

Artificial Intelligence for Robotics

Lesson 1: Localization

Intro
In this course you will learn how to program self-driving cars! Specifically, in this unit, you will
learn how to program a localizer, which is a directional aid used to assist machines in making
informed navigation decisions.

Over the past decade computer scientists have developed methods using sensors, radars and
software to program vehicles with the ability to sense their own location, the locations of
other vehicles and navigate a charted course.

Stanford University Professor and director of the Stanford Artificial Intelligence Lab,
Sebastian Thrun's autonomous cars, Stanley and Junior illustrate the progress that has been
made in this field over the last decade. Additionally, the Google Driverless Car Project seeks to
further research and development to make driverless cars a viable option for people
everywhere. Driverless cars sound neat, huh? Want to program your own?

Let's get started!

The Problem of Localization
Localization is the ability for a machine to locate itself in space.

Consider a robot lost in space. Within its environment, how can the robot locate where it is?

Rather than install a GPS device in our robot, we are going to write a program to implement
localization.

Our localization program will reduce the margin of error considerably compared to a GPS device,
whose margin of error can be as high as ten meters. For our robot to successfully and
accurately navigate itself through space, we are looking for a margin of error between two and
ten centimeters.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Imagine a robot resides in a one-dimensional world, so somewhere along a straight line, with no
idea where it is in this world. For an example of such a world, we can imagine a long, narrow
hallway where it is only possible to move forward or backwards; sideways motion is impossible.

Since our robot is completely clueless about its location, it believes that every point in this one
dimensional world is equally likely to be its current position. We can describe this
mathematically by saying that the robot's probability function is uniform (the same) over the
sample space (in this case, the robot's one-dimensional world).

If we were to draw a graph of this probability function with probability on the vertical axis and
location on the horizontal axis, we would draw a straight, level line. This line describes a
uniform probability
function, and it
represents the state of
maximum confusion.

Assume there are three
landmarks, which are three
doors that all look alike and
we can distinguish a door
from a non-door area.

If the robot senses it is next to a door, how does this affect our belief — or the probability that
the robot is near a door?

In the new function,
there are three bumps
aligned with the
location of the doors.
Since the robot has
just sensed that it is
near a door, it assigns
these locations
greater probability
(indicated by the
bumps in the graph)
whereas, all of the
other locations have
decreased belief.

This function represents another probability distribution, called the posterior belief where the
function is defined after the robot's sense measurement has been taken.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

The posterior function is the best representation of the robot's current belief, where each
bump represents the robot's evaluation of its position relative to a door.

However, the possibility of making a bad measurement constantly looms over robotics, and
over the course of this class we will see various ways to handle this problem.

Robot Movement

If the robot moves to the right a certain distance, we can shift the belief according to the
motion.

Notice that all of the bumps also shift to the right, as we would expect. What may come as a
surprise, however, is that these
bumps have not shifted perfectly.
They have also flattened. This
flattening is due to the uncertainty
in robot motion: since the robot
doesn't know exactly how far it has
moved, its knowledge has become
less precise and so the bumps have
become less sharp.

When we shift and flatten these
bumps, we are performing a
convolution. Convolution is a
mathematical operation that takes
two functions and measures their overlap. To be more specific, it measures the amount of
overlap as you slide one function over another. For example, if two functions have zero
overlap, the value of their convolution will be equal to zero.

If they overlap completely, their convolution will be equal to one. As we slide between these
two extreme cases, the convolution will take on values between zero and one. The animations
here and here should help clarify this concept.

In our convolution, the first function is the belief function (labeled "posterior" above), and the
second is the function which describes the distance moved, which we will address in more
depth later. The result of this convolution is the shifted and flattened belief function shown
below.

Now, assume that after the robot
moves it senses itself right next to a
door again so that the measurement is
the same as before. Just like after our
first measurement, the sensing of a
door will increase our probability

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConvolution&sa=D&sntz=1&usg=AFQjCNFxsxWjocjcPCOddpj2IuDP8T-iPw
http://www.google.com/url?q=http%3A%2F%2Fmathworld.wolfram.com%2FConvolution.html&sa=D&sntz=1&usg=AFQjCNFpsC-NRJcqkCa7uZNYmlkmD20gzA

function by a certain factor everywhere where there is a door. So, should we get the same
posterior belief that we had after our first measurement? No! Because unlike with our first
measurement, when we were in a state of maximum uncertainty, this time we have some idea
of our location prior to sensing. This prior information, together with the second sensing of a
door, combine to give us a new probability distribution, as shown in the bottom graph below.

In this graph we see a few minor
bumps, but only one sharp peak. This
peak corresponds to the second
door. We have already explained this
mathematically, but let's think
intuitively about what happened.
First, we saw the first door. This led
us to believe that we were near
some door, but we didn't know
which. Then we moved and saw
another door. We saw two doors in a
row! So of course our probability
function should have a major peak
near the only location where we
would expect to see two doors in a

row.

Once again, it's important to note that we still aren't certain of our location, but after two
measurements we are more sure than we were after one or zero measurements. What do you
think would happen as we made more and more measurements?

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Congratulations! You now understand both probability and localization! The type of
localization that you have just learned is known as Monte Carlo localization, also called
histogram filters.

Exercises

Question 1 (Uniform Probability Quiz)

If a robot can be in one of five grid cells, labeled Xi ,for i=1...5, what is the probability for each Xi

?

Answer 1 (Uniform Probability Quiz)

P(Xi)=0.2

Question 2 (Uniform Distribution Quiz)

Modify the empty list:

p = []

such that p becomes a uniform distribution over five grid cells, expressed as a vector of five
probabilities. For example, the probability that the robot is in cell two, can be written as:

p[2] = 0.2

and given that each cell has the same probability that the robot will be in there, you can also
write the probability that the robot is in cell five by writing:

p[5] = 0.2

For a refresher on python, the links here will be helpful.

Answer 2 (Uniform Distribution Quiz)

A simple solution is to specify each element in the list p.

p = [0.2, 0.2, 0.2, 0.2, 0.2]

print p

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www.google.com/url?q=http%3A%2F%2Fwiki.python.org%2Fmoin%2FBeginnersGuide%2FProgrammers&sa=D&sntz=1&usg=AFQjCNEpgYQBvcwm1tLBFcrMN9Kl0l-6Mg

[0.2, 0.2, 0.2, 0.2, 0.2]

Question 3 (Generalized Uniform Distribution)

Modify your code to create probability vectors, p of arbitrary size, n. For example use:

n=5

to help us to verify that our solution matches the previous solutions.

Answer 3 (Generalized Uniform Distribution)

Use a for loop:

#define global variables p and n.
p = []
n = 5
#Useaforlooptosearchforacell,i,inaworldwithagivenlength,
n

for i in range (n)
#Appendtothelist''n''elementseachofsizeoneover''n''.Remember
to use floating point numbers

 p.append(1./n)

print p

If we forget to use floating point operations, python will interpret our division as integer
division. Since 1 divided by 5 is 0 with remainder 1, our incorrect result would be [0,0,0,0,0]

Now we are able to make p a uniform probability distribution regardless of the number of
available cells, specified by n.

Question 4 (Probability After Sense)

Now that we can establish the robot's initial belief about its location in the world, we want to
update these beliefs given a measurement from the robot's sensors.

Examine the measurement of the robot in a world with five cells, x1 through x5.

Say we know that externally two of the cells (x2 and x3) are colored red, and the other three
(x1, x4 and x5) are green. We also know that our robot senses that it resides in a red cell.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

How will this affect the robot's belief in its location in the world?

Knowing that the robot senses itself in a red cell, let's update the belief vector such that we
are more likely to reside in a red cell and less likely to reside in a green cell.

To do so, come up with a simple rule to represent the probability that the robot is in a red or a
green cell, based on the robot's measurement of 'red':

red cells * 0.6
green cells * 0.2

For now, we have chosen these somewhat arbitrarily, but since 0.6 is three times larger than
0.2, this should increase the probability of being in a red cell by something like a factor of three.

Keep in mind that it is possible that our sensors are incorrect, so we do not want to multiply
the green cell probability by zero.

What is the probability that the robot is in a red cell and the probability that it's in a green cell?

Answer4 (Probability
After Sense)

Find the probability for each cell by
multiplying the previous belief (0.2
for all cells) by the new factor,
whose value depends on the color
of the cells.

For red cells, 0.2*0.6 = .12
For green cells 0.2*0.2 = 0.04

Copyright © 2014 Udacity, Inc. All Rights Reserved.

So are these our probabilities?

Question 5 (Compute Sum)

No! These are not our probabilities, because they do not add up to one. Since we know we are
in some cell, the individual probabilities must add up to one. What we have now is called an
unnormalized probability distribution

So, how do we normalize our distribution?

First, find the current sum of the individual probabilities. Then, find a proper probability
distribution. A probability distribution is a function that represents the probability of any
variable, i, taking on a specific value.

Compute the sum of the values to see if you have a proper probability distribution — the sum
should be one.

Answer 5 (Compute Sum)

Since the sum of the
cells is not one, our
updated distribution is
not a proper probability
distribution.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Question 6 (Normalize Distribution)

To obtain a probability distribution, divide each number in each box by the sum of the values,
0.36.

Answer 6 (Normalize Distribution)

● Green cells = 1/9
● Red cells= 1/3

This is a probability distribution written as: P(Xi|Z)

and read as: The posterior distribution of place Xi given measurement Z, Z being the
measurement from the robot's sensors. This is an example of conditional probability. If you
need more help on this subject, this video may help. |

Question 7 (pHit and pMiss)

Starting with our state of maximum confusion

p = [0.2, 0.2, 0.2, 0.2, 0.2]

We want to write a program that will multiply each entry by the appropriate factor: either pHit
or pMiss.

We can start off by not worrying about whether this distribution will sum to one (whether it is
normalized). As we showed in the last few questions, we can easily normalize later.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www.google.com/url?q=http%3A%2F%2Fwww.khanacademy.org%2Fvideo%2Fprobability--part-6%3Ftopic%3Dprobability&sa=D&sntz=1&usg=AFQjCNFL5umT_jRBkx7G0tKtR2_QKMIuNQ

Write a piece of code that outputs p after multiplying pHit and pMiss at the corresponding
places.

● pHit = 0.6 → factor for matching measurement
● pMiss = 0.2 → factor for non-matching measurement

Answer 7 (pHit and pMiss)

One way to do this is to go through all five cases and manually multiply the pMiss or pHit case:

p = [0.2, 0.2, 0.2, 0.2, 0.2)
pHit = 0.6
pMiss = 0.2
p[0] = p[0]*pMiss
p[1] = p[1]*pHit
p[2] = p[2]*pHit
p[3] = p[3]*pMiss
p[4] = p[4]*pMiss
print p

0.04000000000000004, 0.12, 0.12, 0.040000000000000008
0.040000000000000008

Question 8 (Sum of Probabilities)

We know that this is not a valid distribution because it does not sum to one. Before we
normalize this distribution we need to calculate the sum of the individual probabilities.

Modify the program so that you get the sum of all the p's.

Answer 8 (Sum of Probabilities)

Use the Python sum function:

p = [0.2, 0.2, 0.2, 0.2, 0.2)
pHit = 0.6
pMiss = 0.2
p[0] = p[0]*pMiss
p[1] = p[1]*pHit
p[2] = p[2]*pHit
p[3] = p[3]*pMiss
p[4] = p[4]*pMiss
print sum(p)

0.36

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Question 9 (Sense Function)

Let's make our code more elegant by introducing a variable, world, which specifies the color of
each of the cells — red or green.

p = [0.2, 0.2, 0.2, 0.2, 0.2]
#introduce variable '''world'''
world = ['green', 'red', 'red', 'green', 'green']
pHit = 0.6
pMiss = 0.2

Furthermore, let's say that the robot senses that it is in a red cell, so we define the
measurement Z to be red:

p = [0.2, 0.2, 0.2, 0.2, 0.2]
world = ['green', 'red', 'red', 'green', 'green']

#define the measurement ''Z'' to be red
Z = 'red'
pHit = 0.6
pMiss = 0.2

Define a function to be the measurement update called sense, which takes as input the initial
distribution p and the measurement Z.

Enable the function to output the non-normalized distribution of q, in which q reflects the
non-normalized product of input probability (0.2) with pHit or pMiss in accordance with whether
the color in the corresponding world cell is red (hit) or green (miss).

p = [0.2, 0.2, 0.2, 0.2, 0.2]'''
world = ['green', 'red', 'red', 'green', 'green']
Z = 'red'
pHit = 0.6
pMiss = 0.2
def sense(p, Z):
 #Define a function '''sense'''

 return q
print sense(p, Z)

When you return q, you should expect to get the same vector answer as in question 6, but now
we will compute it using a function. This function should work for any possible Z (red or green)
and any valid p[]

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Answer 9 (Sense Function)

Step 1: One way to do this is as follows:

p = [0.2, 0.2, 0.2, 0.2, 0.2)
world = ['green', 'red', 'red', 'green', 'green']
Z = 'red'
pHit = 0.6
pMiss = 0.2

def sense(p, Z):
 q = []
 for i in range(len(p)):
 hit = (Z == world[i])
 q.append(p[i] * (hit * pHit + (1­hit) * pMiss))
 return q

print sense(p, Z)

This code sets hit equal to one when the measurement is the same as the current entry in
world and 0 otherwise. The next line appends to the list q[] an entry that is equal to p[i]*pHit
when hit = 1 and p[i]*pMiss when hit = 0.

This gives us our non-normalized distribution. A "binary flag" refers to the following piece of
code: (hit * pHit + (1-hit) * pMiss). The name comes from the fact that when the term (hit) is 1,
the term (1-hit) is zero, and vice-versa.

Question 10 (Normalized Sense Function)

Modify this code so that it normalizes the output for the function sense and adds up to one.

Answer 10 (Normalized Sense Function)

p = [0.2, 0.2, 0.2, 0.2, 0.2]
world = ['green', 'red', 'red', 'green', 'green']
Z = 'red'
pHit = 0.6
pMiss = 0.2
def sense(p, Z):
 q = []
 for i in range(len(p)):
 hit = (Z == world[i])
 q.append(p[i] * (hit * pHit + (1­hit) * pMiss))

 #First, compute the sum of vector q, using the sum function
 s = sum(q)
 for i in range (len(p)):
 # normalize by going through all the elements in q and divide by s
 q[i]=q[i]/s

Copyright © 2014 Udacity, Inc. All Rights Reserved.

 return q

print sense(p, Z)

[0.1, 0.3, 0.3, 0.1, 0.1]

Question 11 (Test Sense Function)

Try typing green into your Z, sensory measurement variable, and re-run your code to see if you
get the correct result.

Answer 11 (Test Sense Function)

p = [0.2, 0.2, 0.2, 0.2, 0.2]
world = ['green', 'red', 'red', 'green', 'green']
#Make'green'yourZ,measurementvariable,andre­runyourcode
if you get the correct result
Z = 'green'
pHit = 0.6
pMiss = 0.2
def sense(p, Z):
 q = []
 for i in range(len(p)):
 hit = (Z == world[i])
 q.append(p[i] * (hit * pHit + (1­hit) * pMiss))

 s = sum(q)
 for i in range (len(p)):
 q[i] = q[i]/s
 return q
print sense(p, Z)

[0.27, 0.09, 0.09, 0.27, 0.27]

This output looks good. Now the green cells all have higher probabilities than the red cells. The
"division by 44" referred to in the video comes from the normalization step where we divide by
the sum. The sum in this case was 0.44.

Question 12 (Multiple Measurements)

Modify the code in such a way that there are multiple measurements by replacing Z with a
measurements vector.

Assume the robot is going to sense red, then green.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Can you modify the code so that it updates the probability twice and gives you the posterior
distribution after both measurements are incorporated so that any sequence of measurement,
regardless of length, can be processed?

Answer 12 (Multiple Measurements)

p = [0.2, 0.2, 0.2, 0.2, 0.2]
world = ['green', 'red', 'red', 'green', 'green']
#Replace Z with measurements vector and assume the robot is going
sense red, then green
measurements = ['red', 'green']
pHit = 0.6
pMiss = 0.2
def sense(p, Z):
 q = []
 for i in range(len(p)):
 hit = (Z == world[i])
 q.append(p[i] * (hit * pHit + (1­hit) * pMiss))
 s = sum(q)
 for i in range (len(p)):
 q[i] = q[i]/s
 #As often as there are ''measurements'' use the following for loop
 return q
for k in range(len(measurements)):

#Grabthekelement,applytothecurrentbelief,p,andupdate
belief into itself
 p = sense(p, measurements [k])
 print p
 #run this twice and get back the uniform distribution:

This code defines the function sense and then calls that function once for each measurement
and updates the distribution.

[0.2, 0.2, 0.2, 0.2, 0.2]

Exact Motion
Suppose there is a distribution over the
cells such as:

 1
 9

1
3 3

1
9
1
9
1

Copyright © 2014 Udacity, Inc. All Rights Reserved.

We know the robot moves to the right, and we will assume the world is cyclic. So, when the
robot reaches the right-most cell, it will circle around back to the first, leftmost cell.

Question 1 (Exact Motion)

Assuming the robot moves exactly one position to the right, what is the posterior probability
distribution after the motion?

Answer 1 (Exact Motion)

Everything
shifts to
the right
one cell.

Question 2 (Move Function)

Define a function move with an input distribution p and a motion number U, where U is the
number of grid cells moving to the right or to the left.

Program a function that returns a new distribution q, where if U == 0, q is the same as p.

● If U == 1, all the values cyclically shift to the right by 1
● If U == 3, all the values cyclically shift to the right by 3
● If U == -1, all the values cyclically shift to the left by 1

Changing the probability for cell 2 from zero to one will allow us to see the effect of the
motion.

p = [0, 1, 0, 0, 0)

world = ['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'green']
pHit = 0.6

Copyright © 2014 Udacity, Inc. All Rights Reserved.

pMiss = 0.2
def sense(p, Z):
 q = []
 for i in range(len(p)):
 hit = (Z == world[i])
 q.append(p[i] * (hit * pHit + (1­hit) * pMiss))
 s = sum(q)
 for i in range (len(p)):
 q[i] = q[i]/s
 return q

print sense(p, Z)

def move(p, U):
 #Enter your code here

 return q

for k in range(len(measurements)):
 p = sense(p, measurements [k])
 print move (p, 1)

Answer 2 (Move Function)

def move(p, U):
 q= [] #Start with empty list
 for i in range(len(p)):
 #Go through all the elements in ''''''''p'''''

#Construct ''q'' element by element by accessing
corresponding ''p'' which is shifted by ''U''
 q.append(p[(i­U) % len (p)])
 return q

for k in range(len(measurements)):
p = sense(p, measurements [k])
print move (p, 1)

The (i-U) in the above function may be confusing at first.

If you are moving to the right, you may be tempted to use a plus sign. Don't! Instead of
thinking of it as p shifting to a cell in q, think of this function as q grabbing from a cell in p.

For example, if we are shifting p one to the right, each cell in q has to grab its value from the
cell in p that is one to the left.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Inaccurate Robot Motion: Localization Is Hard

Question 1 (Inexact Motion)

Assume the robot executes its action with high probability (0.8), correctly; with small
probability (0.1) it will overshoot, and with small probability (again 0.1) it will undershoot.

Note that this is a
more accurate model
of real robot motion.

Given a prior
distribution, can you
give the distribution
after the motion?

Use this formula:

Answer 1 (Inexact Motion)

As expected, the probability distribution has shifted and spread out. Moving causes a loss of
information.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Question 2 (Inexact Motion)

This time, given that cells 2 and 4 have a value
of 0.5, fill in the posterior distribution.

Answer 2 (Inexact Motion)

We answer this in the same way as in the
previous question, but this time we have to
take into account that cell 5 can be arrived at in
2 ways: by cell 4 undershooting or cell 2
overshooting.

Question 3 (Inexact Motion)

Given a uniform distribution, fill in the
distribution after motion, using the
formula.

Answer 3 (Inexact Motion)

We can answer this question in two ways:

1. As shown: explicitly calculate the possible
ways of arriving at each cell. This takes
quite a bit of calculation, but will give us the
correct answer.

2. Realize that if we start with a uniform prior
distribution (state of maximum confusion),
and we then move, we MUST end up with

Copyright © 2014 Udacity, Inc. All Rights Reserved.

the uniform distribution. Since this problem starts with a state of maximum confusion
and then moves (which, remember, never increases our knowledge of the system), we
must remain in the maximally confused state.

Question 4 (Inexact Move Function)

Modify the move procedure to accommodate the added probabilities.

p = [0, 1, 0, 0, 0)
world = ['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'green']
pHit = 0.6
pMiss = 0.2
#Add exact probability
pExact = 0.8
#Add overshoot probability
pOvershoot = 0.1
pUndershoot = 0.1

def move(p, U):
 q= []
 for i in range(len(p)):
 q.append(p[(i­U) % len (p)])
 return q

Answer 4 (Inexact Move Function)

def move(p, U):
 #Introduce auxiliary variable s
 q= []
 for i in range(len(p)):
 s = pExact * p[(i­U) % len(p)]
 s = s + pOvershoot * p[(i­U­1) % len(p)]
 s = s + pUndershoot * p[(i­U+1) % len(p)]
 q.append(s)
 return q

[0.0, 0.1, 0.8, 0.1, 0.0]

This function accommodates the possibility of undershooting or overshooting our intended
move destination by going through each cell in p and appropriately distributing its probability
over three cells in q (the cell it was intended to go to, distance U away, and the overshoot and
undershoot cells).

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Question 5 (Limit Distribution Quiz)

What happens if the robot never senses but executes
the motion to the right forever. What will be the limit
or stationary distribution in the end?

A distribution is stationary when it doesn't change
over time. In the case of the moving robot, this
corresponds to the probability distribution before a
move being the same as the distribution after the
move.

Answer 5 (Limit Distribution Quiz)

The fact that the result is a uniform distribution
should not be surprising.

Remember Inexact Motion 3, where we saw that
when we act on the uniform distribution with the
function move, we get back the uniform
distribution. Moving doesn't affect the uniform
distribution, and this is exactly the definition of a
stationary state!

We can also solve for the probability of each cell
by realizing that each cell is the possible
destination for three other cells. This is the
method used in the lecture and shown below. Of
course, regardless of our method, we get the
same answer: the uniform distribution.

Question 6 (Move Twice)

Write code that makes the robot move twice, starting with the initial distribution:

p = [0, 1, 0, 0, 0]

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Answer 6 (Move Twice)

p = move(p, 1)
p = move(p, 1)

print p

[0.01, 0.01, 0.16, 0.66, 0.16]

The result is a vector where 0.66 is the largest value and not 0.8 anymore. This is expected: two
moves has flattened and broadened our distribution.

Question 7 (Move 1000)

Write a piece of code that moves 1,000 steps and give you the final distribution.

Answer 7 (Move 1000)

#Write a loop for 1,000 steps
for k in range(1000):
 p = move(p, 1)
 print p
 #Final distribution is 0.2 in each case as expected

After 1000 moves, we have lost essentially all information about the robot's location. We need
to be continuously sensing if we want to know the robot's location.

Robot Sense and Movement
Localization, specifically the Monte Carlo localization method that we are using here, is nothing
but the repetition of sensing and moving. There is an initial belief that is tossed into the loop.
If you sense first it comes to the left side. Localization cycles through move and sense. Every
time it moves it loses information and every time it senses it gains information. Entropy is a
measure of the information that a distribution has.

Entropy and information entropy are both fascinating topics. Feel free to read more about
them!

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEntropy&sa=D&sntz=1&usg=AFQjCNHtc9tWxz9hKGawRJKUaa6iedIpRw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEntropy_(information_theory)&sa=D&sntz=1&usg=AFQjCNGqAz0jye39ELwyzjqMiBXCBO8Q6Q

Question 1 (Sense and Move)

Given the motions one and one, which means the robot moves right and right again:

motions = [1, 1]

Compute the posterior distribution if the robot first senses red, then moves right by one, then
senses green, then moves right again. Start with a uniform prior distribution:

p = [0.2, 0.2, 0.2, 0.2, 0.2]

Answer 1 (Sense and Move)

for k in range(len(measurements)):
 p = sense(p, measurements[k])
 p = move(p, motions[k])
 print p

The robot likely starts in grid cell 3, which is the right-most of the two red cells.

Question 2 (Sense and Move)

Can you modify the previous question so that the robot senses red twice. What do you think
will be the most likely cell the robot will reside in?

Copyright © 2014 Udacity, Inc. All Rights Reserved.

How will this probability compare to that of the previous question?

Answer 2 (Sense and Move)

The most likely cell is cell 4 (not cell 3—don't forget we move after each sense).

This program is the essence of Google's self-driving car's Monte Carlo localization approach.

Localization Summary (Localization Summary)
Localization involves a robot continuously updating its belief about its location over all possible
locations. Stated mathematically, we could say the robot is constantly updating its probability
distribution over the sample space. For a real self-driving car, this means that all locations on
the road are assigned a probability. If the AI is doing its job properly, this probability
distribution should have two qualities:

1. It should have one sharp peak. This indicates that the car has a very specific belief
about its current location.

2. The peak should be correct! If this weren't true, the car would believe—very
strongly—that it was in the wrong location. This would be bad for Stanley.

Our Monte Carlo localization procedure can be written as a series of steps:

1. Start with a belief set about our current location.
2. Multiply this distribution by the results of our sense measurement.
3. Normalize the resulting distribution.
4. Move by performing a convolution. This sounds more complicated than it really is: this

step really involved multiplication and addition to obtain the new probabilities at each
location.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Keep in mind that step 2 always increases our knowledge and step 4 always decreases our
knowledge about our location.

Extra Information: You may be curious about how we can use individual cells to represent a
road. After all, a road isn't neatly divided into cells for us to jump between: mathematically, we
would say the road is not discrete but rather continuous. Initially, this seems like a problem.
Fortunately, whenever we have a situation where we don't need exact precision—and
remember that we only need 2-10 cm of precision for our car—we can chop a continuous
distribution into pieces and make those pieces as small as we need.

In the next unit we will discuss Kalman Filters, which use continuous probability distributions
to describe beliefs.

Question 1 (Formal Definition of Probability)

Remember that a probability of zero means an event is impossible, while a probability of one
means it is certain. Therefore, we know all probabilities must satisfy . Let’s assume ≤P (x)≤10
that X1 and X2 are complementary events: either one or the other must happen. If P(X1) = 0.2,
what is P(X2)?

Answer 1 (Formal Definition of Probability)

The answer is 0.8.

Question 2 (Formal Definition of Probability)

If P(X1) = 0, what is P(X2)?

Answer 2 (Formal Definition of Probability)

P(X2) = 1.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKalman_filter&sa=D&sntz=1&usg=AFQjCNHg_-au9IxIlzqW1F569o3jBse1wg

In both of these problems we used the fact that the sum of all probabilities must add to one.
Probability distributions must be normalized.

Question 3 (Formal Definition of Probability)

Given:

Fill in the value of the fifth grid cell.

Answer 3 (Formal Definition of Probability)

Bayes' Rule

Bayes' Rule is a tool for updating a probability distribution after making a measurement.

● x = grid cell
● Z = measurement

The equation for Bayes' Rule looks like this:

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www.google.com/url?q=http%3A%2F%2Fsimple.wikipedia.org%2Fwiki%2FBayes'_theorem&sa=D&sntz=1&usg=AFQjCNHksEnD192xZOQBDVXW9JaE6NRJmA

(x|Z)P = P(Z)
P(Z|x) P(x)

The left hand side of this equation should be read as "The probability of X after observing Z."
In probability, we often want to update our probability distribution after making a
measurement. Sometimes, this isn't easy to do directly.

Bayes' Rule tells us that this probability (the left-hand side of the equation) is equal to another
probability (the right-hand side of the equation), which is often easier to calculate. In those
situations, we use Bayes' Rule to rephrase the problem in a way that is solvable.

To use Bayes' Rule, we first calculate the non-normalized probability distribution, which is
given by P(Z|X)P(X), and then divide that by the total probability of making measurement Z,
P(Z), which is called the normalizer.

This may seem a little confusing at first. If you are still a little unsure about Bayes’ Rule,
continue on to the next example to see how we put it into practice.

Cancer Test Question

Suppose there exists a certain kind of cancer that is very rare:

● P(C) = 0.001 = Probability of having cancer
● P(¬C) = 0.999 = Probability of not having cancer

Suppose we have a test that is pretty good at identifying cancer in patients with the disease
(it does so with 0.8 probability), but occasionally (with probability 0.1) misdiagnoses cancer in a
healthy patient:

● P(POS|C) = 0.8 = Probability of a positive test if patient has cancer

Copyright © 2014 Udacity, Inc. All Rights Reserved.

● P(POS|¬C) = 0.1 = Probability of a positive test in a cancer-free patient (a “false
positive")

Using this information, can you compute the probability of having cancer given that you
receive a positive test?

● P(C|POS) = ?

Answer: (Cancer Test)

Only 0.79 out of 100 who test positive have cancer, even though they have positive cancer test
results! (This math assumes there was no outside reason to test the individuals for cancer:
they were randomly selected to be tested.)

You can apply the same mechanics as before to get this result. The non-normalized result of
Bayes’ Rule is the product of the prior probability, P(C), multiplied by the probability of a
positive test, P(POS|C):

● P(C|POS)=

Plug in the probabilities:

● P(C|POS) = 0.001 * 0.8 = 0.0008

Non-normalized probability for the opposite event, given a positive test:

● P(¬C|POS) = 0.999 * 0.1 = 0.0999

Normalized (the sum of the the probability of having cancer after a positive test and not having
cancer after a positive test):

● P(C|POS) + P(¬C|POS) = 0.1007

Dividing the non-normalized probability, 0.0008, by the normalized probability, 0.1007, gives us
the answer: 0.0079.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Theorem of Total Probability
Now let’s look at motion, which will turn out to be something we will call total probability.
Hopefully you remember caring about a grid cell “xi” and we asked what is the chance of being
in xi after robot motion. Now, we will use a time index to indicate after and before motion:

Compute this by looking at all the grid cells the robot could have come from one time step
earlier (at time t-1), and index those cells with the letter j, which in our example ranges from 1
to 5. For each of those cells, look at the prior probability P(Xj

t-1), and multiply it with the
probability of moving from cell Xj to cell Xi, P(Xi|Xj). This gives us the probability that we will be in
cell Xi at time t:

●

Copyright © 2014 Udacity, Inc. All Rights Reserved.

You can see the correspondence of A as a place i of time t and all the different Bs as the
possible prior locations. This is often called the Theorem of Total Probability.

Question 1 (Coin Flip Quiz)

Coin Toss: The probability of tossing a fair coin, heads (H) or tails (T) is: P(T) = P(H) = 0.5.

If the coin comes up tails, you stop and accept the result; but if it comes up heads, you flip it
again and then accept the result. What is the probability that the final result is heads?

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Answer (Coin Flip Quiz)

The probability of throwing heads in step two, P(H2), depends upon having thrown heads in
step one, P(H1), which we can write as a condition, P(H2|H1)P(H1). Add the probability of throwing
heads in step two with the condition, p(H2|T1)P(T1), of throwing tails in step one, multiplied by
the probability of throwing tails in step one, P(T1). This can be written as

● P(H2)=P(H2|H1)P(H1)+P(H2|T1P(T 1)

The last term of this equation, P(H2|T1P(T 1), is the product of the probability of heads given a
tail on the first throw with the probability of tails on the first throw. Since we are told that we
stop flipping when we get a tails on the first throw,P(H2|T1) = 0, and we can ignore this term.
Our equation becomes P(H2) = P(H2|H1)P(H1), which is = * .2

1
4
1

4
1

Note that the superscripts next to H and T in this problem indicate whether we are talking
about the first or second toss. They are not exponents.

We can also approach this problem as a probability tree, where the probability of moving down
any branch is 1/2. We can see that the only way to arrive at heads on the second toss is to
proceed down the heads path twice.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Question 2 (Two Coin Quiz)

Say you have two coins, one of which is fair and the other loaded. The probability of flipping
heads for each coin is shown below.

● fair coin: P(H) = 0.5
● loaded coin: P(H) = 0.1

There is a 50% chance of flipping either the fair or the loaded coin. If you throw heads, what is
the probability that the coin you flipped is fair?

Answer 2 (Two Coin Quiz)

The question, what is the probability of throwing a fair coin given that you observe H, can be
written as:

● P(F|H) = ?

Use Bayes' Rule because you are making observations. The non-normalized probability, which
we will represent with a lower case p, of getting the fair coin is:

● p(F|H) = P(H|F) P(F)
● p(F|H) = 0.5 * 0.5

The non-normalized probability of NOT getting the fair coin, but getting the loaded coin is:

● p(¬F|H) = P(H|¬F) P(¬F)
● p(¬F|H) = 0.1 * 0.5

When you find the sum of these, the result is:

● 0.25 + 0.05 = 0.3

Now, we divide our non-normalized probability by this sum to obtain our answer: = 0.833.0.3
0.25

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Conclusion (Conclusion)
This is what you've learned in this class:

● Localization
● Monte Carlo Localization
● Probabilities
● Bayes’ Rule
● The Theorem of Total Probability

You are now able to make a robot localize, and you have an intuitive understanding of
probabilistic methods called Filters.Next class we will learn about:

● Kalman Filters

Copyright © 2014 Udacity, Inc. All Rights Reserved.

