

Artificial Intelligence for Robotics

Lesson 3: Particle Filters

 Three Types of Filters

Particle Filters are a sequence of algorithms for estimating the state of a system. Of the
filters we cover in this class, particle filters are both the easiest to program and the most
flexible.

Question 1 (State Space):

Which type of state space does each filter use? Continuous or discrete?

Check the appropriate box:

Answer:

Histogram Filters have a
discrete state space, while
Kalman Filters have a
continuous state space.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Question 2 (Belief Modality):

With respect to a belief function, check which distribution — unimodal or multimodal —
pertains to each filter?

Answer: Belief Modality

Remember that even though the histogram filters are discrete, they are able to represent
multiple bumps. On the other hand the Kalman filter was a single Gaussian, which is by
definition unimodal.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Question 3 (Efficiency):

When it comes to scaling and the number of dimensions of the state space, how are grid
cells, and/or Gaussians represented for each filter, as a quadratic or an exponential?

Answer: Efficiency

The histogram's biggest disadvantage is that it scales exponentially. This is because any
grid that is defined over k-dimensions will end up having exponentially many grid cells in the
number of dimensions, which doesn't allow us to represent high dimensional grids very well.
This is sufficient for 3-dimensional robot localization programs, but becomes less useful
with higher dimensions. In contrast, the Kalman filter is quadratic. It is fully represented by a
vector — the mean — and the covariance matrix, which is quadratic. This makes the Kalman
filter a lot more efficient because it can operate on a state space with more dimensions.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Question 4 (Exact or Approximate):

Do histogram filters and Kalman filters respectively give approximate or exact solutions?

Answer: Exact or Approximate

Both histogram and Kalman filters are not exact, but are an approximation of the posterior
distribution. Histogram filters are approximate because the world is not discrete;
localization for example, is an approximate filter. Kalman filters are also approximate, they
are only exact for linear systems, however, the world is non-linear.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Particle Filters

Let's fill in the characteristics of particle filters the same way we did with the histogram and
Kalman filters.

In terms of efficiency, the verdict is still out. In certain situations particle filters scale
exponentially, and it would be a mistake to represent particle filters over anything more
than four dimensions. However, in tracking domains they tend to scale much better.

The key advantage of particle filters is that they are really easy to program. In this class you
will write your own particle filter for a continuous value localization problem.

Here is a floor plan of an environment
where a robot is located and the robot has
to perform global localization. Global
localization is when an object has no idea
where it is in space and has to find out
where it is just based on sensory
measurements.

The robot, which is located in the upper
right hand corner of the environment, has
range sensors that are represented by the
blue stripes. The sensors use sonar
sensors, which means sound, to range the
distance of nearby obstacles. These
sensors help the robot determine a good
posterior distribution as to where it is.
What the robot doesn't know is that it is starting in the middle of a corridor and completely
uncertain as to where it is.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSonar&sa=D&sntz=1&usg=AFQjCNGIzsum5OQ3nXSjnOsRAALIe_2RQw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSonar&sa=D&sntz=1&usg=AFQjCNGIzsum5OQ3nXSjnOsRAALIe_2RQw

In this environment the red dots are particles. They are a discrete guess as to where the
robot might be. These particles are structured as an x coordinate, a y coordinate and also a
heading direction — three values to comprise a single guess. However, a single guess is not
a filter, but rather it is the set of several thousands of guesses that together generate an
approximate representation for the posterior of the robot.

The essence of particle filters is to have the particles guess where the robot might be
moving, but also have them survive, a kind of "survival of the fittest," so that particles that
are more consistent with the measurements, are more likely to survive. As a result, places of
high probability will collect more particles, and therefore be more representative of the
robot's posterior belief. The particle together, make up the approximate belief of the robot
as it localizes itself.

Using Robot Class
Sebastian has written some code that will allow us to make a robot move along the x and y
coordinates as well as in the heading direction. Take a minute to familiarize yourself with
this code and then see how you can use it.

 from math import *
 import random

 landmarks = [[20.0, 20.0],
 [80.0, 80.0],
 [20.0, 80.0],
 [80.0, 20.0]]
 world_size = 100.0

 class robot:
 def __init__(self):
 self.x = random.random() * world_size
 self.y = random.random() * world_size
 self.orientation = random.random() * 2.0 * pi
 self.forward.noise = 0.0;
 self.turn_noise = 0.0;
 self.sense_noise = 0.0;

Call a function 'robot' and assign it to a function myrobot

 myrobot = robot()
 # the parameters are the x and y coordinate and the heading in radians
 myrobot.set(10.0, 10.0, 0.0)
 print myrobot

● [x=10.0 y=10.0 heading=0.0]

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Next, make the robot move:

 myrobot = robot()
 # the parameters are the x and y coordinate and the heading in radians
 myrobot.set(10.0, 10.0, 0.0)
 print myrobot
 # this means the robot will move 10 meters forward and will not turn
 myrobot = myrobot.move(0.0, 10.0)
 print myrobot

● [x=20.0 y=10.0 heading=0.0]

Now, make the robot turn:

 myrobot = robot()
 # this is the x and y coordinate and the heading in radians
 myrobot.set(10.0, 10.0, 0.0)
 print myrobot
 # this will make the robot turn by pi/2 and 10 meters
 myrobot = myrobot.move(pi/2, 10.0)
 print myrobot

● [x=10.0 y=20.0 heading=1.5707]

You can generate measurements with the command sense to give you the distance to the
four landmarks:

myrobot = robot()
this is the x and y coordinate and the heading in radians
myrobot.set(10.0, 10.0, 0.0)
print myrobot
this will make the robot turn by pi/2 and 10 meters
myrobot = myrobot.move(pi/2, 10.0)
print myrobot
print myrobot.sense()

● [x=20.0 y=10.0 heading=0.0] [x=10.0 y=20.0 heading=1.5707] [10.0, 92.195444572928878,
60.87625302982199, 70.0]

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Robot Class Details
Included in the code that Sebastian has provided are a few functions to take note of:

 class robot:
 def __init__(self):
 self.x = random.random() * world_size
 self.y = random.random() * world_size
 self.orientation = random.random() * 2.0 * pi
 self.forward.noise = 0.0;
 self.turn_noise = 0.0;
 self.sense_noise = 0.0;

The section of code above shows how the robot assimilates noises, which at this point are
all set to zero.

 def set(self, new_x, new_y, new_orientation):
 if new_x < 0 or new_x >= world_size:
 raise ValueError, 'X coordinate out of bound'
 if new_y < 0 or new_y >= world_size:
 raise ValueError, 'Y coordinate out of bound'
 if new_orientation < 0 or new_orientation >= 2 *pi:
 raise ValueError, 'Orientation must be in [0..2pi]'
 self.x = float(new_x)
 self.y = float(new_y)
 self.orientation = float(new_orientation)

 def set_noise(self, new_f_noise, new_t_noise, new_s_noise):
 # makes it possible to change the noise parameters
 # this is often useful in particle filters
 self.forward_noise = float(new_f_noise);
 self.turn_noise = float(new_t_noise);
 self.sense_noise = float(new_s_noise);

The set_noise function above allows you to set noises.

 def measurement_prob(self, measurement):
 # calculates how likely a measurement should be
 # which is an essential step
 prob = 1.0;
 for i in range(len(landmarks)):
 dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2)
 prob *= self.Gaussian(dist, self.sens_noise, measurement[i])
 return prob

Copyright © 2014 Udacity, Inc. All Rights Reserved.

The function above, measurement_prob, accepts a measurement and tells you how
plausible it is. This is a key aspect to the "survival of the fittest" aspect of particle filters.
However, we will not use this function until later.

Question 5 (Moving Robot):

Using your interpreter, make a robot that satisfies the following requirements:

 # starts at 30.0, 50.0, heading north (=pi/2)
 # turns clockwise by pi/2, moves 15 meters
 # senses
 # turns clockwise by pi/2, moves 10 meters
 # sense

After printing senses the first time around we get the following output:

● [39.0, 46.0, 39.0, 46.0]

After printing sense the second time around we get the following output:

● [32.0, 53.1, 47.1, 40.3]

Answer: Moving Robot

myrobot = robot()
myrobot.set(30.0, 50.0, pi/2)
myrobot = myrobot.move(-pi/2, 15.0)
print myrobot.sense()

myrobot = myrobot.move(-pi/2, 10.0)
print myrobot.sense()

● [39.0, 46.0, 39.0, 46.0] [32.0, 53.1, 47.1, 40.3]

Question 6 (Add Noise):

The following code has built in noise variables for forward, turn and sense:

 class robot:
 def __init__(self):
 self.x = random.random() * world_size
 self.y = random.random() * world_size
 self.orientation = random.random() * 2.0 * pi
 self.forward.noise = 0.0;
 self.turn_noise = 0.0;
 self.sense_noise = 0.0;

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Further below in the code you can set the noises:

 def set_noise(self, new_f_noise, new_t_noise, new_s_noise):
 # makes it possible to change the noise parameters
 # this is often useful in particle filters
 self.forward_noise = float(new_f_noise);
 self.turn_noise = float(new_t_noise);
 self.sense_noise = float(new_s_noise);

In your code, set the values as follows:

 # forward_noise = 5.0, turn_noise = 0.1, sense_noise = 5.0
 # starts at 30.0, 50.0, heading north (=pi/2)
 # turns clockwise by pi/2, moves 15 meters
 # senses
 # turns clockwise by pi/2, moves 10 meters
 # sense

Answer: Add Noise

myrobot = robot()
myrobot.set_noise(5.0, 0.1, 5.0) # here is where you add your code
myrobot.set(30.0, 50.0, pi/2)
myrobot = myrobot.move(-pi/2, 15.0)
print myrobot.sense()

myrobot = myrobot.move(-pi/2, 10.0)
print myrobot.sense()

Notice that every time you hit run you get different set of values.

Robot World
Now, you can program the robot to turn, move
straight after the turn, and sense the distance
to four designated landmarks (L1, L2, L3, L4). The
distances from the landmarks to the robot make
up the measurement vector of the robot. The
robot will live in a world of 100x100, so if it falls
on one end, then it appears on the other — it is
a cyclic world.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Creating Particles
The particle filter you are going to program maintains a set of 1,000 (N = 1000) random
guesses as to where the robot might be, represented by a dot. Each dot is a vector that
contains an x-coordinate (38.2), a y-coordinate (12.4), and heading direction (0.18). The
heading direction is the angle (in radians) the robot points relative to the x-axis; so as this
robot moves forward it will move slightly upwards.

In your code, every time you call the function robot() and assign it to a particle p[i], the
elements p[i].x, p[i].y, p[i].orientation (which is the same as heading) are initialized at random.

In order to make a particle set of 1,000 particles, you have to program a separate piece of
code that assigns 1,000 of those to a list.

Question 7 (Creating Particles):

Fill in the code so that your results assigns 1,000 particles to a list.

 N = 1000
 p = []
 #Your Code Here
 print len(p)

Answer: Creating Particles

N = 1000
p = []
for i in range(N): # iterate the loop 1000 times
 x = robot() # create an object called robot
 p.append(x) # append the object to growing list p
print len(p)

● 1000

If you try to print just p you get 1000 particles, each of which has three values associated
with it, an x-coordinate, a y-coordinate and an orientation (heading direction).

Question 8 (Robot Particles):

Take each particle and simulate robot motion. Each particle should first turn by 0.1 and then
move forward 5.0 meters. Go back to your code and make a new set p that is the result of
the specific motion, turn by 0.1 and move forward 5.0 meters, to all of the particles in p.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

 N = 1000
 p = []
 for i in range(N):
 x = robot()
 p.append(x)

Answer: Robot Particles

Here is one possible solution:

N = 1000 p = []
for i in range(N):
 x = robot()
 p.append(x)

p2 = []
for i in range(N): # go through all the particles again
 # append to list p2 the result of motion applied to the i particle,
 # chosen from particle set
 p2.append(p[i].move(0.1, 5.0))
p = p2

If you got this far, you are halfway through! However, the next half is going to be tricky.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Second Half of Particle Filters
The second half of particle filters works like this; suppose
you have a robot that sits amid four landmarks and can
measure the exact distances to the landmarks. To the right,
the image shows the robot's location and the distances it
measures, as well as "measurement noise," which is
modeled as a Gaussian with a mean of zero. This means
there is a chance of the measurement being too short or
too long, and that probability is governed by a Gaussian.

Now we have a measurement vector that
consists of the four values of the four
distances from L1 to L4. If a particle
hypothesizes that its coordinates are
somewhere other than where the robot
actually is (the red robot indicates the particle
hypothesis), we have the situation shown
below.

The
particle also hypothesizes a different heading
direction. You can take the measurement vector from
our robot and apply it to the particle.

However, this ends up being a very poor measurement
vector for the particle. The green indicates the
measurement vector we would have predicted if the
red particle actually were a good match
for the robot's actual location.

The closer your particle is to the
correct position, the more likely will be
the set of measurements given that
position. Here is the trick to particle
filters; the mismatch of the actual
measurement and the predicted
measurement leads to an importance
weight that tells you how important
that specific particle is. The larger the
weight the more important it is.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

When you have a bunch of particles, each has its own weight; some are very plausible, while
others look very implausible as indicated by the size of the particle.

Next we allow the particles to
survive at random, but the
probability of survival will be
proportional to the weights.
That is, a particle with a larger
weight will survive at a higher
proportion than a particle with
a small weight. This means
that after resampling, which is
randomly drawing new
particles from the old ones
with replacement in
proportion to the importance
weight, the particles with a higher importance weight will live on, while the smaller ones will
die out. The "with replacement" aspect of this selection method is important because it
allows us to choose the high probability particles multiple times. This causes the particles to
cluster around regions with high posterior probability.

From here you want to implement a method of setting importance weights, which is related
to the likelihood of a measurement and you want to implement a method of resampling that
grabs particles in proportion to those weights.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Have a look at this code:

 # this is a random initialization of the robot, which will return a random output
 myrobot = robot()
 myrobot = myrobot.move(0.1, 5.0)
 Z = myrobot.sense()
 print Z
 print myrobot
 [69, 15, 53, 47]
 [x=33.657 y=48.869 heading=0.5567]

Question 9 (Importance Weight):

Program a way to assign importance weights to each of the particles in the list. Make a list
of 1,000 elements, where each element in the list contains a number that is proportional to
how important the particle is. To make things easier Sebastian has written a function called
measurement_probability. This function accepts a single parameter, the measurement
vector Z that was just defined, and calculates as an output how likely the measurement is.
By using a Gaussian, the function measures how far away the predicted measurements
would be from the actual measurements.

 def measurement_prob(self, measurement):
 # calculates how likely a measurement should be
 # which is an essential step
 prob = 1.0;
 for i in range(len(landmarks)):
 dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]))
 prob *= self.Gaussian(dist, self.sense_noise, measurement[i])
 return prob

For this function to run properly, you have to assume that there is measurement noise for
the particles, so we need to change our particle generator:

 N = 1000
 p = []
 for i in range(N):
 x = robot()
 x.set_noise(0.05, 0.05, 5.0) # this line ensures particles have a certain amount of noise
 p.append(x)

Once again, please program a list of 1,000 elements in w so that each number in this vector
reflects the output of the function measurement_prob applied to the measurement Z. This
will help us when we want to resample our particles to create a new set of particles that
better match the position of our robot.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Answer: Importance Weight

w = []
for i in range(N):
 # append the output of the function measurement_prob
 # to the i particle with the argument of the extra measurement
 w.append(p[i].measurement_prob(Z))
print w

The results return some outputs that are highly unlikely, with exponents of -146, while
others are more likely, for example exponents of
-5 — these are the particles that are more likely
to survive.

For the final step of the particle filter algorithm,
you have to sample particles from p with a
probability that is proportional to a
corresponding w value. Particles in p that have a
large output value should be drawn more
frequently than the ones with a smaller value.
How hard can that be?

Resampling
Resampling is the trickiest part of programming a particle filter. Resampling is when you
generate a new list of particles by letting some of your old particles survive and killing off
others. When you are given N particles to resample, each of them will have three values (x,
y, and orientation) and a weight, w. The weights are continuous values which sum to W.

W = w∑

i
 i

 We can normalize the weights:

 α 1
 = W

w1

 α 2
 = W

w2

. α N
 = W

wN

The sum of all alphas (the normalized weights) is:

∑

i
αi = 1

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Resampling puts all the particles and their normalized weights into a big bag. It then draws
N new particles with replacement by picking each particle with a probability proportional to
the value of it’s . For example, let’s pretend we have 5 particles to be resampled with α
normalized weights of 1 , 2 , 3, 4, and 5. The values of 2 and 3 are larger than the α α α α α α α
other 3; first we may draw 2 , which becomes p2, and similarly 3 might also be large and α α
picked up as p3. By chance you may also pick up small 4 , to add p4, and you can also pick the α
same one again, like 2, to have two versions of p2, or maybe even three!α

If there are N particles to begin with, you draw N times. In the end, those particles that have
a high normalized weight will occur more
frequently in the new set. This is resampling.

Question 10 (Resampling):

During the process of resampling, if you
randomly draw a particle in accordance to the
normalized importance weights, what is the
probability of drawing p1 - p5?

Answer: Resampling

To obtain the answer, you just have to
normalize the importance weights by dividing each weight by the sum of the weights.

Question 11 (Never Sampled-1):

Is it possible that p1 is never sampled in the
resampling step? Check yes or no.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Answer: Never Sampled-1

Yes; something with an importance weight
of 0.1 is quite unlikely to be sampled into
the next data set.

Question 12 (Never Sampled-2):

Is it possible that p3 is never sampled in the
resampling step? Check yes or no.

Answer: Never Sampled-2

The answer is yes again, because even
though the importance weight is large, it
is still possible that in each of the five
resampling steps you would pick one of
the other four.

Question 13 (Never Sampled-3):

What is the probability of never sampling p3? To
answer this question, assume you make a new particle
set with N = 5 new particles, where particles are
drawn independently and with replacement.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Answer: Never Sampled-1

For p3 to never be drawn in the resampling phase, you would always have to draw p1, p2, p4 or
p5. These together have a 0.6 probability of being drawn (sum of them all) in any given draw.
For five independent samplings to draw one of those four, you get a total probability of 0.65,
which is approximately 0.0777. In other words, there is about a 7.77 percent chance that p3 is
missing — which means there is about a 92 percent probability of sampling it at least once.
Particles with small importance weights will survive at a much lower rate than the ones with
larger importance weights. This is exactly what you want to get from the resampling step.

New Particle Set

Question 14 (New Particle Set):

Modify the given algorithm to resample the list of particles and their respective importance
weights. Take the list of particles and importance weights of N particles and sample it with
replacement N times to get a new list of N particles; each particle should have a probability
proportional to its importance weight for being picked *for each sample.*

Remember that you have already calculated the new particles and the corresponding
importance weights; you now must construct a new particle set p3 = [], so that the particles
in p3 are drawn according to their importance weights, w.

 p2 = []
 for i in range(N):
 p2.append(p[i].move(0.1, 5.0))
 p = p2

 w = []
 for i in range(N):
 w.append(p[i].measurement_prob(Z))

 p3 = []
 p = p3

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Question 15 (Resampling Wheel):

Represent all of the particles and importance weights in a
big wheel. Each particle occupies a slice that corresponds
to its importance weight. Particles with a bigger weight
occupy more space, where particles with a smaller weight
occupy less space.

Initially, guess a particle index, giving a uniform probability
to each index from the set of all indices. This can be
written as:

index = U[1...N]

We’ll use a random selection of w6 for this index for the visualization. The trick is now to
construct a function, which you initialize to zero, and to which you add a uniformly drawn
continuous value that sits between zero and 2*wmax. (The variable wmax is the largest of the
importance weights in the importance set.) We will call this function Beta (β).

Since w5 is the largest in this example, you are going to add a random value that might be as
large as twice w5. Suppose that you start at the position indicated in the picture above and
add a β (randomly chosen between 0 and 2*wmax) that brings you to w7, as shown below.
Now iterate the following loop; if the importance weights of the present particle doesn't
suffice to reach all the way to the end of β, then subtract the value of the importance
weight from β and add one to the index. This is written as:

Copyright © 2014 Udacity, Inc. All Rights Reserved.

while w[index] < Beta:
 Beta -= w[index]
 index += 1

What you have done is moved the index to the next w and removed a section of β.

By repeating this, you will eventually get to the point where beta is smaller than your
w[index], then you pick the particle associated with that index. This particle will be added to
your new list of particles!

When we do this N times, we get N particles, and we can see that particles will be chosen in
proportion to their circumference on the circle.

Now your job is to implement this Resampling Wheel in Python!

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Answer: Resampling Wheel (Sebastian’s Code)

from math import *
import random

landmarks = [[20.0, 20.0], [80.0, 80.0], [20.0, 80.0], [80.0, 20.0]]
world_size = 100.0

class robot:
 def __init__(self):
 self.x = random.random() * world_size
 self.y = random.random() * world_size
 self.orientation = random.random() * 2.0 * pi
 self.forward_noise = 0.0;
 self.turn_noise = 0.0;
 self.sense_noise = 0.0;

 def set(self, new_x, new_y, new_orientation):
 if new_x < 0 or new_x >= world_size:
 raise ValueError, 'X coordinate out of bound'
 if new_y < 0 or new_y >= world_size:
 raise ValueError, 'Y coordinate out of bound'
 if new_orientation < 0 or new_orientation >= 2 * pi:
 raise ValueError, 'Orientation must be in [0..2pi]'
 self.x = float(new_x)
 self.y = float(new_y)
 self.orientation = float(new_orientation)

 def set_noise(self, new_f_noise, new_t_noise, new_s_noise):
 # makes it possible to change the noise parameters
 # this is often useful in particle filters
 self.forward_noise = float(new_f_noise);
 self.turn_noise = float(new_t_noise);
 self.sense_noise = float(new_s_noise);

 def sense(self):
 Z = []
 for i in range(len(landmarks)):
 dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2)
 dist += random.gauss(0.0, self.sense_noise)
 Z.append(dist)
 return Z

 def move(self, turn, forward):
 if forward < 0:
 raise ValueError, 'Robot cant move backwards'
 # turn, and add randomness to the turning command
 orientation = self.orientation + float(turn) + random.gauss(0.0, self.turn_noise)
 orientation %= 2 * pi

Copyright © 2014 Udacity, Inc. All Rights Reserved.

https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2Fw%2Fedit%3Fpage%3D20.0%252C_20.0%255D%252C_%255B80.0%252C_80.0%255D%252C_%255B20.0%252C_80.0%255D%252C_%255B80.0%252C_20.0&sa=D&sntz=1&usg=AFQjCNH4k1MQgi7-uhEu8TAiJNahARMC-g

 # move, and add randomness to the motion command
 dist = float(forward) + random.gauss(0.0, self.forward_noise)
 x = self.x + (cos(orientation) * dist)
 y = self.y + (sin(orientation) * dist)
 x %= world_size # cyclic truncate
 y %= world_size
 # set particle
 res = robot()
 res.set(x, y, orientation)
 res.set_noise(self.forward_noise, self.turn_noise, self.sense_noise)
 return res

 def Gaussian(self, mu, sigma, x):
 # calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma
 return exp(- ((mu - x) ** 2) / (sigma ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2))

 def measurement_prob(self, measurement):
 # calculates how likely a measurement should be
 prob = 1.0;

 for i in range(len(landmarks)):
 dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2)
 prob *= self.Gaussian(dist, self.sense_noise, measurement[i])
 return prob

 def __repr__(self):
 return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y), str(self.orientation))

def eval(r, p):
 sum = 0.0;
 for i in range(len(p)): # calculate mean error
 dx = (p[i].x - r.x + (world_size/2.0)) % world_size - (world_size/2.0)
 dy = (p[i].y - r.y + (world_size/2.0)) % world_size - (world_size/2.0)
 err = sqrt(dx * dx + dy * dy)
 sum += err
 return sum / float(len(p))

N = 1000
T = 10

myrobot = robot()

p = []
for i in range(N):
 r = robot()
 r.set_noise(0.05, 0.05, 5.0)#Sebastian's provided noise.
 p.append(r)

for t in range(T):
 myrobot= myrobot.move(0.1, 5.0)
 Z = myrobot.sense()

 p2 = []

Copyright © 2014 Udacity, Inc. All Rights Reserved.

 for i in range(N):
 p2.append(p[i].move(0.1, 5.0))
 p = p2

 w = []
 for i in range(N):
 w.append(p[i].measurement_prob(Z))

 p3 = []
 index = int(random.random() * N)
 beta = 0.0
 mw = max(w)
 for i in range(N):
 beta += random.random() * 2.0 * mw
 while beta > w[index]:
 beta -= w[index]
 index = (index + 1) % N
 p3.append(p[index])
 p = p3

 print eval(myrobot, p)

if eval(myrobot, p) > 15.0:
 for i in range(N):
 print '#', i, p[i]
 print 'R', myrobot

Question 16 (Orientation):

Will orientation never play a role?

1. Yes
2. No, eventually they matter

Answer: Orientation

● b. No, eventually they matter

Orientation does matter in the second step of particle filtering because the prediction is so
different for different orientations.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Programing the Orientation
Program the particle filter to run twice:

Solution:

● N = 1000 T = 2

 myrobot = robot()

 p = []
 for i in range(N):
 r = robot()
 r.set_noise(0.05, 0.05, 5.0)
 p.append(r)

 for t in range(T): # insert a for loop, indent everything below until print p
 myrobot= myrobot.move(0.1, 5.0)
 Z = myrobot.sense()

 ...

 print p # only print the final distribution

When you run this code the orientations are not that worked out.

What if you move ten steps forward:

 N = 1000
 T = 10 # robot moves 10 steps forward instead of 2

 myrobot = robot()

 p = []
 for i in range(N):
 r = robot()
 r.set_noise(0.05, 0.05, 5.0)
 p.append(r)

 for t in range(T):
 myrobot= myrobot.move(0.1, 5.0)
 Z = myrobot.sense()

 ...

 print p # only print the final distribution

Copyright © 2014 Udacity, Inc. All Rights Reserved.

When you run this code, you get orientations that all look alike, the orientations are all
between 3.6 and 3.9, the y's are all between 53 and 55, and the x's are all around 39. This
consistency is how you know the particle filter is working.

Programming
Rather than print out the particles themselves, you can print out the overall quality of the
solution. To do this you already have an eval code that takes in the robot position, r, and a
particle set, p, to compute the average error of each particle relative to the robot position in
x and y, but which doesn’t consider orientation. The way the function works is that it
compares the x and y of the particle with the x and y of the robot and computes the
Euclidean distance with the x and y distances and then averages all of those values.

 def eval(r, p):
 sum = 0.0;
 for i in range(len(p)): # calculate mean error
 # the last part of this next line is normalization for a cyclical world
 dx = (p[i].x - r.x + (world_size/2.0)) % world_size - (world_size/2.0)
 dy = (p[i].y - r.y + (world_size/2.0)) % world_size - (world_size/2.0)
 err = sqrt(dx * dx + dy * dy)
 sum += err
 return sum / float(len(p))

Take the function eval and produce a sequence of performance evaluations so that when
you hit the run button you return error numbers that look something like this:

Solution:

 print eval(myrobot, p)

Looks simple! Remember that when you print this statement over and over you do not
always get the same results.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

What You Programmed (You and Sebastian)
You just programmed a full particle filter! Sebastian provided you with a very primitive robot
simulator that uses landmarks as a way of taking measurements and uses three-dimensional
robot coordinates (x, y, and orientation). You solved the estimation problem in just 30 lines
of code! This is a small amount of code for something that is amazingly powerful. You can
reuse these lines of code in pretty much all problems you might study that require particle
filters.

Recap: The Math Behind It All
For your particle filters you had two kinds of updates:

● 1. Measurement updates

For the measurement update you computed posterior over state, given a measurement
update, that was proportional to the normalization of the probability of the measurement,
given the state, multiplied by P(x). This is written as:

● P(X|2) P(2|X) P(X)α

Let's flesh out this formula to show you how you used it. The distribution, P(X), was your set
of particles; 1000 particles together represented your P(X)-- prior X. The importance weight
is represented by P(2|X). Technically speaking, the particles with the importance weights are
a representation of the distribution. But we want to get rid of the importance weights so
by resampling you work the importance weight back into the set of particles so that the
resulting particles P(X|2) will represent the correct posterior.

● 2. Motion updates

In the motion update you computed a posterior over distribution one time step later, and
that is the convolution of the transition probability, multiplied by the prior. This is written as:

● P(X') = P(X'|X)P(X)Σ

Similarly, let's have a look at how this formula is operating within your particle filter. Your set
of particles is written as P(X), and your sample from the sum, . By taking a random particle Σ
from P(X) and applying the motion model with the noise model to generate a random particle
(X1). As a result you get a new particle set, P(X1) that is the correct distribution after the
robot motion.

This math is actually the same for all of the filters we have talked about so far!

Question 15 (Filters):

Which filters did Sebastian use in his job talk at Stanford?

Copyright © 2014 Udacity, Inc. All Rights Reserved.

● Histogram filters
● Kalman filters
● Particle filters
● None

Answer: Filters

1. Histogram filters (1998) c. Particle filters (2003)

2012
The difference between the Google car and what you have learned so far, is that the
Google car follows a bicycle model and the sensor data. Instead of using landmarks like the
robot, the Google car uses a really elaborate road map. It takes a single snapshot, matches it
to the map and the better the match, the higher the score. Additional sensors, like GPS and
inertial sensors, also differentiate the Google car from your robot model.

Despite these differences, you do have a solid understanding of the gist of how the Google
car is able to understand where it is and where other cars are. When you build a system, you
have to dive into more elaborate systems, which is doable.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

