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VC Dimension Review

The purpose of this document is to review VC dimension and
PAC learning for infinite hypothesis spaces.

Previously, in discussing PAC learning, we were trying to answer
questions about how difficult it might be to learn a particular concept,
and how long it would take a learner to do so. In that discussion, we
had one sort of big problem: the hypothesis space H had to be finite.

This time we hope to discuss PAC learning for infinite hypothesis
spaces. To do this we will need to introduce the concept of VC
dimension, along with a bunch of other definitions to support it.

In what follows, we are considering a binary classification problem
from the space of instances X. So, each hypothesis /4 € H should
split Xinto two sets:

{x eX|h(x) =1} and {x € X|h(x) = 0}.

In this situation, we will say that a dichotomy has been imposed on X
by 4. Note that either one of the sets above might be the empty set --
this is still acceptable.

Definition: A set of instances S ¢ X is shattered by H iff for every
possible dichotomy of §, there exists some hypothesis & € H that is
consistent with this dichotomy.

In other words, S is shattered by H if there are enough hypotheses in
Hto agree with every possible labeling of S. To get a better
understanding of this, let’s look at some examples.

We will start with the simplest example where Sis one point, x;. In
this case Shas only two possible labelings: x;= 0 and x;= 1 . So

now we can easily come up with a hypothesis space with a
hypothesis for each of the labelings, i.e. a hypothesis space that
shatters S. Let’s try

H = {lhx) =1, h(x) =0}
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for example. In this H the first hypothesis labels everything as 1, and
the second labels everything as 0. The first hypothesis is correct for
the labeling x; = 1, and the second hypothesis is correct for the
labeling x; = 0.

Here is a figure showing a set of three instances shattered by eight
hypotheses.
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Here the hypotheses are indicated by by the ellipses, and
classification is determined by being inside or outside of an ellipse.
For every possible labeling of the points with 0’s and 1’s, there is an
ellipse that agrees with that labeling.

There are also several good examples from the lectures. Michael
asks us to find the largest number of points in the plane that can be
shattered by the hypothesis space of lines. In this example, the lines
divide the plane into 0’s and 1’s. It turns out that we can find an
arrangement of 3 points that can be shattered by lines, but no
arrangement of 4 points that can be.
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The image above shows a three point set shattered by lines in the
plane.

This leads naturally to the following question: for a given instance
space X, and hypothesis space H, what is the largest subset of X
that can be shattered by H? The size of this subset has special
significance, and is termed the VC dimension of H, which is denoted
as VC(H).

Definition: Given an instance space X, the Vapnik-Chervonenkis
dimension of Hover Xis the size of the largest finite subset of X that
can be shattered by H. If arbitrarily large subsets of Xcan be
shattered, then V'C(H) = .

Despite what is written in the lectures, it is best not to think of VC
dimension as a measure of the power of a hypothesis space. Instead,
it is better to think of VC dimension as a measure of the complexity of
a hypothesis space. This distinction is important for heuristic reasons
later on.

It is important to remember that V' C(H)is the size of the largest
subset of Xthat can be shattered by H. In the example above with
the lines in the plane, even though V' C(H)=3, we can cook up an
example of 3 points in the plane that can not be shattered by H. For

example, the three colinear points in the plane shown below can not
be shattered by lines.

Copyright © 2014 Udacity, Inc. All Rights Reserved.



In general, it is easy to find a lower bound m for V' C(H) since we only
need to find one example of set of m points that can be shattered by
H. It is harder to find an upper bound n for VC(H), because we
need to prove that no set of n points can be shattered by

H.

Example: Let’'s suppose the hypothesis space H is the set of single
intervals in the real line R, and the sample space Xis the set of
points on the line. Then we can shatter sets of two points with /#, so
VC(H) =2, but it can be shown that no set of three points can be
shattered by H, so we have VC(H) =2.

Example: Now let's suppose that the hypothesis space H is the set

of all convex polygons in the plane, with the sample space consisting
of points in the plane. Then for any number »n, we can choose a

polygon with points being the nvertices. We can deform the polygon
slightly to leave out any of the vertices, giving an example of an n
point set shattered by H . Since n can be arbitrarily large, we see that

VC(H) = o.

We also note that if the hypothesis space is finite, then there is a
relationship between the size of the hypothesis space Hand V' C(H).

Suppose VC(H) = d. For d points from X, there are 2¢possible

labelings of these points. Each of these labelings requires a separate
hypothesis in order for the subset of d points to be shattered. Thus

2¢ < |H|. It follows that
VCOH) = d < log)|H|.

Now, returning to PAC-learning and ¢-exhaustion, we note that it is
possible (but apparently very difficult) to derive a bound for the

number of training samples needed to ¢-exhaust the version space of
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H with probability (1 —8) . This bound is given by:
m >1(8 V C(H) logy(13/5) + 41ogy(2/3) )

which is analogous to the bound we saw in the case where H was
finite (recall, that bound was m >1(In(#) + In(1/8)) ). In the
expression above, we see that V' C(H) must be finite for us to bound
the number of training examples needed to ¢-exhaust the version
space of H. This is consistent with the theorem Michael provides in
the lecture, which states:

Theorem: A concept class Cis PAC learnable if and only if
VC(C) <oo.

Finally, we recall the heuristic that 7'C(C) measures (in this case)
the complexity of the concept class C. This heuristic is also

consistent with the theorem above -- if the concept class is too
complex, i.e. VC(C) =, then roughly speaking, we will have trouble

choosing with probability (1 —3) a hypothesis that has low error, and
so the concept class C will not be PAC learnable.
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