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The following document is a brief overview of PAC learning to

provide supplementary detail for Michael’s lectures. This
document will also provide further motivation by discussing
examples and heuristics for some of the more technical parts of
the lectures.

In his lecture on computational learning theory, Michael covers PAC
learning. The goal with PAC learning is to determine which classes of
target concepts can be learned from a reasonable number of
randomly drawn training examples with a reasonable amount of
computation.” In other words, we are asking questions like, “Is this a
difficult concept to learn or not?”, or “Will my learner be able to learn
this in a reasonable amount of time?”.

Before we can go any further, we should refresh some definitions:

Definition: The frue error of a hypothesis h with respect to a target
concept ¢ and an instance distribution D is the probability that h will
misclassify a an instance drawn at random according to D. We write
this as:

errorp(h) = Pr.plc(x) # h(x)]
Note that this is the actual, real-world error that our hypothesis h

would have, if we could somehow know the probability distribution of
the data that we might encounter.

' Mitchell, Tom M. "Machine learning. 1997." Burr Ridge, IL: McGraw Hill 45 (1997).
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The Instance Space X

Hypothesis c
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The image above illustrates the true error defined above. If D is a
probability distribution that assigns the same probability to every
instance in X, then the error for h will be the fraction of the total
instance space where ¢ and h disagree. The plusses and minuses
indicate training examples, and the areas where ¢ and h disagree are
marked with blue and orange dots. Note that h has non-zero true
error, even though ¢ and h agree on all the training data.

Ok. Now that we know about error, we are almost ready to define
what it means for a concept class to be PAC-learnable. First, a little
more notation. Let’s let C denote a class of target concepts under
consideration, X denote the space of possible instances, L denote a
learner (i.e., a learning algorithm or model), and H is the hypothesis
space of L (i.e., the set of hypotheses that L can produce).

Note that the definition below differs slightly from the definition in
Michael’s lecture. This is (roughly) the more detailed definition given in
Mitchell’s book, so we are running with it.

Definition: Assume 0<¢, <3. Then Cis PAC-learnable by L if and
only if for all distributions D, ce C, € and das above, L will, with
probability (1 —29), output a hypothesis % € H such that errorp(h) <e,
in time that is polynomial in 1, 1, and|H].
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So what does this mean? Well, let’s break it into pieces. Let’s start by
fixing an instance distribution D. Given D, we can’t always expect a
learner to produce hypotheses with O error, so we have to agree that
our learner L does a pretty good job if it outputs an “approximately
correct” hypothesis h, i.e. one that has very low error, say, like,
errorp(h) <efor some small ¢. On the other hand, we can’t even

expect a learner to always produce hypotheses with such low error.

Why? Well, what happens if the training examples that are randomly
chosen are misleading? Then the resulting hypothesis will have pretty
high error. So instead, we might be pretty happy if our learner
produced a low-error-hypothesis most of the time. In other words, we
would be pretty happy if our learner was Probably (with probability
(1-90)) going to produce an Approximately Correct (errorp(h) <eg)
learner (hence the PAC of the name). This is exactly what the PAC
definition stipulates, along with some other things about the resources
the learner is able to use to do this.

Ok, well, the definition of PAC learning is largely theoretical. In
practice, people are less interested in the “time” part of the definition
above, and more interested in the number of computations L might
take to learn. In the real world, time ~number of computations. So
can we say anything else about PAC learning, in terms of number of
computations?

It turns out that for a specific class of learners we can actually say a
lot more. This class of learners is the class of consistent learners.

Definition: A learner L is a consistent learner if L outputs hypotheses
that perfectly fit the training data.

For a consistent learner L, if H is finite we can actually bound the
number of training examples needed for a concept to be
PAC-Learnable by L. More on this to follow, but first we need to recall

another couple of definitions:

Definition: Let S be a set of training examples. The version space
VS(S) is the set of hypotheses in H that perfectly fit the training data:

VS(S) = {heH|hx) = c(x) forallx €S}
Note that for a consistent learner, the version space and hypothesis
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space are the same.

Definition: Given a hypothesis H, target concept c, instance
distribution D and set of training examples S, we say that the version
space VS(S) is &— exhaustedif every hypothesis in VS(S) has true

error less than ¢:

errorp(h) <e forevery h € VS(S)

, [rue error =

training error = .2

., true error=.3
training error = .1

true error = 3
training error = 4

A

. true error =2
training error = .3

In brief, the definition above just says that VS(S) is & — exhausted if the

hypotheses that

perfectly fit the training data (those in the version

space) actually have low true error as well. This is a good thing, and
we are happy if our well trained hypotheses also do well in the real
world. Now we will take a slight detour and consider the definition
above. How many examples would it take to (probably) &—exhaust
the version space?

The answer is given by Haussler's Theorem:

Theorem: If H is

finite, and mis a sequence of independent randomly

drawn training points, then for any 0<e¢<1, the probability that the
version space is not ¢ —exhausted is bounded above by
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|H|e™o

Proof: Let &y, h,, ..., hdenote the hypotheses in H with true error
greater than or equal toe with respect to the target concept ¢. Our
version space will not be e—exhausted if any one of these

hypotheses is included in the version space, so we are actually going
to compute the probability that one of these hypotheses happens to
be included in the version space.

The probability that one of these hypotheses will be consistent with
the target concept (i.e. # = ¢) for a randomly drawn training example

is at most (1—¢). Since the training samples are independently

drawn, then the probability that this hypothesis will be consistent with
the target concept for mtraining examples is at most (1 —¢)”. Hence,

the probability that any one of the khypotheses is included in the
version space is k(1 —¢g)".

Since we don’t really know much in general about kexcept the fact
that £ <|H|, we will generously use this bound. Thus, so far we have

P (T he version space is not € — exhausted) < |H|(1—¢)".

Now, using MacLaurin series we see that:
log(l-¢g) = — Y& = —g-5—... < —¢.
=1

Thus, (1 —¢) <e*. The rest of the proof follows by substitution of this
inequality.
End of proof.

So, with Haussler's Theorem, we can now come full circle to the
class of consistent learners and PAC learning. Suppose we bound
the probability in Haussler's Theorem by some desired level 6 :

|H|e™™ <o

Then with probability (1—38) the version space (and hence the
hypothesis space for a consistent learner) is ¢ —exhausted. In other
words, with probability (1—-0)a consistent learner will produce a
hypothesis with error errorp(h) <e¢. This is the very definition of PAC
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learning, except for the last part of the PAC learning definition about
time/number of computations. Rearranging the terms, we have:

m >1(In|H| + In(}))

Note that the bound is polynomial in 1, |H| and{ . So for a fixed ¢, 8
and |H|, the above equation gives us a lower bound for the number of
training samples needed for a consistent learner to PAC-learn a
concept.
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