U ID3 Algorithm for Decision Trees

UDACITY
The purpose of this document is to introduce the ID3 algorithm

for creating decision trees with an in-depth example, go over
the formulas required for the algorithm (entropy and information
gain), and discuss ways to extend it.

Overview and Motivation:

Introduction

The ID3 algorithm
Summary:

Pseudocode:
Detail:

Extending the ID3 algorithm
Continuous attributes:
Missing attribute values:
Avoiding overfitting the data:
Changing the information gain formula:

Overview and Motivation:

Decision tree learning algorithms generate decision trees from
training data to approximate solutions to classification or regression
problems. In the case of classification, trees are typically represented
by a set of if-then rules culminating in a decision:

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Customers

None Some Full

7\
No Yes

French Italian Thai Burger

Is it Friday or
Saturday?

\

Yes

A decision tree about restaurants’

To make this tree, a decision tree learning algorithm would take
training data containing various permutations of these four variables
and their classifications (yes, eat there or no, don’t eat there) and try
to produce a tree that is consistent with that data.

This document will cover classification trees by introducing one of the
classic small data sets in the literature: the PlayTennis data set.

Then, a popular algorithm used to take training data and produce a
decision tree, the ID3 algorithm, will be discussed in detail. Finally, we
will discuss potential pitfalls when using the data on real data sets
and explain workarounds and solutions to them.

Introduction

Let’s pretend for a moment that you like to play tennis. On a particular
day—say, a random Sunday morning—how would you decide
whether or not you would head to the nearest tennis court for a few
sets? Perhaps you would look outside and check to see if it's cloudy
or raining. Maybe you’d even step outside to see how hot (or cold) it
is. Then, you’d use all of this information to inform your decision. If
you took that even further, you could record the choices you made on

" Image adapted from: Stuart J. Russell and Peter Norvig. 2003. Artificial Intelligence: A
Modern Approach (2 ed.). Pearson Education. Chapter 18.3.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

different days (and all of the variables you took into account to make
them) into a table like the one below?:

Day Outlook | Temp. | Humidity Wind | Play?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

With this table, other people would be able to use your intuition to
decide whether they should play tennis by looking up what you did
given a certain weather pattern, but after just 14 days, it's a little
unwieldy to match your current weather situation with one of the rows
in the table. A decision tree would be a great way to represent data
like this, because the data takes certain weather patterns and
classifies them into a few buckets: tennis-playing weather and not
tennis-playing weather. A decision tree for this data allows you to
make a decision by following a graph, rather than by looking up your
particular situation in a table:

2 Data set found in: Tom Mitchell. 1997. Machine Learning. McGraw-Hill. Chapter 3.
Copyright © 2014 Udacity, Inc. All Rights Reserved.

Outlook

VA N
Sunny Overcast Rain
yd AN
Humidity e Wind
H.rgh Normal Srrong Weak

OROROLC

In this case, you’re asked a number of questions about your current
weather situation that will result in a yes (let’s play tennis!) or no (let’s
stay indoors) answer. So, how did this tree result from the training
data? Let’s take a look at the ID3 algorithm.

The ID3 algorithm

Summary:
The ID3 algorithm builds decision trees using a top-down, greedy
approach. Briefly, the steps to the algorithm are:

1.

Start with a training data set, which we’ll call S. It should have
attributes and classifications. The attributes of PlayTennis are
outlook, temperature humidity, and wind, and the classification
is whether or not to play tennis. There are 14 observations.
Determine the best attribute in the data set S. The first
attribute ID3 picks in our example is outlook. We'll go over the
definition of “best attribute” shortly.

Split S into subsets that correspond to the possible values of
the best attribute. Under outlook, the possible values are
sunny, overcast, and rain, so the data is split into three
subsets (rows 1, 2, 8, 9, and 11 for sunny; rows 3, 7, 12, and
13 for overcast; and rows 4, 5, 6, 10, and 14 for rain).

Make a decision tree node that contains the best attribute. The
outlook attribute takes its rightful place at the root of the
PlayTennis decision tree.

Recursively make new decision tree nodes with the subsets
of data created in step #3. Attributes can’t be reused. If a
subset of data agrees on the classification, choose that

Copyright © 2014 Udacity, Inc. All Rights Reserved.

classification. If there are no more attributes to split on,
choose the most popular classification. The sunny data is split
further on humidity because ID3 decides that within the set of
sunny rows (1, 2, 8, 9, and 11), humidity is the best attribute.
The two paths result in consistent classifications—sunny/high
humidity always leads to no and sunny/normal humidity
always leads to yes—so the tree ends after that. The rain data
behaves in a similar manner, except with the wind attribute
instead of the humidity attribute. On the other hand, the
overcast data always leads to yes without the help of an
additional attribute, so the tree ends immediately.

Pseudocode:

This pseudocode assumes that the attributes are discrete and that
the classifications are either yes or no. It deals with inconsistent
training data by choosing the most popular classification label
whenever a possible conflict arises.

def id3(examples, classification_attribute, attributes):
create a root node for the tree
if all examples are positive/yes:
return root node with positive/yes label
else if all examples are negative/no:
return root node with negative/no label
else if there are no attributes left:
return root node with most popular
classification_attribute label
else:
best_attribute = attribute from attributes that best
classifies examples
assign best_attribute to root node
for each value in best_attribute:
add branch below root node for the value
branch_examples = [examples that have that value
for best_attribute]
if branch_examples is empty:
add leaf node with most popular
classification_attribute label

else:

Copyright © 2014 Udacity, Inc. All Rights Reserved.

add subtree id3(branch_examples,
classification_attribute,
attributes - best_attribute)

If there’s an attribute for the data to be split on, the algorithm calls
itself recursively, with the original set of examples being split into
groups based on the value of the best attribute and the set of available
attributes to split on having the best attribute removed from it.
Because this algorithm is a recursive one, the base cases: all

examples having the same classification, no attributes being left, or
no examples remaining, are tested first.

Detail:

Now that we have a high-level picture of the ID3 algorithm, let’s fill in
some of the gaps!

First, the ID3 algorithm answers the question, “are we done yet?”
Being done, in the sense of the ID3 algorithm, means one of two
things:

1. All of the data points to the same classification. This allows
ID3 to make a final decision, since all of the training data will
agree with it.

2. There are no more attributes available to divide the data. ID3
only uses each attribute a maximum of one time per path
through the tree®. Once it's reached that maximum, if the
remaining data doesn’t point to the same classification, the
algorithm is forced to make a final decision, which usually
ends up being the most popular classification, because it can’t
split up the data any longer.

As you may have guessed, neither of these situations should apply at
the very beginning. It would not be particularly useful to have an entire
training set with the same classification. Imagine that our PlayTennis
data set always told us to play tennis, regardless of the weather
situation. Because ID3 would recognize that all of the data points to
the same classification and, therefore, it could arrive at a final
decision, the tree that would result would look like:

3 This restriction might not apply to continuous attributes.
Copyright © 2014 Udacity, Inc. All Rights Reserved.

Similarly, it wouldn’t be useful to have an entire training set that has
no attributes. If our algorithm could only use classifications and,
consequently, had no information except for the ratio of yes rows to
no rows, it would be forced to pick the one that's most popular. There
are 9 yes rows and 5 no rows, so the entire decision tree is, again:

Luckily, in this case, the training data is splitinto 9 yes rows and 5 no
rows and there are four potential attributes we can use to split the
data. The algorithm, sensing that it's not done yet, asks the following
question: “which attribute should we divide the data with?” The
answer is that it should divide the data by the best attribute, but what
does “best” actually mean?

For ID3, we think of best in terms of which attribute has the most
information gain, a measure that expresses how well an attribute
splits the data into groups based on classification.

low high
information information
gain gain

elelele

An attribute like the one on the left that splits the data into groups with
relatively even distributions of positive and negative examples doesn’t
bring us any closer to a decision, whereas an attribute like the one on

Copyright © 2014 Udacity, Inc. All Rights Reserved.

the right that splits the data into groups with lopsided numbers of
positive or negative examples does. The latter group scores better in
terms of information gain.

To actually calculate information gain, we must first take a look at
another measure, entropy. Entropy, in an information theory and
machine learning sense, measures the homogeneity of a data set S’s
classifications. It ranges from 0, which means that all of the

classifications in the data set are the same, to log, of the number of
different classifications, which means that the classifications are

equally distributed within the data set. In our PlayTennis example,
which has 2 different classifications (yes and no), the maximum

entropy of the training data is log,(2) = 1. If all of the training data tells
us yes, the entropy is 0. If all of it tells us no, the entropy is still 0. If
there are equal numbers of yes and no examples, the entropy is 1.
Since there are 9 yes examples and 5 no examples in our table, its
entropy lies somewhere between 0 and 1. We'll have to calculate it
using the formula for entropy, which is:

Entropy(S) = Zl —pilog, p;

=

In this formula, ¢ corresponds to the number of different
classifications and p,; corresponds to the proportion of the data with
the classification i. Because our example and the basic version of the
ID3 algorithm both deal with the case where classifications are either
positive or negative, we can simplify the formula to:

Entropy(S) = — p,log, p.—p_log, p-

Here, p, is the proportion of examples with a positive classification
and p_is the proportion of examples with a negative classification. A
plot of p, against Entropy(S) demonstrates how entropy decreases to
0 as the proportion of negative or positive examples reaches 100%
and peaks at 1 as the examples become more heterogeneous.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

0.4

Entropy(S)

| | | |

0 02 04 06 08 1
P+

Probability vs. entropy for a binary classifier*

In the case of PlayTennis, there are 9 yes rows and 5 no rows, which
leads to an entropy of:

Entropy([9 +, 5-1) = —logr —3logory = 940

Information gain measures the reduction in entropy that results from
partitioning the data on an attribute A, which is another way of saying
that it represents how effective an attribute is at classifying the data.
Given a set of training data S and an attribute A, the formula for
information gain is:

Gain(S, A) = Entropy(S) — > %Entropy(Sv)
veV alues(A)

The entropies of the partitions, when summed and weighted, can be
compared to the entropy of the entire data set. The first term
corresponds to the entropy of the data before the partitioning,
whereas the second term corresponds to the entropy afterwards. We
want to maximize information gain, so we want the entropies of the
partitioned data to be as low as possible, which explains why
attributes that exhibit high information gain split training data into

4 Adapted from: Tom Mitchell. 1997. Machine Learning. McGraw-Hill. Chapter 3.
Copyright © 2014 Udacity, Inc. All Rights Reserved.

relatively heterogeneous groups. How do each of the four attributes in
PlayTennis fare?

Values(Outlook) = Sunny, Overcast, Rain
S =[9+,5-]
Ssunny = [2+,3—]
Sovercast = [4+,0-]
SRain = [3+,2—]
Gain(S, Outlook) = Entropy(S)
— (5/14) Entropy(Ssunny)
— (4/14) Entropy(Sovercast)
— (5/14) Entropy(Srain)
940 — (5/14).971 — (4/14)0 — (5/14).971
= .247

Gain(S, Temperature) = Entropy(S)

— (4/14) Entropy(Suot)

— (6/14) Entropy(Shriid)

— (4/14) Entropy(Scoot)
940 — (4/14)1 — (6/14).811 — (4/14).971
=.029

Gain(S, Humidity) = Entropy(S)

— (7/14) Entropy(Swign)

— (7/14) Entropy(Snormat)
940 — (7/14).985 — (7/14).592
=.152

Gain(S, Wind) = Entropy(S)
— (8/14) Entropy(Sweak)
— (6/14) Entropy(Sstrong)
940 — (8/14).811 — (6/14)1
= .048

The Outlook attribute wins pretty handily, so it's placed at the root of
the decision tree.

Afterwards, the decision tree is expanded to cover Outlook’s possible
values. In PlayTennis, the outlook can be sunny, overcast, or rain, so

Copyright © 2014 Udacity, Inc. All Rights Reserved.

all of the examples that have a sunny outlook are funneled through the
sunny path, the examples with an overcast outlook are diverted to the
overcast path, and so on. The goal is to split the data at every step in
such a way that consensus on a particular classification happens
quickly. In this case, it only takes 2 levels of attribute nodes to decide
what to do.

Outlook
(1,2,3,4,5,6,7,8,9,
10, 11,12, 13, 14)
VA N
Sunny Overcast Rain
i AN

Humidity Wind
(1,2,8,9,11) 4,5,6,10,14)
H.rg.h Normal Strong Weak

$e &£

ID3 decides the best root attribute based on our entire data set (all 14
rows), but only uses the sunny outlook data (rows 1, 2, 8, 9, and 11)
to decide the humidity node, the rain outlook data (rows 4, 5, 6, 10,
and 14) to decide the wind node, and so on. Calculating and
comparing the information gain values for the rest of the tree is left as
an exercise for the reader.

The greedy part of the approach comes from the fact that it will

decide which attribute should be at the root of the tree by looking just
one move ahead. It compares all available attributes to find which one
classifies the data the best, but it doesn’t look ahead (or behind) at
other attributes to see which combinations of them classify the data

the best. This means that while the algorithm will, in most cases,

come up with a good decision tree, a better one may exist.

PlayTennis is a small enough and contrived enough example that the
ID3 algorithm returns an optimal decision tree, but as the size of the
training data and the number of attributes increase, it becomes likelier
that running ID3 on it will return a suboptimal decision tree.

Extending the ID3 algorithm

Copyright © 2014 Udacity, Inc. All Rights Reserved.

While the PlayTennis example demonstrates that the ID3 algorithm
works well with flawless training data—data with discrete attributes,
no missing values, and no classification inconsistencies—the
algorithm, with some help, is robust enough to handle much tougher
situations. Small tweaks allow ID3 to handle continuous attributes,
missing attribute values, data that doesn’t work particularly well with
information gain, and more.

Continuous attributes:

PlayTennis’ original temperature attribute has three possible values:
cool, mild, and hot. If we had instead recorded the numerical
temperature and tried to use the ID3 algorithm as-is on that data, it
isn’t difficult to imagine our new continuous temperature attribute
providing the most information gain while giving us a decision tree that
does not generalize particularly well.

Let's give our data set some temperature values besides Hot, Mild,
and Cool:

Day Outlook Temp. | Humidity Wind Play?
1 Sunny 80 High Weak No
2 Sunny 81 High Strong No
3 Overcast 82 High Weak Yes
4 Rain 65 High Weak Yes
5 Rain 40 Normal Weak Yes
6 Rain 41 Normal Strong No
7 Overcast 42 Normal Strong Yes
8 Sunny 66 High Weak No
9 Sunny 43 Normal Weak Yes
10 Rain 67 Normal Weak Yes
11 Sunny 68 Normal Strong Yes
12 Overcast 69 High Strong Yes
13 Overcast 83 Normal Weak Yes
14 Rain 70 High Strong No

Information gain for the temperature attribute would be .940, the full
entropy of S. This is because there is only one observation per
temperature value, which means that for each value of the
temperature attribute, the training data agrees unanimously on a

Copyright © 2014 Udacity, Inc. All Rights Reserved.

classification and the entropy for each temperature value is 0. The
resulting tree would look like:

82 68 69 83 65 40 42 74367

O G5 G5 &> X X T

This tree is pretty short and it's consistent with the training data, but
its not particularly illuminating or helpful in real-life
tennis-playing-deciding situations. One way to make the ID3 algorithm
more useful with continuous variables is to turn them, in a way, into
discrete variables. Instead of testing the information gain of the actual
temperature values, we could test the information gain of certain
partitions of the temperature values, such as temperature > 41.5.
Typically, whenever the classification changes from no to yes or yes
to no, the average of the two temperatures is taken as a potential
partition boundary. Because 41 corresponds to no and 42
corresponds to yes, 41.5 becomes a candidate. If any of the partitions
end up exhibiting the greatest information gain, then it is used as an
attribute and temperature is removed from the set of potential
attributes to split on.

Missing attribute values:

Because there are only 14 rows in the PlayTennis data set, it's not
unrealistic to expect all our training data to have values for each of the
attributes. However, in reality, data often comes from sources of
varying quality, which makes the prospect of having to deal with
missing values quite likely. If our data were missing certain values,
what could we do?

Day Outlook | Temp. | Humidity Wind Play?
1 Sunny Hot High Weak No
2 Sunny Hot High ? No
3 Overcast Hot ? Weak Yes
4 Rain Mild High Weak Yes
5 Rain ? Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No

Copyright © 2014 Udacity, Inc. All Rights Reserved.

9 Sunny Cool Normal Weak Yes
10 ? Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

Two simple ways of dealing with it involve choosing the most popular
value in the training data. The first method does not take the
classification into account, which leads to an outlook of sunny (5
examples), a temperature of mild (6 examples), a humidity of normal
(7 examples), and a wind of weak (8 examples). The second method
chooses the most popular value for the same classification, which

leads to an outlook of overcast (4 examples), a temperature of mild (4
examples), a humidity of normal (6 examples), and a coin-flip for wind
(2 examples each).

A more complicated way to deal with it involves assigning probabilities
of each value of the attribute to the missing entries. As a result, day
10’s outlook would be 5/13 sunny, 4/13 overcast, and 4/13 rain. When
calculating information gain, these fractional examples are used.
Here’s what it looks like:

Values(Outlook) = Sunny, Overcast, Rain

S =[9+,5-]
5
SSunny - [2ﬁ+1 3_]
4
SOvercast = [4ﬁ+a 0_]
4
SRm‘n - [2ﬁ+a 2_]

Gain(S, Outlook) = Entropy(S)

5
_ b3

14 Entropy(Ssunny)
413
— ﬂEnt’rOpy(SOuercast)
415
- ﬂEntropy(SRam)
513 445 oy _ 4is
=.252

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Avoiding overfitting the data:

Because the ID3 algorithm continues splitting on attributes until either
it classifies the data perfectly or there are no more attributes to split
on, it's prone to creating decision trees that overfit by performing
really well on the training data at the expense of accuracy with
respect to the entire distribution of data.

There are two popular approaches to avoid this in decision trees: stop
growing the tree before it becomes too large or prune the tree after it
becomes too large. Typically, a limit to a decision tree’s growth will be
specified in terms of the maximum number of layers, or depth, it's

allowed to have. The data available to train the decision tree will be
split into a training set and test set and trees with various maximum

depths will be created based on the training set and tested against the
test set. Cross-validation can be used as part of this approach as

well. Pruning the tree, on the other hand, involves testing the original
tree against pruned versions of it. Leaf nodes are taken away from the
tree as long as the pruned tree performs better against test data than
the larger tree.

Changing the information gain formula:

The information gain formula used by the ID3 algorithm treats all of
the variables the same, regardless of their distribution and their
importance. This is a problem when it comes to continuous variables

or discrete variables with many possible values because training

examples may be few and far between for each possible value, which
leads to low entropy and high information gain by virtue of splitting the
data into small subsets, but results in a decision tree that might not

generalize well.

One succesful approach to deal with this is using a formula called
GainRatio in the place of information gain. GainRatio tries to correct
for information gain’s natural bias toward attributes with many
possible values by adding a denominator to information gain called
Splitinformation:

Gain(S,4)
ormation(S,A)

GainRatio(S,A) = Splitnf

Splitinformation attempts to measure how broadly partitioned an
attribute is and how evenly distributed those partitions are. The
formula for data set S and an attribute A with c different partitions is:

Copyright © 2014 Udacity, Inc. All Rights Reserved.

SplitIinformation(S, A) =— %logz%
i=1

If there’s just 1 possible value for the attribute, then the formula equals
log,1 =0. Luckily, we tend not to include attributes with 1 possible
value in our training data because it is impossible to carry out the ID3
algorithm by splitting on an attribute with only 1 value, so GainRatio
doesn’t have to handle the possibility of a denominator of 0. On the
other hand, our continuous temperature example has 14 possible
values in our training data, each of which occurs once, which leads to
—ilogsh * 14 =log,14. In general, the Splitinformation of an attribute
with n equally-distributed values is log,n. These relatively large
denominators significantly affect an attribute’s chances of being the
best attribute after an iteration of the ID3 algorithm and help to avoid
choices that perform particularly well on the training data but not so
well outside of it.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

