this in linear term. So what if I were, I, I didn't
have the teacher who could give me these examples and I always had to ask?
M: That's a good question, let's let's do that.

Learner With Constrained Queries

M: Alright, so, you asked unfortunately what happens when the, the learner is now a part of this.
Now the learner doesn't have that advantage that the teacher had of knowing what the actual
answer was and therefore being able to show specifically what's irrelevant and show what's
relevant. So, what could the learner do to try to learn about this? So again, remember
that there are 3 to the k possible hypotheses, and if it could use the 20 questions trick, it could
do this in log base 2 of 3 to the k, which is the same as K times log base 2 of 3.
Which is you know, worse than what we had. It's this is, this is larger than in K. So, but can we
actually do that?
C: I'm going to say yes.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: I don't think we can, so can you help me figure out how that would go?
C: Oh, I was just going to assert it, then hope you would tell me. so, how would we do that?
Well, we, we, the trick we did before is, we, we tried to find a specific question we could ask,
such that we would eliminate half the hypotheses.
M: Indeed. But it's not clear how you could even ask such a question. Yeah, so, so just to do
this as a thought exercise, I have a hypothesis in mind.
C: Okay.
M: And you can ask me anything you want, and I will tell you true or false. But you're going to
have a very painful time finding it.
C: Yeah, but that's just because I'm human. Okay, so I need to find a question where, of all the
hypoth, so I have all the possible 3 to the K hypotheses. I want to try to come up with something
that's going to eliminate a third of them which is just going to be hard for me to do because I
could write the program to do this.
M: I'm not sure you could. I think, at the moment, there's well, because I didn't choose my
hypothesis at random. I chose a specific hypothesis. Though I guess I could have chosen at
random from a subset, and you would have still had a hard time finding it. But let's, just as an
exercise. Throw out, give me a, give me a x1 to x5, and I'll tell you what the output is.
C: Okay, 00001. Or actually, you know what? All zeros.
M: Okay, all zeroes, the output is zero.
C: Oh, that's what I should, that's not what I should have done. I should have. No, no.
M: That's okay, I won't count that one.
C: [LAUGH] Can I just give you like, maybe 3 to the k of them and you'll not count any of them
until I get it right?
M: Well, that's the problem, right? Well, not 3 to the k, but if you, if you, you know, make 2 to
the k guesses, do, you'll be okay. But you'll also have looked at all possible inputs. So that's not
really that interesting. But in particular, the example that I'm thinking of, you're going to have to
guess almost this many just to get a positive example. So almost everything that you throw in is
giving almost no information. Because saying no doesn't really tell you very much.
C: Yeah that's what I was thinking. Well, what I was thinking was I need to find one where the
answer is yes.
M: Exactly, and I made it so that it's going to take you exponential time just to find one. Once
you've found that one, then you're, then you're home free but it's going to take you, you know,
you essentially have to enumerate all possibilities before you find one.
C: Okay, 0 0 0 0 1, okay? 0 0 0
M: There's only one pattern that gives a one.
C: Right. Exactly. And you're going to, because every single one of them is relevant. And I'm
going to have to look.
M: Two of them are negated. This is the only pattern that gives you a one. Now once you
have found that and you know that that's the only one, now it's easy. You can just read off the
equation. So, what's the equation?
C: XN not two and X3 and X4 and not X5.
M: And that is the, that's the equation and you are not, you're not, there's no as a learner you
are not going to be able to find that, right? Because it's just a needle in a haystack until you hit
it.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: Yeah, so it's, it's going to take me exponential time, but it, but remember we're not worried
about time. We're worried about sample complexity. So remember the cheat that we have here.
The cheat that we have here is that I know all the hypotheses and what they say.
M: It doesn't help you.
C: Yeah it does, because the hypothesis, cause every hypoth, well no, that's not true. I'm
thinking the wrong thing. I'm sorry. I'm cheating, you're right. I'm cheating. I'm, I'm acting as if
we have the example you had before.
M: So this constrained-ness is really, it's very frustrating, right? Because the question that you
really want to be able to ask, you can't really ask, right? You want to be
able to ask a question that, that takes the hypothesis class and split it in half and. Well maybe
you can, maybe you can nearly do that. But it's still going to
be, oh no sorry, that would make it linear. I'm sorry, let me say that again. You'd like to be able
to ask a question that, that splits this hypothesis class in half, but unfortunately almost all of
your questions give very little information. Just knocks out a couple of the possible hypotheses,
and so it ends up being 2 to the k kind of time, not time but samples before you can get a
handle on what the hypothesis is. So, it is harder for the learner too.
C: Right, so when the learner does it you have no reason to believe one hypothesis over the
other. You've got all of them. And so in order to figure it out, no it kind of
has to be that way because otherwise it is still linear. So, this is bothering me, because if what
you said is true, then why does 20 questions work? Why do i ever get log, log 2.
M: Right. So we'd like to be able to ask questions. So I, so here, let's play this game now. You
think of a, a formula. And I'm going to.
C: Oh, wait, you. I know the, the answer is, is that the 20 questions is still the optimal thing to
do, given that you know nothing. So that, that log base 2 is kind of an expected answer, but
sometimes you'll do much worse, and sometimes you'll do better.
M: No, in this particular case, if I could ask you more general questions. I can do this in, in with
the, you know, linear in K. So the questions that I'd like to ask you are things like, is X1 in the
formula, yes or no? [LAUGH] Is X1 positive in the formula? Is X1 negative in the formula? I can
just fill in these boxes by asking the right questions.
C: Right.
M: But, but those questions are not in our constrained set. And it's the constrained
set that matters here. And our constrained set is, in this particular example just really harsh.
C: So, and there's no way to approximate that, right? So I can't say, okay, so the first question I
want to ask is x1 positive, negative, or absent? So, if I looked at all the hyp, if I looked at all the
hypotheses I could do that by asking, now it's very hard to do, because there's no direct way
to ask that question. The only way to ask that question is, I have to try. Well, I have to try all
possible exponential cases to know.
M: Yeah, 'because we're constrained to only ask queries that are data points, right? So give me
the label for this data point. And that's not really the same as is the hypothesis you're thinking of
having this particular property.
C: But as soon as I get a one, I know something.
M: Soon as you get a one, you're in a much happier place. So, in fact, if we didn't, if we had
conjunctions of literals without negations
C: Mm-hm.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: We'd be in a much better situation, because then you could, your first question can be, you
know, one one one one one one. You know the answer has to be one, or the formula's empty.
So then you're, you're basically off and running, but the fact that there can be negation in there
means that most queries really give you useless information.
C: So, so Michael, okay, so you've depressed me. You've basically said this is really hard to do,
to learn because I think that we've convinced ourselves, at least you've convinced me that until
I get a one, until I, I, I get a positive result, I can't really know anything. And eventually I will get
one
if I can just do an exponential number of samples, but then my sample complexity is
exponential, and I'm sad. So what you're basically saying is, I'm sad sample complexity makes
me a bad person, and there's really nothing I can do to learn anything or get anything good out
of my learning process.
M: That seems like a very sad way of saying it.

Learner With Mistake Bounds

M: So maybe, maybe this will make you feel better Charles. So there's we can actually, you
know, when all else fails, change the problem. So let's say that instead of trying to learn
the way we were describing it before, we're going to change the rules. We're going to say we're
going to use a learning formalism that's sometimes referred to as mistake bands. So here's how
the things work in mistake bands, the learner is sitting around and input arrives.
And then the learner gets to guess an answer for that input. So the learner the, maybe the
learner chose the input or maybe it came from a, a helpful teacher or maybe a malicious
teacher, turns out it's not going to matter. But the input's going to show up. The learner's going
to guess the answer, so it doesn't have to now guess the hypothesis and get that right. It just
has
to get the. The output correct for this input. If the learners wrong, then we're going to charge it
a point and tell it, that it was wrong and then it goes up to one and we repeat this and so, this
is going to run forever and what we're going to do is bound the total number of mistakes made,
into infinity. Right? So, were going to keep playing this game forever. And we want to say it'll
never make tot total number of mistakes will never be larger than a certain amount.
C: So this is giving the learner some new powers, right? So the learner now is guessing
answers. And all we have to guarantee is that if is guess is wrong, it better learn a heck of a lot
from that. Hmm.
M: Otherwise if it even if it doesn't know much if it guesses right that's fine. It doesn't have to
learn.
C: Okay. I see. So, so in the case before so long as I had been guessing false I would have
been okay even if I didn't know what the hypothesis was. And then the moment I got a one, I
got a true, I could actually learn something. Then I should learn something and try to do better
guesses from that point on. Okay.
M: Outstanding, yes, exactly so. So lets turn that into an algorithm. So here's an algorithm that's
really simple and actually can learn very effectively for these mistake bound problems. So it, it
works like this. It starts off in this weird state where it imagines that in the formula that every
variable is present. In, in both it's positive and negated form. Right, which is kind of weird. And

Copyright © 2014 Udacity, Inc. All Rights Reserved.

so what that, that would mean is the formula is x1 and not x1. X2 and not x2. X3 and not x3.
X4 and not x4. X5 and not x5. So any input that it gets, it;s always going to produce the same
answer, right? What, what is that answer.
C: False. False, right, so it's going to keep saying false, for a long time. Until at some point, it
actually could be right. Each time it's right, it's actually not getting charged any mistakes for that.
It's just that at some point, it's going to get an input that the correct answer is true. It's going to
say false, and it's going to have made a mistake. So let's say that this here, here's that example.
X1 is true. X3 and X4 are true, and the other two are false, and the learner said false, but the
answer was actually true. So if the answer to this one is true, what do we know?
M: We know that one zero. Wait we know that 0100 1, which is the opposite of what you're
saying could not be a part of the formula. So we could remove that from our formula.
C: okay. That's one way to think of it. Couldn't quite think of it that way.
M: But am I right? Yeah, if this is what you meant. so...
C: [LAUGH]
M: Uh...the first variable, the x1 not cannot be in the formula. Cause if it was, there's no way that
this would've been able to produce true.
C: Right.
M: So we can erase x1 not. We can erase x2... in a positive form, because of the second bit.
We can, the third bit says that X3, if it's in there, it can't be negated. We don't know if it's in
there, but we know it can't be negated. X4 Is the same. And x5, if it's in there.
C: Right you get rid of the positive. Yeah, that's what I meant. That's why I wrote down the
opposite of everything that was up there.
M: Yeah, and that is what we're left with. Okay, it's not exactly what the algorithm says, but it,
it produced the right answer in this case. Alright, so now, now what is it going to do? Now it's
going to continue to say no, unless it sees. This particular bit pattern, right, this is the only thing
that will ever predict true on and it will always be right,when it does that because we know that
is the correct answer for that. But let's so, so it's going to guess no everywhere else and so let's
say it gets something wrong again and let's say it gets one zero, one one, one wrong. So in this
particular case, it's going to guess no, and we say, I'm sorry, the answer is yes. All right, so now
what does it know from that?
C: Well, I'm just reading your algorithm now. And I'm just going to do what number three says.
M: All right. That's a good idea. It says if we're wrong, which we are in this case, set all the
positive variables that were zero to absent. All the positive values that were zero, there are
none of those and said all the negative variables that were one, to absent, alright. So then that
was x5, x5 is there in its negated form, but it's actually a one in the input, so we're going to turn
that away to absent. Alright.
C: Mm-hm.
M: So and that's the same thing that you did when we were looking at the problem before, you
said if you have two answers, where the, two inputs where that output is both true, any bits that
are different in those two patterns, must be not part of the formula.
C: Right.
M: Alright, so now we've definitely, X5 is not in the formula and that's actually correct there's,
there's at no point in the future where we have to revisit that. In this other cases we are not
quite so sure. It could be that they're, in there or not in there. And, so each time that we get one

Copyright © 2014 Udacity, Inc. All Rights Reserved.

wrong, we're going to move something from negated to absent. And when we do that, that thing
is always going to be correct. So at most we can move K things from negated or positive to
absent.
C: Oh! So if I. . Think about, oh, so even if we may have to see in fact, every, even if we may
see an exponential number or examples. We will never make more than k plus one mistakes.
M: Perfect.
C: And so that's exactly what I wanted to do before, right? So, if, if I'm a teacher, if I'm a
good teacher in this case, then I can basically, and I knew that you started out assuming that
everything was false.
M: That you know, all variables were there in both their positive or negative form, I can just
give you one example that is true. And that would let you eliminate half of the formula right
away, and then I could just keep giving you examples that are true but only with one variable
difference
each time. And then eventually you would learn it. So, then the total number of samples you
would need would also be k+1 if I know how you're starting out as a learner. Does that make
sense?
C: If we charge things by mistakes.
M: No. But even if we don't charge things by mistake. If I'm a teacher who's trying to give you
the best examples and I know that as the learner you're starting out with a formula that is x one
and not x one, x two and not x two. Like you said before. Then I could just give you the first
example that is true. That'll eliminate half of those literals. And then only give you true examples
from that point on, where only change one of the variables that are left, and you'll know that you
can make them absent to get rid of it, and so, just as you can only make k plus 1 mistakes, I
could give you exactly the right k plus 1 examples. If I know how you're starting out as a learner.
If I don't know that, then I have to do the k plus 2 that you showed before.

Definitions

M: Alright, so, remember, Charles, we were talking about three different kinds of ways of
choosing the inputs to the learner. Okay? So what were they again? We just looked at two of
them.
C: So the learner chooses examples. The teacher, hopefully a nice one, chooses examples, and
then there was the case with the examples are given to us by nature. And I guess there was a
fourth one, which is. That a mean teacher gives it to us but I, you know I don't think that's all that
interesting. I tend to think of nature as a mean teacher.
M: Well not only that but in the, at least in the mistake bound setting that we just looked at again
the, the learner was robust against any choice of where the inputs were coming from. So mean
teacher it would've it would've done just as well.
C: That's a fine point.
M: It doesn't matter when it makes its mistakes, it's only going to make a fixed number of them
no matter what.
C: Okay.
M: So, we've kind of dealt with three of these but we haven't really talked about the, the nature
chooses case yet. And that's in some ways the most interesting and relevant and in other ways

Copyright © 2014 Udacity, Inc. All Rights Reserved.

the most complicated because you have to really take into consideration this space of possible
distributions. I think now though we're in a pretty good situation in terms of being able to define
some important terms and we're going to use those terms to get a handle on this question of
what happens when nature chooses.
C: Okay, that sounds reasonable.
M: So computational complexity, we talked about. The, the, how much computational effort is
going to be needed for a learner to convert to the answer. Sample complexity in the case of a
batch, that is to say, we have a training set. Is how large is that training set need to be for the
learner to be able to create successful hypothesis. And that's in the batch setting. In the online
setting, we have this notion of a mistake bound. How many misclassifications can the learner
make over an infinite run?
C: Mind if I ask you a question? You said something I thought pretty interesting. How, for
computational complexity, you said how much computational effort is needed for a learner
to converge To the right answer. Is that the, is that a requirement when you talk about
computational complexity? Or is just that you need to know how much computational effort is
needed for a learner to converge to something?
M: Well, so if it's converging to something and we don't care what it's converging to, then it's
really easy to have an algorithm with low computational complexity, right? It's just like
return garbage. It runs in constant time.
C: Mm hm.
M: So, yeah, it's in the context of actually solving the problem, that computational complexity is
most interesting.
C: Well, I was going to say, what if a set of hypothesis that I'm willing to entertain, doesn't
include the true concept.
M: good. Right. So in some sense maybe in that case what we're trying to find is the best
hypothesis in the hypothesis class. But we can still ask about computational complexity in that
case. So, I was saying successful hypothesis here. By that I meant, you know, whatever it is
that the problem demands that we return and if it's a hypothesis class that's very limited we
might just return the best thing in that class.
C: Okay.
M: But the important thing here is that we're not going to talk about computational [LAUGH]
complexity, for the most part. We're going to focus on sample complexity for the time being. And
that's really the relevant concept when we're talking about the idea of nature choosing.
C: I believe you

Version Spaces

M: All right. We're going to do a couple more definitions. This notion of a version space turns
out to be really important in understanding how to analyze these algorithms. So, imagine we've
got some hypothesis, space H, capital H. And a true hypothesis that we're trying to learn, C
of H. This is also sometimes called a concept. And we're trying to learn from a training set S,
which is a subset of the possible inputs. And what our training set consists of is those examples

Copyright © 2014 Udacity, Inc. All Rights Reserved.

along with the true class for all of those X's. So, at any given time a learner might have some
candidate
hypothesis, little H and big H, and a learner who produces a candidate hypothesis little H, such
that C of X is equal to H of X for all X of the training set, is called a consistent learner. Right, so
what would be another way of describing hat a consistent learner is?
C: A consistent learner can actually learn the hypothesis, or the true concept.
M: Well it produces, right, I mean of all the possible things it could return, it returns the one that
matches the data that it's seen so far.
C: Right, so it's consistent with the data. That makes sense.
M: Yeah. And the version space is essentially the space of all the hypotheses that are like that,
that are consistent with the data. So we'll say the version space for a given set of data S is
going to be the set of hypotheses, that are in the hypothesis set, such that they're consistent
with respect to the samples that they're given.
C: Okay that makes sense.
M: All right. Good. So I think what we'll do next is a quiz just to make sure that we kind of get
this concept and how it works. And we'll do that next time.
C: Okay sure. I like quizzes.

Quiz: Terminology

M: Alright, here's the quiz. So just to practice this concept of what a version space is let's go
through an example. So here we go. Here's the actual target concept C and, for all possible, it's,
mapping from two input bits to an output bit. And the two inputs, X1 and X2 can take on all
four possible different values and the outputs are zero One, one, zero, which is to say the XOR
function, okay so that's what we're trying to learn.
C: Okay.
M: But the training data that we have only has a couple examples in it. It says well, one training
example says if the inputs are zero and zero. The output is zero. And if the inputs are one and
zero, the output is one. And, ultimately, we're going to ask questions like, well, what happens if

the input is one
and one? What's
the output? Now,
since we know that
it's XOR, we know
that the answer is
zero but that's kind
of using
information
unfairly. So here's
what we're going
to do. Here's a set
of, a hypothesis
set. These are set
of functions. That

Copyright © 2014 Udacity, Inc. All Rights Reserved.

says, well the output could be just copy X1, negate X1, copy X2, negate X2, ignore the inputs
and return true, ignore the inputs and return false, take the OR of the inputs, take the AND of
the inputs, take the XOR of the inputs and then return whether or not the inputs are equal to

each other. And,
what I'd like you to
do
is, some of these
are in the version
space and some of
them are not for
this training set
that I marked here.
So, can you check
off which ones are
in the version
space?
C: I think I can.
M: Awesome. Let's
do it.

Answer

M: All right Charles, what do you think?
C: Okay, so being in the version space just means that you're consistent with the, data that you
see. Right?
M: Good. Mm-hm.
C: Okay, so we should be able to very quickly go through this. So X1, just copy X1 over. Well, if
we look at the training data, in the first case, X1 is zero and the output is zero. Second case, X1
is one and the output is one. So that is, in fact, consistent with just always copying X1.
M: So that is in the version space, right?
C: Right. And without even having to think about it, since x1 is in the version space, doing the
opposite of x1 can't possibly be in the version space.
M: Agreed.
C: So let's skip that. Looking at x2, we can see that in the first case, you go x2 0, c of x is 0.
Yeah, so yeah that's looking good. That's consistent so far. But then on the next row you get 0
and then you
get the, opposite of 0. You get 1, the compliment of 0. So, that definitely is inconsistent with
just copying over X2, so you can't have X2 and by very similar reasoning you can't have the
opposite of X2.
M: Agreed.
C: Okay, so, true is clearly not consistent because we got a 0 once and a 1 once.
M: Mm-hm.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: And by the same argument false is not consistent because we got a zero once and a one
once. Now or, let's see or.
M: But in case it's not clear, I probably could have been clearer about this, but here, zeroes and
falses are the same thing and ones and trues are the same thing.
C: Right. Just like in C.
M: [LAUGH]
C: Okay. So I just assume everything you do is written in C, Michael, so, it just works that way.
In fact there's a C right up there at the top of the, at the top of the slide.
M: Yeah so I feel like I should do this.
C: Now I understand what's going on.
M: Right, now it's in C.
C: Much better. Okay, so, or. Or means if either one of them is true, then you say yes and, huh!
That's actually consistent with or.
M: Yep.
C: Hm. But it is not consistent with and, because one and zero would be zero, not one. Second
case, XOR, well, I already know it's consistent with XOR, because I happen to know that that's
the target concept.
M: Yeah.
C: And an equiv would be not consistent. Though interestingly, not equivalent would be
consistent.
M: Yes, because not equivalent is XOR.
C: Oh, yeah, that's right.
M: All right, so that's, yeah, that's it, X1, OR, AND, XOR.
C: Excellent. Cool.

Error of h

M: Alright, the next topic we're going to get into is to nail down a concept called PAC learning.
So to do that, we're going to delve into what the error of a hypothesis is. And there's two kinds
of errors. There's the training error and the true error. So the training error is on the training set.
What is the fraction of those examples that are classifieds by some given hypotheses H.
C: Okay.
M: Now H could be different from the target concept. The target concept ought to have a training
error of zero. But some other hypothesis h might have some error. Okay?
C: Sure, that makes sense.
M: Okay, so the true error is actually
the fractions of examples that would
be misclassified on a sample drawn
from D in essentially the infinite limit.
So what is the, essentially the
probability that a sample drawn from D Would be mis-classified by some hypothesis, h.
C: Okay.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: And we can actually write that mathematically. Error with respect to some distribution D of
some hypothesis h, is the probability that if we draw the input X from that distribution that you're
going to get a mismatch between the true label, according to the concept, and the hypothesis
that we're currently evaluating.
C: Right, so this sort of captures the notion that it's okay for you to misclassify examples you will
never ever ever see.
M: Yes, that's right. So we're only being penalized proportional to the probability of getting that
thing wrong. So, for examples that we never see, that's fine. For examples that we see really
really rarely. We get only a tiny little bit of contribution to the overall error.
C: Okay, I can follow that.

PAC Learning

M: Alright, with just a couple more definitions we'll be able to nail down what PAC Learning
is. So let's consider a, concept class C. That is to say that the set from which the concept that
we're trying to learn comes from. L is our learner. H is the hypothesis space, so it's the set of, of
mappings that the learner is going to consider. N is going to be the size of that space. So kind
of the space of the hypotheses that are being considered. D is that distribution of inputs like we
looked at before. Then we got Greek letters epsilon and delta, where epsilon is our error goal.
Which is to say we would like the error in the hypothesis that we produce to be no bigger than
epsilon. It could be smaller, that'd be great. It could be zero, that'd be awesome. But it can't
be bigger than epsilon. But, we could get really unlucky and actually not meet our error goal.
And so delta is what allows us to set a, a kind of uncertainty goal or certainty goal, which
is to say, that with probability one minus delta, the algorithm has to work.
C: And by work, you mean has to. Be able to produce a true error, less than or equal to epsilon.
M: Exactly.
C: So why can't we always force epsilon to be zero, and, you know, delta to be zero?
M: Right, to be absolutely sure that we get zero error. So the, part of it is because we are
sampling training examples from this distribution D. and it's always possible that we, for
example, unless well, as long as there's probability mass on more than one example, there's
always a probability that we draw a finite sample that only ever gives up one example over and
over again.
C: That's fair.
M: So we just have to be really careful about that. So, so if we're that unlucky it's very unlikely
to happen but when that happens our error is going to be very high. But that's okay because it
won't happen very often.
C: Okay sure,sure. So basically you can't force it to be zero under all circumstances either
epsilon or delta you can't force them to be zero under all circumstances. So you have to allow
somewhere to.
M: Exactly, it gives us the wiggle room we need. Thats actually where this name PAC comes
from. It stands for probably approximately correct.
C: Oh I see.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: So we would like to be correct, but then we are just going to keep adding weasel words until
we can actually achieve it. We would like to be correct, but we cant be exactly correct, so lets be
approximately correct. But we can't be approximately correct all the time, so let's only probably
be approximately correct.
C: So using your, your, your words here you could have called that one minus delta epsilon
correct.
M: Yes, right. That's exactly right. That's what the Greek letters are playing, and correct is the,
this you know, error Sub D of H equals 0.
C: Yeah, so 1 9 is delta upsilon error sub D of H equals 0 doesn't roll off the tongue quite as well
as probably approximately correct.
M: I would agree with that.
C: Okay fair enough.

PAC Learning Two

M: Alright, now we can actually dive in and give a definition for PAC-learnable. So, a concept
class, C, is PAC-learnable by some learning algorithm, L, using its own representation of
hypothesis, H, if and only if that learner will, with high probability, at least from its set of
hypothesis. That has error less than or equal to epsilon, so it's very accurate. And it needs to
be the case that the time that it takes to do this. And the number of samples that it needs draws
from this distribution D is relatively small. In fact, bounded by a polynomial in one over epsilon,
one over delta and the size of the hypothesis space n.
C: Okay, so in other words you're saying something is PAC-learnable if you can learn to get
low error, at least with some high confidence you can be fairly confident that you will have a low
error in time that's sort of polynomial in all the parameters.
M: Exactly, and you can see here that this, this epsilon and delta actually giving us a lot of
wiggle room, if you really want to have perfect error. Or perfect certainty. Then these things go
to infinity. So, you just, you need, you need to look at all the possible data.
C: Mm.
M: So, yeah this is really going to only give us partial guarantees.
C: Okay. Sure. Okay, I think I understand that. .

Quiz: PAC Learnable

M: Let's just do a little quiz. So, here is our concept class and our hypothesis class, which are
the same in this case, which is the set of functions H sub I, that return, for an input X, it returns
the Ith bit of that input.
C: Mm-hm.
M: All right. So if we're talking about K bit inputs then there's going to be a

Copyright © 2014 Udacity, Inc. All Rights Reserved.

hypothesis in this set for each of those K bits, and that hypothesis returns the corresponding bit.
And so, we're given a training set with examples like that. And then we need to produce outputs

that are consistent with that.
And so what I'd like you to try to
figure out is, tell me, do you
think that there is an algorithm
L, such that C is PAC learnable
by L using H? So if you can
give me a learning algorithm
that would do a good job, and
would, with high probability, be
able to figure this out, then you
should go for it.
C: Okay.

Answer

M: Okay, so what'd you think? Was that enough information to kind of chew on it a little bit?
C: Maybe. [LAUGH] So, let's see, I have, I guess, k hypotheses I have to chose from. I know
that basically you always return the output of one. I don't get to chose what those examples are,
they're drawn from some distribution.
M: Right.
C: And I want to know whether I'm going to need to see, another of examples that are,
polynomial, in the error that I'm interested in, with the certainty that I'm interested in. And I gotta
be able to come up with an algorithim, a learning algorithm that will do that.
M: Exactly. So what do you think?
C: I want to say the answer is yes.
M: So how would you argue that though? Do you have a particular algarythm in mind?
C: Well I actually did, I was going to keep the all the hypothesis that are consistent with the data
that I've seen.
M: Okay, alright and what is that called?
C: The version space.
M: Right. Okay.
C: So keep track of that and then, whenever I stop getting samples, I have to pick one of those.
So I'm just going to, pick one of them uniformly.
M: Okay. Well that seems good so far. You could pick one uniformly. So what makes you think
that that's actually going to. Be able to return the right answer, or a, a close enough answer with
not that much data. How do we actually bound the number of samples that we need to make it
so that when we pick uniformly we actually get a good answer?
C: Well, it's a little hard, I mean my, my intuition is that, given what we don't know what the
concept is only the class that it comes from If I do anything other than choose uniformly, then I
can be very unlucky. I basically... uniformly basically means in this case I don't know anything

Copyright © 2014 Udacity, Inc. All Rights Reserved.

else to do. So there's sort of no better algorithm than the one that we just came up with, which
is find all the hypotheses that are consistent... And you have no reason to choose one over the
other because you don't have anymore data. So you should just close your eyes and pick one.
And if you do anything else, then in the absence of some specific domain knowledge that tells
you to do otherwise, you know, you can just basically end up being very unlucky.
M: So, I, I agree with you and this is a good algorithm. But what we lack at the moment is an
argument as to why the number of samples that it needs, isn't exponential. Right? Cause there's
an exponentially. Large, you know, 2 to the K different possible inputs. If we had to see all of
them to be able to guess right, that would be too many.
C: Mm hm.
M: So, we really want it to be, you know, a polynomial in, in K. Not an exponential in K. So I'm
going to say that we don't have enough background yet to be able to answer this definitively.
The, yes is the right answer. But we're going to need to dive in a little bit more deeply, and
develop some more concepts to be able to argue why that's the right answer.

Epsilon Exhausted

M: So this is going to be a key concept for being able to develop and answer two questions like
that and it's the notion of epsilon exhaustion. Which sounds kind of tiring.
C: I know I'm epsilon exhausted right now.
M: Yea, me too. So what we mean by this is, well here's the definition. So, a version space. Of,
version space that is derived from a particular sample, it's considered epsilon exhausted if and
only if for all the hypotheses that are in that version space they have low error. So if we can
do this then your algorithm going to work. Your algorithm says at that point choose any of the
hypotheses in your hypothesis set. You are going to be fine, you are going to have low error.
C: Sure.
M: If you don't do this, your algorithm is going to be in trouble because you are uniformly at
random choose one of the hypothesis and it has a chance of being wrong. It could be a fairly
high chance if there is, say there is only two hypothesis left in the version space, one has high
error and one has low error. We really have to make sure that the only things left in the version
space have low error
C: Okay, that makes sense, that makes sense.
M: Alright, so we're going to have to develop a little bit of theory to figure out when that occurs
but this is a really key concept.
C: Okay, so, I guess if was trying to put this into English just to make certain I understand it,
what you're saying is, something is epsilon exhausted, a version space is epsilon exhausted
exactly in the case when everything that you might possibly choose has an error less than
epsilon.
M: Sure.
C: Period. And so if there's anything in there that has error greater than epsilon, then it's not
epsilon exhausted.
M: Right. It's still epsilon energized.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: Right. That makes a lot of sense, epsilon energized. That's a pretty good name for a band.
OK.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Quiz: Epsilon Exhausted

M:

Alright, and just to make sure this epsilon exhaustion conpcet is clear, let's actually use it in a
quiz. So, here's our example from before. We've got our target concept, which is X or, we've got
our training data which is these, with the things that are in the green boxes here, 0 0 output 0 1
0 output 1. And this time, I'll actually write down a distribution D that gives the. Probability of
drawing each of these different input examples. All right? So now what we'd like to do is find an
epsilon such that that this training set that we've gotten has epsilon exhausted the version
space.
C: Okay. I got it. I think I got that.
M: You think you, you think you can work that one through?
C: Yeah.
M: Anything else that we'd have to tell you? Remember again that These are the hypothesis in
the hypothesis set.
C: huh. Yeah. Yeah. I got it.
M: Alright. Let's, let's, let's see what you got.
C: Okay.

Answer

M: Okay, so one.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: See, now that was mean. So right, one is an epsilon, no because epsilon has to be less
than or equal to half, we already said that, but you're right. In a sense setting epsilon to one, is
always a valid answer to the question, find an epsilon set that we've epsilon exhausted the
version space. Because all it's saying is, that there is nothing left in the set that has an error
greater than one. And since the error is defined to be the probability, it can't be greater than
one. So that was kind of you know, kind of rude.
M: All right, I, I thought I just answered the question. But I guess you want me to give you
C: Yeah but you, but you prob-, what you probably should have pointed out is that I left out the
word smallest.
M: Oh! Yes, yes. Okay. Well, so, I don't know the answer to that but, I think I could walk through
it very quickly.
C: Okay.
M: Okay, so you saying the ones that are in green are the training examples that we see, right?
C: Right.
M: So we should be able to use that to figure out what the version space actually is.
C: Right, which we did in a previous question.
M: Right, although I don't remember [LAUGH] what the answer was.
C: I'll remind you.
M: I'll remind you,It's okay. So it was x1
C: Mh-hm.
M: Right, because the x1 matches, it was, or and x or.
C: Mh-hm.
M: I think that was it.
C: Yeah, I think that's right. Okay, so, then what we can do is given that those are the three
things that we've done. We could actually compute, what the error is according to this
distribution for each of those three.
M: Yes, exactly so.
C: So let's, let's start with X1. So which one, x1, so all three of those are going to get the first
one and the third one correct, right?
M: All of them are going to get the first one and the third one correct. Yes, by design.
C: By design.
M: Right, to be in the version space.
C: So now we can ask which ones will get the second one wrong? The fourth one doesn't
matter because it has zero probability of showing up.
M: That's right. So, it doesn't matter if you get this one right or wrong, it's not going to contribute
to this true error measure.
C: Okay. So let's look at x one. So x one will in fact get the second one wrong, because the
output Is not the same as the value for x one.
M: Good. And so what;s the probablity that x one, this hypothesis x one, is going to give a
wrong answer on a randomly drawn input?
C: Well, half the time it will get the second answer, and so the error is, in fact, one half.
M: Yes. Exaclty. Good. All right. Let's move on to the or.
C: Okay. So, we can do an easy one actually. We can do xor. Since we know xor is the right
answer, we know It will has a probablity of being wrong of zero.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: Oh, good point.
C: Okay. And so for or we can do the same thing. So is, we know it's going to get the first and
the third ones right. So now we can ask whether it's going to get the second one, right. And zero
or one is in fact true. Or one. So in fact it also has an error of zero.
M: Okay.
C: Which is kind of interesting. So and so, even though the function is xor, if we can
get to the point where we have or or xor left, we actually will get zero true error.
M: That's right.
C: But in the meantime, because x1 has still survived the two examples that we have. Epsilon is
therefore 0.5.
M: Right, in particular, we're saying that, this is, if, if epsilon were smaller than 0.5, then it
wouldn't be epsilon exhausted because you'd have a hypothesis that has error that's too high.
C: Right.
M: So this is the smallest epsilon that we can use. And in fact, we let you through if if it was
anything value that I was really hoping you'd be able to reason out.
C: Okay, well that all made sense.
M: Good, nice work.
C: Thanks.

Haussler Theorem

M: Alright, so now we're ready to dive in and actually work out some math that turned out not to
be so bad, but it was, it ends up being okay specifically because we were
very carefully about setting up all the definitions to lead us to this moment in time. It is our
destiny, Charles.
C: Oh good. I love destiny. Is this destiny's theorem?
M: No, actually turns out it's Haussler's Theorem.
C: Is Haussler like German for destiny?
M:It might be, but I don't think it is. So, Hausser is the name of a person in this particular case.
And what he worked out is a way of bounding the true error as a function of the number of
training examples that are drawn.
C: Oh. Nice.
M: So, let's consider. From the hypothesis set that we have, all the hypotheses can be
categorized as to whether or not they have high true error or low true error.
C: Sure.
M: Right so, let's let H1 through HK be the ones that have a priority of high true error. What we'd
like to do is make sure that as we're drawing data sets that we have knocked all these guys out.
We've gotten enough examples that actually allow us to verify that they have high error. So they
have high error on the, on the training set. So they have high training error. Alright, so
how many, how much data do we need to establish that these guys are actually bad? Alright, so
let's take a look at the probability that if we draw an X, an input from this distribution D. That, for
any of these hypotheses. Hi, and this set of bad hypotheses. That it will match the true concept,
right? So that H sub I of X is equal to C of X. And we know that that's less than or equal to

Copyright © 2014 Udacity, Inc. All Rights Reserved.

one minus epsilon. It's unlikely that they match. Because it's likely, or relatively likely, that they
mismatch. Right? That's what this exactly means. This, this error being greater than epsilon.
C: Oh, I see, so if I have an error of greater than epsilon, that means that the probability that I'm
wrong is greater than epsilon, which means the probability that I'm right is one minus epsilon,
less than one minus epsilon. Okay, that makes sense.
M: Yeah, so it's sort of a relatively low probability of match.
C: Well, if epsilon is high.
M: Low relative to one minus epsilon.
C: Right, okay.
M: So this is, this is a fact about the hypothesis in, in the abstract. For any given sample set
we've got a set of m examples, and what we'd like to know is, since we're trying to knock it
out, what's the probability that even after we've drawn m examples that this hypothesis, h of i,
remains consistent with c. Right, even though the data doesn't really match all that well, we've
drawn M examples, and it still looks like it matches. It's still in the version space. So the
probability that that happens if it were the case that everything was independent
is going to be one minus epsilon raised to the M power. Right. Because it's less than one minus
epsilon to be wrong once Well, which is to say, that your consistent ones. To continue to be
consistent, we keep having to have this probability come true. So, it's going to be, we're going
to just keep multiplying it in again and again and again. So one minus epsilon raised the the m
power.
C: Right. So that makes sense because you're basically saying it's Consistent with the
first example and the second example and the third example and dot dot dot nth example. So,
and with independent variables is just multiplication so it's one minus
epsilon times, one minus epsilon times, one minus epsilon n times. Okay, I see that.
M: Great. Alright, so can we use that to figure out what's the probability that at least one of
these h1 through hk's is consistent with c on m examples. We have to knock them all out.
That's...that's really what the goal is. To knock out all the ones that have high true error We
failed at that. If one of them still slips through, one of them still looks consistent and remains in
the version space. So what's the probability that at least one of these remains consistent. That
this still has happened.
C: I think I know that. So just like you did add before and did multiplication... Another way of
writing at least one of is to say or. So h1 or h2 or h3 or h4... or hk is consistent. And just like and
is multiplication, or is addition. That's true.
M: And there are k different ones of these, so I have to say this one minus epsilon to the m plus
one minus epsilon to the m plus one minus epsilon to the mk times So that would be one minus
epsilon to the m times k.
C: Great. So that is a bound on the probability that at least one of these bad hypothesis is going
to remain in the version space even after m examples. But how many bad examples, how many
bad hypothesis are there? What's an upper bound on that?
M: Well, there might be one or there might be two. There's actually k of them, but we know that
k itself is bound by the total number of hypotheses.
C: Yeah, that's right. So it has to be, you know, the number of bad hypotheses. We, we assume
if c is equal to h anyway that there's at least one that is not bad, but, you know, almost h of them
can be bad. So that, that should give us a bound. Alright, so now we're going to to work on this

Copyright © 2014 Udacity, Inc. All Rights Reserved.

expression a little bit more to put it in a more convenient form.
M: Okay.

Haussler Theorem Two

M: All right, so it turns out there is going to be an useful step here. Which is, we are
going to take advantage of the fact that minus epsilon is greater than or equal to the natural law
of one minus epsilon; which maybe it's not so obvious but if you plot it you could see that it's
true. If this is the epsilon axis then minus epsilon looks like a straight line going down like that.
C: Sure it's got slope minus one.
M: Yep, and the log of one minus epsilon looks like this, it starts off, they'll they're totally lined up
at zero, epsilon zero.
C: Sure because one minus zero is one then absolute log of one is zero.
M: Exactly, and then what happens is it starts to fall away from it, the slope is actually, I mean
you could, you can test this by taking the derivative of it but the slope is if it's you know it's
monotonically I'm changing [LAUGH] so that it falls away from the line and always
stays below it,okay, so if we believe that, which, you know I'm going to just say calculus.
C: Well, you can kind of see that, right? Because when epsilon is one, that would be the natural
log of zero and the only way you can raise e to a power and get zero, is by having effectively,
negative infinity.
M: Yeah, so right, by then, it's definitely below and but, it stay below all along, I mean, because,
just that is not enough, because.
C: Well, it has to stay below all along because natural long is the natural log is a monotonic
function. Alright, so it can't like, get bigger and then get smaller again, so, yeah, okay I buy that.
M: Good, alright, so if that's the case,if we accept this line, then, it's also going to be the case,
that one minus epsilon to the m, is than or equal e to the minus epsilon m, so why is that?
So, if you multiply both sides by m, and then take each of the both sides, you get exactly this
expression.
C: Sure. Alright? So now that we've gotten that, we can use it here in our derivation and rewrite
that as, the size of the hypothesis space times e to the minus epsilon m. Alright that gives us
another upper bound on the quantities that we had before and this is much more convenient to
work with. The epsilon which had been kind of trapped in the parentheses with the y minus now
comes up to the exponent where we can work with it better.
M: Sure.
C: Alright, so what this is is an upper bound that the version space is not epsilon exhausted
after m samples.
M: Mm-hm.
C: And that is what we would like delta to, we would like delta to be a bound on that.
M: Mm-hm.
C: Right, so if delta is the,is the failure probability, essentially. So the failure probability ought to
be bigger than
or equal to this expression here, alright?
M: Okay.
C: So now, the last thing we need to do, is we can just re-write this in terms of M.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: Mm. So if we do that, let's see what happens. All right, when we're done rewriting that what
we find is the sample size M needs to be at least as large as one over epsilon times the quantity
the log of the size of the hypothesis space plus the log of one over delta.
C: Okay and that is polynomial in one over epsilon, one over delta, and the size of the
hypothesis base.
M: Indeed!
C: Nice.
M: So that's pretty cool.
C: That is pretty cool.
M: So, right, it tells us if you know the size of your hypothesis base, and you know what your
epsilon and delta targets are, you know, sample a bunch, and then you'll be okay.
C: That's pretty good!

Quiz: PAC Learnable Example

M: This puts us in a good position to be able to go back to that question we looked at before,
so lets look at it a little bit differently this time. If our hypothesis space is the set of functions that
take 10 bit inputs and there is a hypothesis corresponding to returning each of those 10 bits,
separate hypothesis, one returns the first bit, one returns the second bit. And so on, and now we
have a target of Epsilon equals point 1, so we would like to, return a hypothesis whose error is
less than or equal to point 1, and we want to be pretty sure of it, the error, or failure probability
needs to be less than or equal to point that our distribution of our inputs is uniform.

C: Ok.
M: So given this setup, how many
samples do we need to pack learn this
hypothesis set.
C: Okay.
M: And remember the algorithm that
we're going to use is we're going to draw
sample of the size that we want. Then
we are going to be confident that we've
epsilon exhausted that, that, version

space. And so anything they left in the version space should have low error. And that procedure
should fail with probability, no more than .2.
C: Right. So it's just exceeds probability .8.
M: Yeah.
C: Or. Better.
M: Okay, think we can work that through?
C: I think we can.
M: Alright let's do it.
C: Okay. Cool.

Answer

Copyright © 2014 Udacity, Inc. All Rights Reserved.

M: All right Charles, what do you think?
C: I don't know but I know how to do it.
M: All right.
C: I'm just going to substitute any equation we had before.
M: Yeah, that's what I was thinking, uh-huh.
C: Alright, so M is greater than or equal to, 1 over epsilon times the natural log of the size of the
hypothesis space.
M: Mm, which is what, that is not one of our variables here.
C: ten.
M: Yeah. Right, so it's not 2 to the 10. Even though the input space is 2 to the 10. The number
of hypotheses. There's one hypothesis corresponding to each of the bit positions. So, good?
C: Right. Plus, the natural log of 1 over delta. So that would be greater than or equal to ten
times the natural log of ten.
M: [LAUGH]
C: Plus the natural log of, five. So, let's see. The natural log of ten is something like three point
something, the natural log of five is something like, two point something. We add those up,
multiply by ten you're going to end up with 39.12.
M: Good, so, we need, you know, 40 samples?
C: Yeah. That sounds about right.
M: That actually doesn't sound too bad. Well, you know, it's not learning a very hard problem,
but it's, you know, a pretty big input space. So let's see. What, how big is the input space? It's
like two to the ten, which is.
C: 1,024.
M: 1,024. So how much of 1024 is 40? It's, it's, you know, less than 4%. Hm, that's not bad.
C: Before we leave this quiz, let me point out one more thing: that this bound is actually agnostic
to the distribution from which samples came, so this idea that it's from a uniform distribution is
actually not being directly used here. So so this is pretty cool. It actually doesn't matter, we only
need 40 samples no matter what the distribution is. It's not like some distributions are harder or
easier ,because we are measuring the true error on the same distribution that we
used to, to create the training set. So if it's a really hard distribution and some tough examples
never appear, then we're unlikely to see them in the training set, but they're not going to
contribute very much to the true error.
M: Well that makes sense. So the distri, oh right. So in some sense, I
mean, I guess the equation doesn't show this, but in some sense, the distribution is, cancels out
between the training and the true error
C: Yeah, that's one way to think about it.
M: Well, I like that. So 40 is pretty good to get 10% error. If we wanted to get say, only 1% error,
Then we would go from 40 to 400.
C: Mm.
M: Right?
C: That's a good point, yeah.
M: And it's, it's, it's one decimal point even. And so, that would be about 40% of the data.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: Yeah, that's true. Yeah, if we want to go a little bit beyond that we may need all the data
multiple times.
M: Mm-hm.
C: Yeah, but this example doesn't look so bad. So let's just move on before we think about it too
hard.
M: Okay. That seems fair, I like that.

What Have We Learned

M: So actually that was all we were going to talk about in this lesson about computational
learning theory. So let's just recap where we went so far.
C: Okay. So what? You want me to do it?
M: Yeah, that's been our technique all along.
C: Fine. So here you're the teacher and I'm the student. I get that. Which is actually one of the
things that we talked about. Aha.
M: We talked about what it would mean to be a learnerversus being a teacher. And how
teachers and learners interact to make learning happen faster or not.
C: Okay.
M: But that was actually in a larger context which I thought was kind of cool which was this sort
of notion of trying to understand what is actually learnable. Right and I think the comparison
that made sense to me was that we were trying to do the equivalent to what we do in computer
science with complexity theory and algorithms. While here we were bouncing up from a specific
algorithm like decision trees or. KNN and asking a question about how fundamentally hard is the
problem of learning.
C: Good.
M: And you know, like that. And we focused on a particular measure of difficulty, which I guess
drove everything else, so we talked about which was sampled before it was excepted. Okay,
how many examples, how many samples do we need in order to learn some concept?
C: Good yeah, that's a really powerful idea because it's a different resource than what's
normally
studied in computer science, things like time and space. This is now how much data do we
need?
M: Right, which makes sense because we do machine learning and machine learning people,
what we care about is data.
C: I, I saw a t-shirt recently that says data is the new bacon.
M: Mm. So you're saying data is delicious?
C: Yeah, I think we like data a lot.
M: I love data. Okay, so that ties us back into a discussion about teachers and students
because what we talked about was how If the relationship between the teacher and
the student was one way versus another way, we might get different answers about sample
complexity. So in particular, we talked about what would happen in a world where the learner
had to ask all the questions.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

C: And that's powerful because the learner knows what the learner doesn't know but the learner
doesn't know what the learner needs to know. So that is somewhat powerful. But it may be
useful for the teacher to be more involved.
M: Right, so that's the other thing, where the teacher, gets to actually pick the questions.
C: Great.
M: And then the third sort of case was where. The teacher didn't really pick the questions or the
teacher didn't have an intent to pick the questions, but the teacher was, in fact, nature, so like a
fixed distribution.
C: Yeah, good.
M: Right. And some of those are, you know, easier to deal with than others, like the teacher,
since the teacher knows the answer, can ask exactly the right set of questions and get you there
very quickly versus, say, when the teacher is just nature. And, you know, you get it according to
whatever distribution there happens to be.
C: Sort of oblivious, maybe, is a better word.
M: I think unfeeling.
C: Nature just doesn't care about me.
M: I think nature cares about you just as much as nature cares about everyone else.
C: Yeah, that's exactly what I was afraid of.
M: Yeah. Okay so let's see, what else did we cover? So we talked about mistake bounds as a
different way of measuring things.
C: Hm. You know how many mistakes do you make as opposed to how many samples do you
need. That was kind of neat.
M: Yeah.
C: I know there's some tie-in there. And then the bit that I like a lot is that we started talking
about version spaces and PAC learn ability. And what really worked for me with that was this
distinction between training error which we talked about a lot. Test error which is how we've
been thinking about all of the assignments we've been doing, and true error. And true error in
particular got connected back to, to this notion of nature.
M: Right, the distribution d.
C: Right. And then you introduce the notion of epsilon exhaustion of version spaces, and it gave
us an actual sample complexity bound For the case of distributions in nature.
M: And the sample complexity bound is pretty cool, because it depends polynomially on the size
of the hypothesis space, and the target error bound and the, the failure probability.
C: Hm. So actually that reminds me, I had two questions about this one.
M: Uh-huh?
C: So, the first question was, that equation, m greater than or equal to one over epsilon times
the quantity, natural log size of hypothesis space plus natural log of one over delta, close
quantity.
M: Assumed that our target concept was in our hypothesis space, didn't it?
C: Yes, that's true.
M: So, whatever happens if it isn't?
C: Then we have a learning scenario that's referred to in the literature as agnostic, that the
learner doesn't have to have A hypothesis that is in the target space. And, instead, needs to find
the one that fits nearly the best of all the ones in there. So it doesn't have to actually match the

Copyright © 2014 Udacity, Inc. All Rights Reserved.

true concept. It has to, it has to get close to the best in its own collection.
M: Okay, well, so, do we get the bounds?
C: It's very similar bound. I think, I think maybe there's an extra epsilon, there's an extra squared
on the epsilon.
M: Hm. Okay, okay.
C: And I think there's maybe slightly different constants in here. So it's, it's a very similar form.
It's still polynomial. It is worse though because it, the learner has kind of less strength to depend
on.
M: Okay, that's fair. Okay, so then my second question was, I just realize staring at this now
since you wrote it in red, that the bound depends upon the size of the hypothesis space.
C: Indeed.
M: So what happens if we have an infinite hypothesis space?
C: Well, according to this bound, The technical term is your hosed.
M: Oh, is that what the h stand for?
C: Yes.
M: Hm, so n would be greater than one over epsilon times the natural log of infinite which I'm
pretty sure is infinite.
C: Yeah, even with the, even once you multiply it by one over epsilon. So yeah, you know, this
is a really important issue, and I think it really deserves its own lessons. So let's, let's put this
off to lesson eight. You're right that the infinite hypothesis spaces come up all the time. They're
really important. They almost everything we've talked about so far in the class, like actually
learning algorithms, deal with infinite hypothesis bases, we would really like our bounds to deal
with them as well.
M: Yeah, I would like that.
C: So, I know, anything else to talk here, or should we say, without further ado, let's move on to
the next lesson?
M: I think we should say, without further ado, let's move on to the next lesson.
C: Alright then, without further ado, let's move on to the next lesson.
M: Okay, well then I will see you next time, Michael. Sure Dan, thanks, thanks for listening
C: Oh well, you know, I, I enjoy doing it so much.
M: [LAUGH]
C: Bye.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

