U

UDACITY

Kernel Methods and SVMs Extension

The purpose of this document is to review material covered in
Machine Learning 1 - Supervised Learning regarding support
vector machines (SVMs). This document also provides a
general overview of some extensions to that which were
described in the course, including non-binary classification and
support vector regression.

We will introduce the concept of SVMs using the simplest case for
application. Consider a scenario where we have data that must be
classified into two different groups. If the data are linearly separable,
or in other words, can be separated completely into their groups by a
dividing hyperplane, then our goal is to find the equation of the
hyperplane that best divides the groups.

To be more formal with the problem description, we label the classes
for each of the data points x; as being -1 or 1, i.e. y, e {-1, 1 }. Our
hyperplane function has the equation w'x + b and is defined such that
for all points that have a class y, = -1,

w'x; + b < -1
and for points with a class y, = 1,
wix, +b21.

In our training data, we should have no points in between the
hyperplanes w'x + b = -1 and w'x + b = 1, a region called the ‘margin’.
The dividing plane is the function w'x + b = 0 and we classify new
points by their sign: ;= sign(w'x + b).

Copyright © 2014 Udacity, Inc. All Rights Reserved.

00 25 50 75 100

(Note that w does not look perpendicular due to difference in x and y-axis scaling)

There are many choices of our parameter vector w that allow us to
separate the data, but some are clearly better than others. Ideally, we
want to select parameters for the hyperplane that maximize the size
of the margin.

Consider two points that lie on opposite margins, x, and x_, that are as
close as possible to one another. In this case, the vector connecting
these two lines will be perpendicular to the hyperplanes defining the
margin.

w'x, +b=1andw'x +b = -1,

Subtracting the two equations generates w'(x, - x) = 2. Since the
vectors w and x, - x_are parallel, ||w||*||x, - x|| = 2, where ||v|| is the
magnitude/length of a vector v. Dividing ||w|| on both sides gives the
distance between the hyperplanes ||x, - x || which is equal to 2 / ||w||
From here, we observe that maximizing the size of the margin is

equivalent to finding the minimum ||w|| that maintains the relationshig
y(w'x; + b) 2 1 for all points in the training data. (Recall that w'x; + b >
1wheny =1andw'x,+b<-1wheny =-1.)

We approach solving the problem by noting that minimizing ||w|| is
equivalent to minimizing 1||w|*>, converting the problem into a
quadratic programming optimization problem. The Lagrange
multipliers a transform our optimization problem into one of
maximizing the output of

Copyright © 2014 Udacity, Inc. All Rights Reserved.

w(a) = z o3 2.aay iijiTXj
1 1]

while satisfying the constraints that all 0 < o, and > ay;=0. To

provide some context for interpreting this, think of the multipliers a as

weights on data points. From the constraint > a,y; = 0, the sum of the

1

weights on the points categorized as y; = -1 should be equal to those
categorized as y, = 1. As for w(a), the second term controls the
summed weights in the first term from getting too large. The second
term takes into account the categories of each pair of points (yy, = 1
if they are in the same class, -1 if they differ) and a measure of
similarity (evoked by x,"x).

When we obtain the optimal Lagrange multipliers, it turns out that
most of the weights a;, are equal to zero. The points that have
non-zero weight are the only points that contribute to the calculation of
w, and all in fact fall on the margin, satisfying y(w'x; + b) = 1. These
points are the support vectors for the model. We obtain the

parameter values for our dividing hyperplane from w = X o;x;, and b

= w'x, - y, for some point that lies on the margin.

The above describes the general process for computing SVMs for
linearly separable data, but real-life datasets do not normally allow
themselves to be divided so easily. Here, we discuss two ways to
deal with non-linearly separable datasets and move beyond
hard-margin SVMs. If we have data that is mostly linearly separable,
we can consider using soft-margin SVMs, relaxing the criteria that all
points are correctly classified. If we have data that is separable in a
nonlinear fashion, we can consider using kernel functions to be able
to capture a nonlinear dividing curve between classes. Typically, we
make considerations of both kernel function and value of soft-margin
parameter to perform classification tasks.

In a soft-margin SVM, we do not require the data to be completely
linearly separable and allow for some points to be classified
incorrectly. We provide for each point a non-negative slack variable ¢,
that illustrates to what degree each point is misclassified: y(w'x; + b)
21 - §,. If a point is classified correctly on its side of the margin, then
¢ = 0. If a point gets placed within the margin or in the wrong-classed

Copyright © 2014 Udacity, Inc. All Rights Reserved.

region, then § takes on positive value proportional to the point’s
distance from its desired marginal hyperplane.

00 25 50 75 100

Our optimization problem now has to balance the size of the errors

we make: our goal is to minimize i|lw|[* + CX¢;, where C is a

1

regularization parameter that tells us the weight we want to put on
misclassification errors. With smaller values of C, we punish errors
less, thus increasing the size of the margin. Larger values of C result
in narrower margins; the limit of C as it tends towards infinity is that
any misclassification error is punished to an extent that we effectively
have our original hard-margin SVM. When we convert the optimization
problem into the form maximizing the output of

w(@) = 2o, =3 %qujyf)’jxiij :

the constraint that > o, = 0 remains the same, while the other

constraint now has an upper bound 0 < a, < C. With the soft-margin
SVM, our support vectors (points that have weight 0 < a,) include not
just points on the marginal hyperplanes, but also those points that are
within the margin or are misclassified.

For data that is separable, but not linearly, we can use a kernel
function to capture a nonlinear dividing curve. The kernel function
should capture some aspect of similarity in our data; it also

Copyright © 2014 Udacity, Inc. All Rights Reserved.

represents domain knowledge regarding the structure of the data. In
general, we can write the function we want to maximize as

w(a) = Xo; =5 2oy yk(X,x).
i 1]

In our original, linear SVM, our kernel function was k(x,x) = xx; and
suggested a dividing hyperplane. The kernel function k(x;x;) = (x,ij)2
generates a dividing hypersphere, while k(x,x) = (x'x; + c)’ is the
general form for polynomial kernels. With kernel functions, we can
project the data into a transformed space where a dividing hyperplane
can be found, but when plotted in the original feature space ends up
being a non-linear dividing curve. In order to compute the class of a
new instance, we now utilize the sign of the output

2o, yk(x,x) + b.

Since most of the weights are equal to zero, this is still a fairly quick
computation compared to the linear case.

00 25 50 75 100

It is important to note that the natural task for SVMs lies in binary
classification. For classification tasks involving more than two groups,
a common strategy is to use multiple binary classifiers to decide on a
single-best class for new instances. For example, we may create one
classifier for each class in a one-versus-all fashion then, for new
points, classify them based on the classifier function that produces
the largest value. Alternatively, we can set up classifiers for all

Copyright © 2014 Udacity, Inc. All Rights Reserved.

pairwise comparisons and select the class that ‘wins’ the most
pairwise matchups for new points.

00 2’5 50 75 100

(Figure depicts pairwise matchups approach. Gray lines indicate where a binary
classifier has no effect. Note central area where no class has dominance.)

We can also extend SVMs to regression tasks, or support vector
regression (SVR). As with SVMs, we project data in an SVR task
using a kernel function so that they can be fit by a hyperplane. Instead
of dividing the data into classes, however, the hyperplane now
provides an estimate for the data’s output value. In addition, the
margin and error are treated differently. A parameter ¢ is specified
such that small deviations from the regression hyperplane do not
contribute to error costs, i.e. when we attempt to minimize

Llwl + cX,

¢, = 0 when a point lies within the margin. Non-zero slack variable
values are instead the (linear) distance beyond the e-region that a
point lies. Compare this to the quadratic error function that is found in
standard linear regression tasks, where all deviations from the
estimate count against the function’s fit, but errors are penalized by
the quadratic difference from the estimate.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

3 3-
8o- &2
(%] (&)
1- 1
0 0-
2 A 0 1 2 2 4 0 1 2
deviation deviation

Essentially, however, SVR operates in much the same way as SVM
does. For each point in the training data, we instead have two slack
variables, ¢ and ¢, one for positive deviations and one for negative
deviations from the regression hyperplane. This results in two
Lagrangian multipliers associated with each point, 0 < a, 0(,* < C, and

a respecified constraint on weight values . (a;,—a’)=0. When

solved, the regression function takes the form
2 (0= o) k(x"x) + b.

As before, most of the weights take a value of zero, and for points
with non-zero weights, at most one of a,, a; will be non-zero.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

