U

UDACITY

Neural Networks

The purpose of this document is to review neural networks,
discuss training rules and provide an example illustrating
backpropagation.

Perceptrons and the Perceptron Rule:

Gradient Descent / Delta Rule:

Neural Networks:

Backpropagation:

In lesson three of the course, Michael covers neural networks. These
notes are intended to fill in some details about the various training
rules.

As stated in the lectures, a neural network is a learning structure
designed to mimic the function of a web of biological neurons. The
most basic (artificial) neural network is one that consists of just a
single neuron, called a perceptron. We begin by recounting how a
perceptron works, and discussing the most basic training rule: the
perceptron rule.

Perceptrons and the Perceptron Rule:

inputs weights

In the picture above, 0is a firing threshold, the w;are weights, x;are
the inputs, and y;is the (discrete) output. In general, neural networks

can have continuous output, but we will restrict to discrete output for
the purposes of this document. Mathematically, the perceptron
computes output according to the following rule:

y =« ;Wixi —0)=xy(w-x—9).

Here, y(a) is a characteristic function defined by
x(a) = 1if a>0 and y(a) = 0if a< 0.

We can think of the perceptron as a hyperplane in n dimensions,
perpendicular to the vector w = (w;, wy, ..., w,). The perceptron
classifies things on one side of the hyperplane as positive and things
on the other side as negative. Below is a picture of the hyperplane for
w = (5 —3) with 6=0.

¥ 2

w= (5, -3)

In order for the perceptron to be useful as a structure for learning, we
need to be able to train it with new data. To see how we might do this,
consider the perceptron with two inputs x;and x,. Let's assume that
the weights and firing threshold are as above. Now suppose we are
given the training point (2, 5, 1) as a (x;, x, y)- tuple.

We can see that as of now, our perceptron doesn’t do a very good job
with this training point. The perceptron outputs 3 =0, when the
training data has a target y = 1. How could we change the
perceptron to predict better? The answer is that our best bet is to try
to change the weights (since we can’t really change the data...).
Geometrically, we might think of this as rotating the hyperplane to put
the training data on the correct side of the boundary.

¥ #(2.5)

w= (5, -3)

How should we perform this rotation? By this, we are asking for a

method of rotating the plane that we can consistently repeat in similar
situations.

One possible answer is that we could create a new weight vector v’
by adding x and w together. Geometrically, this will give us the new

weight vector shown below together with the new hyperplane and
classification region:

Perfect! Our new weight vector allows the perceptron classify the
data x=(2,5) correctly. So, the big question is: can we derive a

general rule to follow that captures the procedure above? One
possibility is the rule:

!

w=w+x.

While this is a good guess (this rule does capture the situation

above), it fails in the case that our perceptron incorrectly classifies an

input as positive when the target is negative. Why? Well, in this
second kind of misclassification, we actually want to rotate away from

the data point in order to put the point on the negative side of the
boundary (it is a very worthwhile exercise to draw some examples to

convince yourself of this!). The rule also doesn’t capture the situation
where we classify the data correctly, in which case we shouldn’t need

to update the weights at all. In order to account for both types of
misclassification and the possibility of correct classification we need

to make a couple of observations. If y denotes the target output and

vy denotes the output of the perceptron, then:

y = 0 when we classify a data point correctly.

y = 1 when we incorrectly classify a positive data point
a

y

°
TR

+1) as negative (-1).
e y — 3= —1when we incorrectly classify a negative data point
as positive.

With these observations in mind, we propose the rule
WS (- P

as a means to update the weight vector. As it turns out, this is (nearly)

the perceptron training rule! In practice, we might want to control how

much the hyperplane can rotate. This is done by including a
multiplicative “learning rate” n in the formula above. The final result is:

W= w0 P

When written in terms of vector components, and denoting the last
term by Aw, we have the familiar form seen in the lectures:

Wl" = W; + AW,’
=w 0 - I

We note that it can be shown that the procedure given above for
updating weights can be shown to converge within a finite number of
applications, and it will correctly classify all training examples,
provided 7 is sufficiently small and the training examples are linearly

separable’.
Gradient Descent / Delta Rule:

The perceptron rule outlined above works fine when the data is
linearly separable, but can fail to converge otherwise. For more
complicated data, we need a better training rule. One idea is to create
a function that measures how much error we have, and then try to
adjust the weights to minimize that error. A first go at creating this
error function might look like:

Ew) = X ba = Vil

deD

where D is the set of all training examples. This makes some sense;
we are just summing up the magnitude of the error over all training
examples. However, there is a problem with this formulation. In order
to move towards the minimum of E(w), we will need to use

derivatives, but neither the absolute value function | - | nor the
thresholded perceptron output yare differentiable. To fix these
problems people have traditionally considered the unthresholded
perceptron given by

y=w-x,

and replaced the absolute value function | - | with a quadratic. The
resulting error formula is:

Ew) =4 X (g = w-x0?.
deD

The extra factor of 1/2 is just to make the derivative expression
simpler, and is not necessary. The idea here is that if we can choose
weights to make the unthresholded perceptron, or linear unit, produce
values w - x,; that are close to the true values y,, then the thresholded

' Minsky, Marvin, and Papert Seymour. "Perceptrons." (1969).

perceptron will produce good values as well.

To update the weights, we use the gradient descent method
described in the lectures. Also, a derivation of the gradient of the error
function is also given in the lectures. The result is

Aw; =M 2 (Va— W Xg) Xig-
deD

Note that for a single data point, the training rule from gradient
descent takes the form

Aw; =y —w-x)x;,
which is very similar to the perceptron training rule!
Neural Networks:

Great, so now that we have an advanced and flexible training rule for
our linear units, we can start linking the units together to form
networks. With our newly created networks we will be able to model
ever-more-sophisticated functions, right?

Well, not quite. It turns out we still have a big problem.

To use gradient descent above, we had to use a linear unit. This unit
is just a linear function, and when you link a lot of these units together
you get a linear combination of linear functions, which is linear. So
we have a conundrum; we want the nonlinearity of the thresholded
perceptron, with the robust training rule given by gradient descent.

The solution is given to us by the sigmoid function

o(x) =—=

I+e™ *

A plot of the sigmoid is given below:

Plot:

Notice that the sigmoid looks roughly like a smoothed thresholding
function. Also, it turns out that the sigmoid is smooth. In addition, the
sigmoid has the awesome differentiation property

@ = o) (1 = o(x)) .
So we can make perceptrons (sigmoid units) that operate according
to the rule

y = o(w-x),

giving us the best of both worlds: the sigmoid units are nonlinear and
we can still use gradient descent.

The training rule for a sigmoid unit, given by gradient descent is:

Aw; =m X (g—0)o-(1 = 0)xy.
deD

Here we are using o as shorthand for o(w - x,).

The final topic of consideration regarding neural network training rules
is that of updating all of the weights in a network. Since the sigmoid
units are all linked together, the inputs and outputs for a unit depend
can depend on other units. The application of gradient descent to an
entire network at once is called backpropagation. To see an example
that demonstrates where the name comes from, continue to the next

section.
Backpropagation:

In the sketch of neural networks, Michael discusses backpropagation
as a means for a neural network to learn. Here we demonstrate
backpropagation for a neural network with two inputs and one output.
The network is shown in the diagram below, with the nodes
numbered.

X1

X2

In our example, the activation function will be given by the sigmoid
o(x) = =

which is discussed above. To begin, the neural network is populated

randomly with small weights. Here w) indicates the weight

between the input x;and node 1. The output of node one is denoted

by y,, and the formula for this output is shown below.

W(x1)1 Yyp=0 (w(zl)lﬂvl + w(zz)lmz)

X2

After node 1 output is computed, we can use the same method to
compute y,, the output at node 2. This is shown in the next diagram.

Y2 =0 (w(z1)2$1 + w(zz)zﬂcz)

X1

X2
W(x2)2

Finally, the weights w;;and w,; can be used along with the sigmoid
function to compute the final output y.

Y=o (wizy1 + waz y2)
X1

X2

With the output yin hand, we can compute the error &; between the
true value y,,,and y. This is the beginning of backpropagation of
errors.

03 = Ytruth — Y

X1

X2

Once error 65is computed, we can use the weight w;to compute

the error §, for node 1.

And finally, we can use the backpropagated error along with the inputs
to compute updated weights w',;),and w/,,,. This takes place
according to the gradient descent formula for the sigmoid function o.
In the equations below, nis a parameter which controls the rate of
learning. Also, in the formulas below, e = w) - x; + wuo) "X -

sz1)1 = W(g1y1 +nd1o(e)(1 — o(e))x:

Wigoy1 = W2yt T 1010(e)(1 — o(e))z2
X1

X2

Similarly, we can compute updated weights w/yand wi,,) .

Analogous to the previous diagram, in the formulas below,
€ = Waip X1t Waeop X2 .

wzm)z = Wz1)2 +nd20(e)(1 —o(e))zy
sz2)2 = Wz2)2 +Nnd20(e)(1 — o(e))z:

X1
X2

Finally, we can compute updated weights
w'i,and w', using the same process.

wiy = w12 +ndzo(e)(1 — o(e))y

a Wy = wa2 +ndzo(e)(1 — a(e))ye

X2

For a more in depth example with a hidden layer (and the inspiration
for this example), refer to this link.

http://www.google.com/url?q=http%3A%2F%2Fgalaxy.agh.edu.pl%2F~vlsi%2FAI%2Fbackp_t_en%2Fbackprop.html&sa=D&sntz=1&usg=AFQjCNEpAQZhCy1X3hCPk9enPSi8RsAxtQ

