U

UDACITY

Instance Based Learning Extension

In this document, we review information from the Machine
Learning 1 - Supervised Learning course regarding instance
based learning, with a focus on the k-nearest neighbors algorithm.
A brief extension beyond what was discussed in the course is
also provided regarding locally weighted regression (LWR).

Most of the algorithms that we encounter in this course can be
categorized as eager learners. Decision trees, regression, neural
networks, SVMs, Bayes nets: all of these can be described as eager
learners. In these models, we fit a function that best fits our training
data; when we have new inputs, the input’s features are fed into the
function, which produces an output. Once a function has been
computed, the data could be lost to no detriment of the model’s
performance (until we obtain more data and want to recompute our
function). For eager learners, we take the time to learn from the data
first and sacrifice local sensitivity to obtain quick, global-scale estimates
on new data points.

Here, we look at an example of a lazy learner in the k-nearest
neighbors algorithm. In contrast to eager learners, lazy learners do not
compute a function to fit the training data before new data is received.
Instead, new instances are compared to the training data itself to make
a classification or regression judgment. Essentially, the data itself is the
function to which new instances are fit. While the memory requirements
are much larger than eager learners (storing all training data versus just
a function) and judgments take longer to compute than eager learners,
lazy learners have advantages in local-scale estimation and easy
integration of additional training data.

Mathematically, what is the k-nearest neighbors algorithm? Given a
parameter k and a distance or similarity function d, for a new instance q
we obtain the algorithm output as a measure of centrality over the
k-closest items in the training data (i.e. the items with the k-smallest
d(g,x;)). For classification tasks, the basic measure of centrality is the
mode of the k-nearest neighbors; for regression tasks, the basic
operation is the mean.

To work, k-nearest neighbors expects that the data has locality and
smoothness. Data points that are close to one another in distance are

Copyright © 2014 Udacity, Inc. All Rights Reserved.



expected to have similar value. The underlying function that determines
a data point’s output value is also expected to be smooth. k-nearest
neighbors also suffers from the curse of dimensionality, the idea that as
the number of features grow, the amount of data required for accurate
generalization grows exponentially.

While the algorithm is quite simple, there is still a lot of latitude in
choices of k, d, and central measure that can affect the model's
performance. When k is small, models have high variance, fitting on a
strongly local level. Larger k creates models with lower variance but
higher bias, smoothing out the influence of individual data points on
output judgements. Choice of d can go beyond selecting a basic
distance metric (e.g. taxicab distance vs. euclidean distance); weights
may be placed on factors if there is reason to believe certain factors are
more or less important to classification or regression. (The distance
function must still remain a valid distance metric, however.) Reducing
the weight on factors can also help alleviate the effects of
dimensionality on the algorithm’s performance. Similarly, the measure
of centrality does not need to be a simple mode or mean; averages
may utilize weights on training instances as a function of their distance
or similarity to the test instance. Two points in a region with the same
neighbors need not have the same regression value.

For regression tasks, there is a natural extension from k-nearest
neighbors with weighted mean to locally weighted regression (LWR). If
we have test points that fall outside of the domain of the training data,
k-nearest neighbors does not provide a way to extrapolate beyond the
range observed in the training data. LWR combines the ideas of
traditional regression with instance-based learning’s sensitivity to
training items with high similarity to the test point. In standard
regression, we select coefficients for a regression function that
minimize the sum of squared deviation between the observed data and
the regression judgement, creating a single function that operates
globally over the full range of data. With LWR, the squared deviations
are weighted by a kernel function that decreases with distance, such
that for a new test instance, a regression function is found for that
specific point that emphasizes fitting close-by points and ignoring the
pull of far-away points. In this way, new points outside the domain of
the training set can take novel values outside of the training set’s
range.

Copyright © 2014 Udacity, Inc. All Rights Reserved.


http://en.wikipedia.org/wiki/Metric_%28mathematics%29

The plots at the bottom of this page demonstrate the progression of
estimates from 1-NN to LWR for some sample one-dimensional
regression problems.

This article discusses the bias-variance tradeoff in model selection and
uses two-dimensional k-NN as an example; there are a number of
interactive figures that show how the algorithm changes depending on
choice of k.

Copyright © 2014 Udacity, Inc. All Rights Reserved.


http://learning.cis.upenn.edu/cis520_fall2009/index.php?n=Lectures.LocalLearning
http://scott.fortmann-roe.com/docs/BiasVariance.html

