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Bayesian Learning Extension

This document will go over one of the most useful forms of
statistical inference known as Baye’s Rule and several of the
concepts that extend from it. Named after Thomas Bayes this
rule has far uses that easily extend into machine learning.

Bayes’ Rule:

Using Bayes’ rule for Bayesian Learning:

Choosing the Best Hypothesis:

Bayesian Classification:

Bayes’ Rule:

Charles introduces us to the principal concepts governing Bayesian
learning in this section. Bayes’ rule is an important concept in
probability theory because it allows us to make decisions when facing
uncertainty. In essence, Bayes’ rule allows us to integrate prior
information with our data to come up with new information that we
can use to confirm our possible suspicions. Ultimately, Bayes’ rule is
defined with the following formula:

P(Dh)P(h
P(hD) = Z505

where & represents a hypothesis and D represents our data. In this
formula we call P(hlD) our posterior probability. The posterior
probability can be defined as the conditional probability that is
assigned to a hypothesis after relevant evidence (our data) is taken
into account. We are able to compute this posterior probability by
using the prior probability multiplied by the likelihood function. The
prior probability is our prior belief on the hypothesis, or P(%). The
likelihood function is the probability that the labels we assign our data
are generated from a given hypothesis, or P(D|h). The product is
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normalized by the probability of the data P(D) which sums up the

likelihood of the data under all hypotheses - that way, our posterior
probabilties over all hypotheses sum up to 1. In general it is very easy
to compute the likelihood probabilities.

Let’s take a look at an example:

“Suppose we are fishing in a river where 60% of fish are catfish and 40% of
fish are stripers. At this location we are only allowed to keep fish that are
above 5 Ibs. 50% of Striper are over 5lbs and all catfish are above 5ibs. If we
catch a fish and we get to keep it what is the probability the fish is a striper?”

First we should define our probabilities:
P(S), the probability that a fish is a striper regardless of any other

factors. This is the percentage of fish that are stripers i.e. 40%.

P(C), the probability that a fish is a catfish (or in this case not a
striper) is 60%.

P(K|S), the probability you get to keep the fish given that it is a striper.
This is given in our problem statement as 50%.

P(K|C), the probability you get to keep the fish given it is a catfish.
This is also known to be 100%

P(K), The probability we keep the fish. This can be computed using
the law of total probability as:
P(K) = P(K|S)P(S) + P(K|IC)P(C) = 5.4+ .6%1 =0.80r 80%

These five probabilities are our priors (i.e. our prior beliefs of the
distribution of fish in the lake)

Now we are ready to use Bayes’ theorem to tackle this problem. We
can now find P (S|K)

P(SIK) = P(g\g(& — 0.8.*80.4 — 025

So there is a 25% chance that when we keep a fish that it is a striper.

Using Bayes’ rule for Bayesian Learning:
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We can now use Bayes’ rule to make a decision on which hypothesis
is optimal in relation to our training data. We can do this by finding the
maximum-probability hypothesis given the data across all hypothesis.
In math notation this looks like:

hyrup = argmax,P(h|D) Vh € H

The MAP subscript on Astands for Maximum a Posteriori, which is
the max posterior given all of our priors.

Since we are computing the argmax our prior on the data isn’'t exactly
relevant. That is, we don't care about the P(D)term in the

denominator as it affects all computations equally. This works out
nicely too since often, finding out P(D)can be quite difficult. In some
instances if our assumption that all P(4)'s are equivalent we instead
can compute P (kD) using the maximum likelihood. The maximum
likelihood commonly referred to as ML is computed as.

hy = argmax,P(D|h) YVh e H
Choosing the Best Hypothesis:
Our ultimate goal is to choose the best hypothesis for predicting our

data. However, sometimes there may be ties or the differences in
prediction may be small (e.g. Suppose h, =0.7 and s, =0.71, should

we choose h,or h,). Occam’s Razor states that among competing

hypotheses, the one with the fewest assumptions should be selected.
How do we go about finding the shortest hypothesis? This is where
we need to find the minimal description length.

hypr = argmin, g Le (h) + Le (DIh)
Here L(x) is the description length x under the encoding C

Example:
H = Decision Trees and D = training data labels

L (h) is the number of bits to describe tree
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L (D|h) is the number of bits to describe D given &

From this we can see that #,,,, trades off tree size for training error.
Bayesian Classification:

So far we've found the most probable hypothesis 7#,,,, given a
dataset D. The question now is given a new x what is the most
probable classification? Unfortunately #,,,,(x) isn’t always the most
probable classification.

We need to come up with the Bayes optimal classifier which can be
defined as:

argmaxvjeVhZHP(Vj|hi)P(hi|D)

Where the v/s come from the set of possible classifications assigned
by H.

Example:

Suppose that we are given

P(h|D) = 04 P(h,|D) = 0.3 P(hy|D) = 0.3
and

h(x)= + hy(x) = — hy(x) = —

Find the most probable classification of x . Using the information given
to us we know V' = {—+} and

P(=|hy) = 0, P(+|hy) =1

P(=lhy) = 1, P(+]hy) =0

P(=1|h3) = 1, P(+]h3)=0

Therefore
> P(+|h)P(h|D)=0.4 and > P(—|h)P(h|D) = 0.6
hieH heH

Thus we can conclude that the optimal classifier is -.

In the next lesson you will find ways to improve this classification
process!
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