U Bayesian Inference

UDACITY
The purpose of this document is to review belief networks and

naive Bayes classifiers.

Definitions from Probability:

Belief networks:

Naive Bayes Classifiers:

Advantages and Disadvantages of Naive Bayes Classifiers:

At the end of lesson 9, Charles introduces the Bayes optimal
classifier. Although this is the best performing classification model for
a given hypothesis space, data set and a priori knowledge, the Bayes
optimal classifier is computationally very costly. This is because the
posterior probability P (4| D) must be computed for each hypothesis
h € H and combined with the prediction P(v| &) before v, ,» can be
computed.

In lesson 10, Michael discusses Bayesian inference. The end goal of
this lesson is to introduce an alternative classification model to the
optimal Bayes classifier: the naive Bayes classifier. This model is
much more computationally efficient than optimal Bayes
classification, and under certain conditions it has performance
comparable to neural networks and decision trees'. Naive Bayes
classifiers represent a special case of classifiers derived from belief
networks -- graphical models which represent a set of random
variables and their conditional dependencies®. In these notes we
review belief networks and the special case of naive Bayes
classifiers, along with some definitions from probability.

Definitions from Probability:

In this section we recall a few definitions from probability that we will
need moving forward. Feel free to skip this section if you are familiar
with conditional probability and Bayes’ theorem.

' Mitchell, Tom M. "Machine learning. 1997." Burr Ridge, IL: McGraw Hill 45 (1997).
2 "Bayesian network-Wikipedia, the free encyclopedia." 2003. 9 May. 2014 <http://en.wikipedia.org/wiki/Bayesian_network>
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We say that X is conditionally independent of Y given Z if for all
values (x;, y;, z;) we have

PX =x|Y =y, Z=2)=PX =xZ = z).

Writing out all definitions, we see that it is equivalent to say that for all
values (x;, y;, z;) we have

PX =x,Y =y|Z=2z)=PX =x|Z =z P(Y = y;|Z = z).
We will also recall the following inferencing rules:
The product rule (aka, the chain rule):
P(X,Y) = P(X|Y)P(Y) = P(Y | X) P(X)
It is helpful to note that this rule also has the more general form:

PXy,....X») =
PX| Xy, Xp) P(X5 | X3y, X)) - P(X =1 | X)) P(X).

Bayes’ theorem for a hypothesis h and data set D :

P(h|D) =HEZ20

It is useful to note that Bayes’ theorem makes some sense
heuristically. If we increase the probability of a certain hypothesis
P(h), then we would naturally expect an increase in P(h|D).

Similarly, if some data Dis more likely to occur in a world where
hypothesis # is true (this probability is P(D|h4)), then we might
expect to see & given that we already see the data (thisis P( | D)).
Last, if we increase P(D), the probability that data Dis observed
independently, then this decreases the support that D provides for
any specific hypothesis /. Hence P(D) and P(h|D) are inversely
proportional.

Marginalization (aka, the theorem of total probability):

If X,,...,X,are mutually exclusive with Y’ P(4;) = 1, then
=1

i=



P(Y)= X P |4)P4).
i=1
Belief networks:

As described in the introduction, belief networks (a.k.a. Bayes(ian)
net(work)s, probabilistic directed acyclic graphical models) are

graphical models that describe the probability distribution of a set of
variables in terms of the variables’ conditional dependencies. So, in
particular, given a set of random variables Y, Y,, ..., Y,, a network

is called belief network if the joint probability distribution of the n-tuple
(Y,...Y,) can be written as

P(Y....,Y, = ﬁP(Yi|Parents(Yl~)).

i=1

We will explain what variables are included in the set Parents(Y))
below. In fact, let’s start with an example illustrating this idea, and we
can nail down the definitions as we go. Let's suppose we are given
the following variables: “you are hungry!”, “you own a robot that can

cook and clean”, “you will be eating dinner at home”, and “you will
have dishes to do™

In the network above, each node represents a variable, and arrows
from different nodes represent conditional independence
assumptions related to the variables. More on this below. For brevity,
we will be referring to these variables as

Robot = Y, HomeDinner = Y,,
Dishes = Y3, Hungry! = Y,.
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Here, we say Y, is a descendant of Y, if there exists a directed path
from Y, to Y,. For belief networks, we define the Parents of a

variable to be the the variable’s immediate predecessors in the
network. So, for example,

Descendants(Robot) = (Dishes, Dinner)
Parents(Dishes) = (Robot, HomeDinner, Hunger!)

For each node in the network, we are given a conditional probability
table describing the probability distribution of the corresponding
variable, given the variable’s parents. The belief network shows that
for an assignment of values

(Y1: Vl,...,Y4 = V4),

the joint probability can be written as

P(vi,...,vs) = [l P(v;| Parents(Y))).
i=1

Note here that
P(v;| Parents(Y)))

is the information provided by the table for each node. Thus, in our
case, given the belief network pictured above, we could determine the
probability that you are hungry!, will eat dinner at home, not have to do
dishes and own an awesome dish-cleaning-dinner-making robot,

P(Robot = 1, HomeDinner = 1, Dishes = 0, Hungry! = 1),
with the following four values from the belief network tables:

P(Robot = 1),
P(HomeDinner = 1| Robot = 1, Hungry! = 1),
P(Dishes = 0| Robot = 1, HomeDinner = 1, Hungry! = 1)
P(Hungry! = 1).

Ok, great! We have shown how you can use a belief net to compute
joint probabilities, but what if you are given a set of random variables?

Can you create a belief net that corresponds to these variables?

It turns out you can. We demonstrate how to do this with the variables



X1, X5, X3 and X, . Using the chain rule we can write:

P(XlaXZaX3’X4) =
PX4| X 3, Xy X)) P(X3]| X5, X ) P(X5 [ X)) P(XY).

For each conditional probability P(X;| X, X;,..., X;) on the right
side of the equation, we can choose the smallest subset of X/s,
which will be the Parents(X;), such that

PX;| Xie1, Xicgs .-, X1) = P(X;| Parents(X))) .

For example, it may be the case for P(X, | X3, X,, X)) that the
smallest subset gives

PX4| X3, Xy, X)) = P(X4] X5, X3),

so we will denote
Parents(X;) = (X3, X5).

Then to create the belief net, we just need to create a graph with
incoming edges from each variable in Parents(X;) to the variable X;,

and a conditional probability table for Parents(X;) .

Naive Bayes Classifiers:

Naive Bayes classifiers are classifiers that represent a special case
of the belief nets covered above, but with stronger independence
assumptions. In particular, let's suppose we are given a classification
variable V7, and some attribute variables «,...,a,. The example of

this seen in the lectures is the email spam-filtering example where

V = spam,

a, = viagra, a,= prince, ay = Udacity .

For our classifier to be a naive Bayes classifier, we make the (naive)
assumption that every attribute variable is conditionally independent ol
every other attribute variable. Graphically, in terms of the belief nets
described above, this is going to look like:



L I B I O L I B

For the classification variable 7, as always, we would like to find the
most probable target value v,,,, given the values for our attributes.
We can write the expression for v,,, and then use Bayes theorem to

manipulate the expression as follows:

Vmap = argmax,cy P(vi| ay, ay,..., an)

. P(ay, ay,..., an| v)P(v))
= argmax,zy

P(ay, ay,..., an)
= argmaxvjeVP( ai, a,..., an | v)P(v).
Next we would like to simplify the last expression. In what follows
below, we use the general product rule for the first step, and then our
naive conditional independence assumption for the second step:
P((l], ay, ..., anlvj)
= P(aj| ay,...,an, v)P(ay| as,...,an, v) - Plan|v))

= P(a)| v)P(az| vp) =~ Plan|v) .

Substituting this equality into the formula for v,,,, and writing the
product more compactly we have the following expression:

n
Vmap = argmax,cy P(v) [TP(a;] V).
i=1

One great computational advantage of this formula is the small
number of terms that must be estimated to compute v,,,. More

precisely, for each classification category v, that J can take, we
must estimate the » values P(a;|v;). Thus, the total number of
terms to be estimated is just the number of attributes » multiplied by
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the number of distinct values v that 7 can take.

A second computational advantage of the formula is the fact that each
of the terms to be estimated is a one-dimensional probability, which
can be estimated with a smaller data set than the joint probability. By
contrast, a direct estimate of the joint probability P( a;, a,,..., a,|v;)
suffers from the “curse of dimensionality” 3. Recall from lesson four
of the lectures, the curse of dimensionality occurs when the amount
of data needed to develop an acceptable (i.e. non-overfitted) classifier
grows exponentially with the number of features.

Advantages and Disadvantages of Naive Bayes Classifiers:

As mentioned above, the naive Bayes classifier is very efficient for
training, in terms of the total number of computations needed. Also,
as mentioned in the introduction, naive Bayes performs well on many
different training tasks. However, because of the strong conditional
independence assumption placed on the attributes in the model, there
are situations where naive Bayes is not appropriate.

To get an idea of why this might be the case, consider the task of
using naive Bayes to learn XOR. So here, our attributes will be the
inputs X,and X,, and we also have the classification variable

V = (X; XOR X,). Naive Bayes will consider each of the attributes
independently and will be unable to accurately predict v,,, given
input values X; = x; and X, = x,.

3 Mitchell, Tom M. "Machine learning. 1997." Burr Ridge, IL: McGraw Hill 45 (1997).



