U Introduction to Boosting

UDACITY
This document will introduce boosting as a general approach to

supervised learning and it will focus on the AdaBoost algorithm as
a solution to the boosting problem.

Overview and Motivation:

Outline of the AdaBoost algorithm:

Deeper insights - the AdaBoost as an example of additive expansion:

Practical considerations:

Advantages and caveats:

Overview and Motivation:

In class Charles and Michael introduced ensemble learning through
bagging and boosting. In this article we will focus on boosting as it is
more challenging and perhaps more interesting.

Boosting is one of the most popular and successful general approaches
to supervised learning. The original boosting problem asks whether a set
of weak learners can be combined to produce a learner with an arbitrary
high accuracy. A weak learner is a learner whose performance (at
classification or regression) is only slightly better than random guessing.

The rest of this article will cover the topics outlined below. The topics
follow sections 10.1 - 10.3 and 10.5 from Chapter 10: Boosting and
Additive Trees from the wonderful book The Elements of Statistical
Learning ', while adding some additional discussion regarding the
AdaBoost algorithm.

Outline of the AdaBoost algorithm. This is the most popular boosting
algorithm.

Deeper insights: the AdaBoost as an example of additive
expansion (optional). This section covers material outside of class but

' Hastie, Tibshirani, Friedman. The Elements of Statistical Learning, 2nd Edition. Springer (2008).

it might be useful for you to put boosting in perspective. We will discuss
the AdaBoost algorithm in more detail as part of the more general
additive model and the basis expansion.

Practical considerations We will discuss how the algorithm is used in
practice.

Advantages and caveats. Summary of the main advantages and
caveats of AdaBoost, as presented by Schapire (one of the inventors of
the algorithm).

Outline of the AdaBoost algorithm:

The AdaBoost algorithm was developed by Freund and Schapire in
1995. Originally it was designed to perform classification tasks and this
is what we will focus on here. The algorithm has been later generalized
to tackle regression as well.

The AdaBoost algorithm trains multiple weak classifiers on training data,
and then combines those weak classifiers into a single boosted
classifier. The combination is done through a weighted sum of the weak
classifiers with weights dependent on the weak classifier accuracy.

How does every classic supervised learning task begin? It begins with a
training set of data.

So let’s start with a set containing N training examples: every example i
contains features x; (a vector that in general may contain multiple
features) and a target classification label y, € {—1, +1}. Every example i
also has an associated observation weight w;. You can think of w; as an
importance weight that tells us how important the example i is for our
current learning task.

The observation weight might come in as domain knowledge - for
example, we may know, based on past experience, that we are more
likely to encounter a training example j compared to example k.
Therefore we should assign a larger weight to example j - it is the one
that will have a greater influence on our function approximation process.

One advantage of using importance weights is that we can generalize
the notion of error to take into account those weights. Let’'s say we have
a classifier G that takes input features x;and produces a prediction

G(x;) € {—1, 1}. We can measure its training error by simply counting
all the misclassified training examples:

N

errs = 2 1(y; # G(x)))

i=1
The function / will return 1 whenever the true label y; does not agree with
the classification prediction G(x;) and 0 when they do agree.
A better way to compute the error is to take advantage of the importance
weight:

N
Z wi 1(y; # G (x;))

i=1

err =

N
> Wi
i=1

Here we multiply each misclassification by the importance weight w;. In
this way, our error metric is more sensitive to misclassified examples
that have a greater importance weight. As Charles says in this video
from the class, even if we get many examples wrong, we may still get a
low error rate, because in a sense some examples are more important
than others.

N

The factor) w; in the denominator is simply a normalization factor, to
i=1

ensure that the error is normalized (between 0 and N) in case some of
the weights become very large.

In the boosting algorithm, the importance weights w; are sequentially
updated by the algorithm itself. Here is an outline of the algorithm - we
are going to go through it step by step:

1. Initialize the importance weights w; = 1/N for all training examples i.
2.Form=1toM:

a) Fit a classifier G,(x) to the training data using the weights
w;.

b) Compute the error:

N
2 Wil # Gu(x)))

i=

erry, = ~
2w
i=1

https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fcourse%2Fviewer%23!%2Fc-ud675%2Fl-367378584%2Fe-367548606%2Fm-367548608&sa=D&sntz=1&usg=AFQjCNEgd-8mh9Wr7hgWAcgJaIXoyN2QPA

c) Compute o, = log((1 — erry)lerry)
d) Update weights: w; «— w;. expla,,. I(y; # Gu(x;))] for
i=1,2,..N

M
3. Return G(x) = sign[Y. 0uGu(x)].
m=1

Initially we set all weights to be equal to 1/N. Then iterate through the
loop (step 2) M times and fit a different classifier at each iteration. The
classifier at step m is generated based on the weighted dataset using
the current weights w;,.

We then compute the weighted error err,, to determine how well G,, has
done on the training set. Note that the error is sensitive to the current
weights w;.

In step 2c of the algorithm the a,, parameter is computed based on the
error metric. Let’s take a look at a plot of the «,, parameter as a function
of the error err,, to better understand their relationship. Here is a plot of
the log((1 — erry)/err,) function:

50~

25-

-2.5-

50-

error

We can see that for error < 0.5, the a,parameter is positive. The
smaller the weighted training error is, the greater the alpha parameter

becomes. The parametera,, is therefore telling us how well the classifier
G, performs on training data - large a,, implies low error and therefore,
accurate performance.

The last step inside the loop is to update the importance weights w,. The
old weight is multiplied by an exponential term that depends on both a,,

and whether the classifier was correct at predicting the training example
i corresponding to the importance weight w;.

Suppose that a training example j is difficult to classify - i.e. a classifier
Gy fails to classify j correctly [I(y; # Gu(x;)) = 1 1. As a result, the

importance weight of j will increase: w; < w;. exp[a,]. Then the next

classifier G, ; will “pay more attention” to example j during classification
training, since j now has a greater weight. The opposite holds for
examples that were correctly classified in the previous iteration - future
classifiers will have a lower priority of correctly classifying such
examples.

Finally we combine all classifiers G, form = 1.. M into a single
boosted classifier G by doing a weighted sum on the weights .

G(x) = sign| AZ/[, 0 Gr(X)].
m=1

In this way, classifiers that have a poor accuracy (high error rate, low a,,
) are penalized in the final sum.

In the lecture, Charles presents a visual example that is very helpful in
providing intuition on how Boosting can be applied. It is particularly
helpful in visualising how the weights change during the boosting run
and how that change affects classification.

Note that so far we have not specified what the base learners should be.
We say that the AdaBoost method is agnostic to the learner - you can
use many different learning algorithms as base learners. The only formal
requirement is that the base learners are consistently (with a high
probability) achieving performance greater than random guessing. To
ensure that you understand weak learner requirement, | encourage you
to go through this quiz from lecture. Furthermore, there is a great
discussion on StackOverflow that discusses desirable properties for
base learners when used in practice.

https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fcourse%2Fviewer%23!%2Fc-ud675%2Fl-367378584%2Fm-367548618&sa=D&sntz=1&usg=AFQjCNHWE6THjzcvNGDaMCep-Lo49kE3Ig
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fcourse%2Fviewer%23!%2Fc-ud675%2Fl-367378584%2Fe-367548609%2Fm-367548610&sa=D&sntz=1&usg=AFQjCNFZv9a15xY1uhfs5V43tpqk2XWbHw
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F20435717%2Fwhat-is-a-weak-learner&sa=D&sntz=1&usg=AFQjCNGqDxhXyaXayIc2n0zQvJnVO_pGdA
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F20435717%2Fwhat-is-a-weak-learner&sa=D&sntz=1&usg=AFQjCNGqDxhXyaXayIc2n0zQvJnVO_pGdA

Deeper insights - the AdaBoost as an example of additive
expansion:

In this section we will put boosting in the context of the more general
additive model.

The AdaBoost algorithm is a special case of an additive model: we fit a
model on elementary basis functions. The additive model takes the form:

M
flx) = glﬁm b(x; Yp)-

Here P, are the expansion coefficients, and bare the basis functions,
parametrized by v,, . We fit the basis functions by picking B,,and v,, that
satisfy certain optimization procedures. The resultant classifier f{x) is
formed by combining the base classifiers b(x).

Additive models like this are quite common in machine learning. For
example, in a single-layer neural networks the basis functions are
sigmoid functions: b(x; y) = o(y, + y,’x). In this case, the y parameter
determines the linear combinations of the input variables, and B,
multiplies the output of each sigmoidal unit to produce the final output.

In the case of boosting, the basis functions b(x;y,) are the weak
classifiers G,(x), which are parametrized by the importance weights
wn. We say, “parametrized by w,” because what makes a weak
classifier G,(x)different from another weak classifier G,(x) are exactly
the importance weights w, and w, .

Generally, the way an additive model is fitted is by minimizing some sort
of a error (or loss function L):

M
WIZ}’I{BW Yot M [L(yi’ f(xi))] = mln{Bm’ Yok M [L(yi’ m§1 Bm b(xi; Ym))]

The goal is to determine the parameters {B,,, v,,}," of the expansion
which minimize the loss function L - remember that L is a function of the
target label y; and the predicted label f(x;). Once we find those
parameters, we have successfully trained a model f(x;). Note however,

that this is a very computationally intensive task, because we would
need to find all B parameters as well as yparameters (one for each

basis function b for a total of 2 M parameters) all at once.

Forward stagewise additive modeling approximates this minimization
process by adding a new basis function b at each iteration of the
algorithm. The outline of the algorithm is below:

1. Initialize fy(x) = 0
2.Form = 1toM:
(a) Compute:

N
(Bma Ym) - arg minB,y 'gl L(yia fm— l(xi) + Bb(xi; Yz))

(b) Set 1,,(x) =/n-1(x) + B blx;).

3. Return f;,(x) as the additive expansion f(x)

Let's examine the parallel between the more general forward stagewise
additive modeling and the specific AdaBoost algorithm.

For each iteration of the forward modeling, we find parameters B,,, v,,
that minimize the loss function between the actual target y; and the best
guess of the target we have currently, at the iteration step m:
fm—1(x) + Bb(x; v;). In the case of boosting, the parameter §,,
corresponds to a,while v, determines the weights w;. At each
iteration, there will be a new parameter v,,, and therefore the importance
weights will be updated accordingly.

At each stage, we are fitting a classifier G,, thatis parametrized by the
importance weights. We are adding G, (our basis function) to the
weighted additive model we have so far f,_;(x;,) in a way that
minimizes the error between actual and predicted target label.

We call this forward stagewise modeling because once we have
determined the weights B,,, v,,, we don’t go back to basis functions we
have already fitted. In other words, once we have computed f,, (x;) , we

keep it fixed, and we don’t change parameters that we have already
computed in the past (for iterations <= m). We only have the freedom to

compute parameters for future iterations >= m . This restriction leads to
a computationally efficient algorithm.

This comparison shows that AdaBoost is a special case of the more
general forward stagewise modeling and makes it easier for us to find
connections between AdaBoost and other supervised learning

algorithms.
Practical considerations:
Let’'s examine how boosting is applied in data mining.

Classification and regression tasks are important aspect of data mining.
Commercial and industrial data often contain features of various types:
categorical, binary, free-form (such as natural language). In addition, the
number of features is often very large, and it is hard to determine from
the start of the analysis which features are important in the classification
task.

Consider, for example, the StumbleUpon Evergreen classification
challenge on the Kaggle website. The goal is to automate the
classification of pages as evergreen or ephemeral. Web pages are
classified as evergreen if they “maintain a timeless quality” and can be
recommended to StumbleUpon users over extended periods of time.
Normally this classification is done by humans who review the page
contents. For automating this classification task, StumbleUpon provides
26 input features: they include binary, numerical and free-form text types
of features!

Decision Trees is one of the popular algorithms for tackling such
challenges. Advantages of decision trees include:

e computational scalability
handling of messy data - missing values, various feature types
ability to deal with irrelevant features - the algorithm selects
“relevant” features first, and generally ignores irrelevant features.
If the decision tree is short, it is easy for a human to interpret it:
decision trees do not produce a black box model.

Decision trees, however, often achieve lower generalization accuracy,
compared to other learning methods, such as support vector machines
and neural networks. One common way to improve their accuracy is
boosting: using decision trees as base classifiers G, can generate a
single boosted learner with high accuracy.

Some of the advantages of decision trees are sacrificed when used in
boosting. For example, the AdaBoost algorithm is sensitive to noisy data
(mislabeling of the training data). There are several extensions of the

https://www.google.com/url?q=https%3A%2F%2Fwww.kaggle.com%2Fc%2Fstumbleupon%2Fdata&sa=D&sntz=1&usg=AFQjCNGqx4oB5AxudGulEpYso4QKRiN3Ig
https://www.google.com/url?q=https%3A%2F%2Fwww.kaggle.com%2Fc%2Fstumbleupon%2Fdata&sa=D&sntz=1&usg=AFQjCNGqx4oB5AxudGulEpYso4QKRiN3Ig

AdaBoost developed to tackle some of these issues. One of these is the
gradient boosted model, a generalization of tree boosting. To learn more
about gradient boosting, check out the Wikipedia page for an
introduction, and Chapter 10, Section 10 from The Elements of
Statistical Learning for an in-depth discussion.

Advantages and caveats:

If you would like to learn more about boosting from one of the inventors
and primary developers, check out this talk from Robert Schapire. The
slides are also available on this web page. In particular, in that talk
Schapire outlines the Theory of Margins that explains why sometimes in
practice AdaBoost does not overfit, even with very large numbers of
base learners.

Schapire also outlines the advantages and caveats of AdaBoost. Some
of the major ones are summarized here:

Advantages:

e Computationally efficient.

e No difficult parameters to set.

e Versatile - a wide range of base learners can be used with
AdaBoost.

Caveats:

e Algorithm seems susceptible to uniform noise.

e Weak learner should not be too complex - to avoid overfitting.

e There needs to be enough data so that the weak learning
requirement is satisfied - the base learner should perform
consistently better than random guessing, with generalization
error < 0.5 for binary classification problems.

This listing shows that selecting an appropriate weak learner is one of
the key steps towards producing a successful boosting algorithm.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGradient_boosting&sa=D&sntz=1&usg=AFQjCNE4Rh7EhJhtFL2_xC489B2vcqglIA
http://www.google.com/url?q=http%3A%2F%2Fstatweb.stanford.edu%2F~tibs%2FElemStatLearn%2F&sa=D&sntz=1&usg=AFQjCNGAP_rMy7mgYDvPE01qtxnQTIb2ag
http://www.google.com/url?q=http%3A%2F%2Fwww.research.att.com%2Ftalks_and_events%2F2012_distinguished_speakers%2Fr_schapire_explaining_adaboost%2F2012_DSS_schapire_explaining_adaboost%3Ffbid%3DC76eNDceDC3&sa=D&sntz=1&usg=AFQjCNHxx0WtIBPtccJNC5DYvteX45Z69g
http://www.google.com/url?q=http%3A%2F%2Fmedia.nips.cc%2FConferences%2F2007%2FTutorials%2FSlides%2Fschapire-NIPS-07-tutorial.pdf&sa=D&sntz=1&usg=AFQjCNFUuCbU-wu1hpclzzQGHkof89NGPg

