

Fundamentals of Programming

If Statements, For Loops, Functions

Table of Contents

Hello World

Types of Variables

Integers and Floats

String

Boolean

Relational Operators

Lists

Conditionals

If and Else Statements

The Elif Statement

Loops

Functions

Conclusion

In this module, we will be reviewing three of the most critical

fundamental concepts of programming in the Python language: types of
conditionals, loops, and functions. Please check out the in-browser IDE (fancy
word for a place that runs Python code) provided to you so that you can
experiment and write code as we go through this document. For those
unfamiliar with the language, don’t worry! This first module will introduce
you to the Python programming language and help you get comfortable with
it. Now, let’s start off by saying Hello to the world in our program!

Copyright © 2014 Udacity, Inc. All Rights Reserved.

https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fcourse%2Fviewer%23!%2Fc-1056918980%2Fl-1058249401%2Fm-1064038537&sa=D&sntz=1&usg=AFQjCNG8YOkv6jOOcIS2d1MZZ-rcEXwhLA

Hello World

In programming languages we can input commands that the machine
will execute. For example, if we want to say Hello World in Python, we would
write:
print "Hello World"
Then press the Test Run button and see below:

Here, my program tells the machine to print the sentence "Hello World,"
which it then prints in grey text.

We could also solve arithmetic problems and print out answers. For
example, we can write code to see that 2 * 2 = 4.

We can also solve more complex problems and see the result. For
example, what is 210? We can see the result of this by typing print 2**10,
another way of saying 210.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

We can also save information inside of variables so we can change or
use it later on. For example, here I get the value of 27, save it in variable x,
and afterwards add 500 to it.

This can get pretty confusing. I’ll go ahead and add what are called
comments. Comments are denoted with a # and allow programmers to add
some comments or remarks about the code. This information does not affect
our commands in any way, they are just there so that other programmers can
understand the intentions of the code.

To learn more about variables, check out this video segment from the
Introduction to Computer Science by Professor Dave Evans!

Copyright © 2014 Udacity, Inc. All Rights Reserved.

https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fcourse%2Fviewer%23!%2Fc-cs101%2Fl-48299949%2Fm-48660987&sa=D&sntz=1&usg=AFQjCNHpabGlTUIOKOAJ2G9NMOmHe3ErrQ

Types of Variables

This will be a more tedious section, where we’ll go over some
vocabulary and make some distinct points that will help guide us through the
rest of this document. While we’ll often work with numbers, there’s also a
strong need for us to work with words and other forms of information, which
we will refer to as data types. One example of such a data type we’ve already
seen is the String, which we saw in the form of "Hello World!" Other data
types that computer scientists work with include the boolean and the list.

Integers and Floats
When dealing with numbers, we can break them down into two basic

variables types: (there are actually a large variety of them but we only need to
worry about 2 of them).

● Integer - A whole number that can be positive or negative (including
zero)

○ Examples: 0, 2, 1337, 50012, -1492
● Float - A decimal number

○ Examples: 1.324, 1.0, 0.0, -1.35353
It’s usually enough to refer to these two data types as numbers. We will
rarely need to worry about the difference between these two types when
working with Python.

String
The String is a fancy way of saying that we’re dealing with a sequence

of letters, numbers, and other special characters (e.g. $, %, #,). If you want to
see what is accepted as a character check out the ascii table of characters. As
a word of warning though, this table will look very complicated. The only
column you need to concern yourself with is the “char” table for now. To
write a String in Python, we wrap it with either single quotations or double
quotations. Here are some examples below.

● "September"
● "Blarg, this sentencedoesn’t;;makesense!!!"
● 'This is a single quotation String'
● """This is a multi

line String! It can take up as many lines
as it wants because I used three quotations!"""

Here are examples of what will not be Strings.
● "This is not a complete String because I started the String with a double

quotation and ended with a single quotation, so it never finished'
● ""I did two quotations, so I made a String with nothing beforehand and

with nothing after""

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www.google.com/url?q=http%3A%2F%2Fwww.asciitable.com%2F&sa=D&sntz=1&usg=AFQjCNEj1KO22Tz1jbiTrv1E3a70RBXidw

Boolean
The Boolean can be closely compared to a light switch. Like how the

average lightswitch will have two states - an on and off state - the Boolean
has two states. This binary decision is usually expressed with a True and a
False, True being 1 and False being 0. In this section I will not be going into
the technicalities of the Boolean, so it will be enough to think of the boolean
as being either True or False. Below I will share some examples of how we
might write booleans.

● x = True #Set the variable x equal to the True value
● x = False #Set x equal to False value

Keep in mind though that the Boolean differs in that it is a statement: a
matter of fact. We can ask questions in real life and see what the results are:
“Is x equal to 5?” → True, it is!” We can do the same in programming to get
information that helps us function. To check if x is equal to 5, we would go
ahead and write this:

● x = 5 #Set the variable x equal to 5
print x == 5

Here, we’re using something called a relational operator (More on this in the
next section) to establish the relationship between the right hand side and the
left hand side of the statement. Is x equal to 5? In this case, we would see that
the result is true. Here are more examples that demonstrate how we might
use relational operators (specifically is equal to) to interpret information.

● y = 5
x = (y == 5)
print x

● Here I check if y is equal to 5. To check equality, we use ==.
Because y is equal to 5, I have set x = True in a roundabout way.

● y = 4
x = (y == 5)
print x

● Check if y is equal to 5. Because y is not equal to 5, I have set x =
False here. I think print the value to see what it turns out being.

Relational Operators
Relational Operators allow us to effectively turn our statements

into simple Boolean values that we can use. We’ve already seen a very
common operator, which checks equality. The == operator will check
whether the left value holds equal value to the right value, and will
return True or False depending on the result of the comparison. Here
is a list of some example operators that we can use and what it means.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

● == #Checks Equality
● < #Check if the left value is less than the right value
● <= #Check if the left value is less than or equal to the right value
● > #Check if the left value is greater than the right value
● >= #Check if left value is greater than or equal to right value
● != #Check if the two values are not equal to each other

Booleans can take a lot of time to get used to. I would recommend going to
your programming playground within Udacity and giving things a try and
seeing what happens!

Lists
When dealing with a lot of information, there’s a strong need for us to

be able to store a lot of variables easily. For example, maybe we’re doing a
little statistics and getting the mean of a list of numbers. The List helps us
organize and store a seemingly limitless amount of information into a single
container. We can represent a list by placing values inside of brackets like
such:

● my_list = [1, 2, 3, 4, 5]
● string_list = ["apple", "orange", "banana"]

When creating a list, we can imagine that we’ve created a series of
compartments like we would see at the post office.

 We can then insert elements into each compartment, take a look at those
elements, or replace elements at will. We can then just as easily pull the
elements out for analysis. We do so as shown below.

As we can see, we started off with a
list that contains three elements. I
started off by printing the list as a
whole, so I got back my apple,
orange, and banana. Afterwards, I
checked what is in the first element
of my list (more on this later). I
then chose to go to my second
element, my_list[1] which has
"orange", and then replaced that
value with "mango". Finally, I went
ahead and printed out the second

Copyright © 2014 Udacity, Inc. All Rights Reserved.

https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fcourse%2Fviewer%23!%2Fc-1056918980%2Fl-1058249401%2Fm-1230568782&sa=D&sntz=1&usg=AFQjCNGoFaig2yCtGdtr62s_mYc5j3Xetw

element to see the change I made and then I printed out the list as a whole to
see what happened there.

At this point, what should stand out to you is how we referenced elements in
our list. When we wanted to get the first element in our list, we did
my_list[0]. Oddly, we stated that our first element is at position 0 while the
second element is at position 1. This is a critical detail in Computer Science
that is important to remember. In general, computer scientists like to index
starting from 0. So when we reference position 1, it’s actually going to be 0 for
us. So practically, it’ll be a lot easier if we reference "apple" as being our 0th
element in our list. You can see a somewhat technical discussion on the topic
here. This blogpost also provides an interesting perspective.

Lists also have special properties that we can take advantage of. If we
want to determine the length of a list, then we can do so with the len()
command. Here’s an example of how we would use it:

● len(my_list)
We can also add elements, or lockers, to our already made list. To do so, we’ll
simply append. Here is an example of what our line of code will look like:

● my_list.append("pineapple")
After this command, we’ll find that the element pineapple will be added to the
end of our list, so the length of our list will be one longer as well.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F9174533%2Fwhy-do-prevailing-programming-languages-like-c-use-array-starting-from-0&sa=D&sntz=1&usg=AFQjCNFJPGDHnEitRY9oAFk6WKw5IvWa-w
http://www.google.com/url?q=http%3A%2F%2Fwww.johndcook.com%2Fblog%2F2008%2F06%2F26%2Fwhy-computer-scientists-count-from-zero%2F&sa=D&sntz=1&usg=AFQjCNG3ZvqtCKIrlkFhsHDXedHQyQVcSw

Conditionals

We’ll quickly find that things can feel very constrained using only
simple statements. Imagine if we’re given a problem that requires us to turn
a random number that ranges from 1-12 into the appropriate month. When I
refer to this problem, it will be marked as the month interpreter problem.

There are many ways in which we can solve this problem. I’ll go ahead and
share one such solution that we can do using only Lists.

So here, I went ahead and created a list containing all of my months. I then
proceed to print out the appropriate month based on the value of x. Note
though that when I pull the element from my list, my index is actually x - 1,
not x. This is because our index starts at 0 instead of 1, so we actually have
our months lined at 0-11 instead of 1-12. By subtracting 1, I correct the off by
one error and am able to easily print out my month.

Let’s say we couldn’t use this solution though. How would we go about
solving this problem? Ideally, we’d like to say:
If x is 1, then print January. If x is 2, then print February… if x is 12, then print
December.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

If and Else Statements
In Python, we can represent this logic with if statements. Let’s start things off
by first writing some code to check if we should print out January for an
arbitrary value of x. See the code below.

Here we’re printing out "January" and not
"Not January" because we set the value of
x to be 1. We controlled our output based
on a condition. Let’s take a close look at
the diagram below to get a better idea of
how this program flows and operators.

This diagram helps us map out the
logic flow of a basic if statement. We
have appropriate code written before
the if statement. We’ll then enter
our if condition. The syntax for
doing so is:

● if <Boolean>:
where <Boolean> represents the
Boolean value that I will insert
there. Afterwards, depending on the
result of the Boolean value, we’ll
execute different commands. If the
boolean value is True,we’ll execute
the Then Body. If boolean value is
False, then we’ll execute the else
Body.

Going back to our if statement, we see that we would print "January" if our x
is equal to 1, but otherwise we will always print out "Not January" because our
Boolean will be False. Let’s take this concept and apply it to our problem at
hand now. Once we do, our code will look something like this:

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Now we have effective code that will run and print the month based on

our variable, x. We’ll go through each if statement and then determine the
month we should print out, but let’s say that we want to provide some
feedback. What if x is not a number between 1 and 12? Well, my first instinct
was to add an else statement. Let’s see what happens when I add the else
statement though.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Although the value of x was between 1 and 12, our else statement got printed
as well. Let’s go back to the flow chart (shown on
the right) to see why.

As we can see here, our else statement will
follow a flow based on the condition given in the
if statement directly above it. Because we’ve
created a series of 12 if statements, the else
statement doesn’t necessarily know which if
statement it is based off of. As a result, it will
simply default to the if statement directly above
it. Since the else statement was applicable only
to the if x == 12: statement, it checked if
"December" or "Number not Valid" should be
printed. Let’s look into how we can edit our code
so that our else statement would be applicable to
all of the if statements and would get printed if
and only if the value of x is not between 1 and 12.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

The Elif Statement
Let’s start off fixing the problem using what we already know. We

could fix this by inserting our followup if statements inside of the
predecessing if statement. I’ll demonstrate this sort of solution with the first
three months:

Note: This is the WRONG way to fix our problem!

By using the code above, our else statement that prints “Not within the
first 3 months” is applicable to all the if statements. As you can see here, we
were able to print out exactly what we wanted and expected by creating some
complicated code with a complicated structure of if statements inside the else
statement of our previous if (That’s a mouthful, demonstrating that we may
be overcomplicating things!). As you might imagine, our program can
become really unreadable if we tried to add a lot of if statements in this
manner. To get around this, we can write an else if statement all in one line.
In Python, we can represent this else if by writing the following:

● elif <Boolean>:
So let’s take a look at how our code will now flow before we apply this to our
program.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

With this diagram, the first thing to note is that we don’t need to
constantly indent our code every time we want to add another elif. As we see,
our code will run down our long if and check each condition until it finally
finds a condition which turns out being True. If it doesn’t find a condition
that’s true, then it’ll just go ahead and run the else body just like it did before.
What’s important to keep in mind though, is that as soon as we find a
condition that is True, we will not bother going through any of our other elif
or else statements.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Below, is an example that will show how when one of our conditions are met,
the rest of the conditions we did not go through yet will then be disregarded.

Here, we printed out "Made it!" just like we’d expect. We did not go

through our second elif even though that condition would be True. Let’s go
ahead and apply this logic to our program now.

Awesome! Our program now seems to work. We should probably do more
thorough testing just to make sure. In the next session, we’ll learn to use
loops in order to do exactly that.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Loops

When testing our code, we’ll want to go through a wide variety of
different possible cases. If possible, we want to test each condition that is in
our code and then see if there are any edge cases which can cause our code to
break. So in this case, we should probably test the numbers from 1 to 12 and
then also a couple numbers greater than 12 and numbers less than 1. Let’s
start off by writing a couple of test values into list form.

● x = [-7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 55]
Now, while we can reference each individual element in the list manually, it
can get really tedious and things could also get very complicated and near
impossible when we’re dealing with very long lists of indeterminate size. In
programming, we can use loops to go over a body of code as many times as we
need to. Below is a diagram depicting how our code will flow. If this doesn’t
make sense, don’t worry. We’ll go through an example to apply this model.

The first thing we should note is that this code here looks very similar to the if
statement. We have our condition, which we then indent in order to convey
what will happen should our condition be True. Here’s where we start things
start to become a little different though. With our loop, we will execute our
Body of Repeating Code, but then go back to our condition. If it’s True, we’ll
run through our body again and continue to repeat the cycle until our
boolean value is False.
Let’s run through an example of when and why we might want to use code.
Let’s start off by creating a countdown that goes from 5 to 1. Originally, we
would probably write our program like this:

Copyright © 2014 Udacity, Inc. All Rights Reserved.

As we can see, this took up quite a few lines. More importantly though,
making changes to this would not be very easy. What if we wanted to change
our countdown to countdown from 10 instead? We would probably have to
add more print statements that will print the correct number. Let’s adjust
our code to do a countdown starting from 10 using a loop now.

So with the loop, everything looks a lot more compressed. Let’s go through
this problem and apply the diagram from before so that we can fully
comprehend how it works.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

So I started off by defining a

variable x, which will keep track of
where I am in my countdown.
Afterwards, I enter my loop with
the condition that I will stay in my
loop so long as x > 0. Inside the
body, I’lln print x and afterwards
decrease x by one. Keep in mind that this will only occur when x is greater
than 0 precisely because that’s the condition I’ve set. So I’ll go ahead and
repeat these steps as x decrements. I’ll go through the body a total of 10
times, once when x = 10, when x = 9, x = 8, and onwards up until x = 0. Once
I’ve decremented and x has been decremented all the way to 0, my loop’s
condition now False. Now that x is not greater than 0, I’ll go ahead and
execute on the rest of my code, printing out "Blastoff!"

As we can see here, it becomes very easy to make changes to the code
now. If I want to do a countdown starting at 1000, I just need to change the
starting value of x to be 1000 and the loop will do the rest of the work for me!

Let’s go ahead and use our for loop in order to test if our month
interpreter works (Note: you’ll have to go to the next page in order to see the
solution!).

Copyright © 2014 Udacity, Inc. All Rights Reserved.

 Copyright © 2014 Udacity, Inc. All Rights Reserved.

I’ve run the code above and I’ve got a bunch of numbers. On a closer

look, it seems like the results seem to overall look correct. Let’s take a closer
look at how we went through every element of our list so that we could print
the output. In this case, there are 3 critical lines of code that we want to take
a close look at in order to get a better understanding. I will go ahead and
write the code below:

1) index = 0
2) while index < len(my_list): #len will fetch the length of the list
3) index = index + 1

1) So here, I go ahead and use index to keep track of the element I want to look
at within the list. I’ll start with my first element, which is located at the 0th
place, hence why I default index to the value 0.
2) The while loop is intended to be used to go through all the elements of my
list. In order to achieve that goal, I just constantly check that index is less
than the number of elements my_list. Remember, the moment that index ==
len(my_list), that means that index will no longer reference an element inside
the list. For example, if there are 10 elements in the list, then the indices that
reference those elements will number from 0-9.
3) In order to make sure that I continue to go through the list, I increment
index by 1 to indicate that I’m ready to move on to the next element and start
over with my loop.

So as you can see here, the loop is intended to help me test a couple
values and see if my code is working properly. Luckily, the code seems to be
working properly, but how can we have other programmers and users
effectively use our code? Well, ideally, we want them to dictate to us what the
values that are passed in to our month interpreter will be. Let’s go ahead and
take a look at the next section to see how we can use functions to effectively
do that.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Functions

In the section on if statements, we wrote a fully functional program
that told us the month based on a number input. We then took advantage of
loops in the following section to write tests for the program so that we can
make sure that it’s working as intended. Now we have one glaring problem
that we want to deal with: how can we have other people take full advantage
of this program? Ideally we want them to simply tell the program a number.
Our program will then interpret the number and spit out the corresponding
month to that number. Functions allow us to do exactly
that.

A function can be likened to a magical generator.
The generator will need to be fed in some components,
and based off those components, it’ll go ahead and do
work. Once all that work is done, the generator will give
me back a resulting product: the output. So the solution
that we want to act on is to create a product that will
function as shown in the diagram to the right. I’ll go
ahead and build my month interpreter function so that I
can have other programmers and users use this function
by referencing it and passing in a number as input.
Based on that number, I’ll give back the name of the
month.

Let’s take a look at the diagram below to see how functions work. So as
we can see here, we go ahead and indicate that we’re writing a function
through the keyword, def. Afterwards, go ahead and give your function a

unique name of your own choosing and
specify how many inputs you will have by
creating variables for each input. Here is a

sample function definition below:
Now that I’ve created my function, I can go
ahead and reference it by simply stating the
name and passing in inputs. Once that
happens, the function will go ahead and
run the code inside. Using the keyword,
return, it’ll then pass my intended output
over to what called the code so that it can

Copyright © 2014 Udacity, Inc. All Rights Reserved.

be used. Here is an example of how I would call the function above and
afterwards print out the results:

As we can see here, I went ahead and called the function by calling its
name. I passed in three inputs like the function asks for (those values are
stored into variables named a, b, and c). The function then did work and fed
me an output, which I stored in my variable, x, which I then proceeded to
print out so that we could see the results of our code.

Let’s go ahead and take our month interpreter solution and place it
inside a function, which we’ll call month_interpreter (Note: you’ll have to go
to the next page in order to see the solution!)

Copyright © 2014 Udacity, Inc. All Rights Reserved.

I went ahead and copied the original function we wrote without test

cases into the body of a function. Finally, I made sure to replace all of my
print statements with return statements so that it will properly provide an
output that can be used by the caller of the function.

Let’s talk about the benefits to using a function here now. Whereas we
had to previously write the block of code within where we want to use it, we
can now simply reference the name of the function to use it. This offers a lot
more flexibility for us as we write code others can use. Now, instead of having
to understand the code inside, the user simply needs to understand the
intentions of the function in order to effectively use it. In essence, we have
effectively abstracted our code away, so that people only need to worry about
the big picture.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Conclusion

Praise the sun! We have effectively condensed what is often taught
over the span of a couple weeks into about 23 pages of content, so great job,
keep at it and I hope you took things away from here! You should now be
familiar with the basics of programming. These concepts will have helped
prepare you for the Introduction to Object Oriented Programming course,
which will delve into the concept of abstraction, which we briefly touched
upon in the Functions section. If you would like to learn more about various
concepts in Computer Science though, please feel free to check out the
Introduction to Computer Science course as well!

Good luck and stay Udacious!

Copyright © 2014 Udacity, Inc. All Rights Reserved.

https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fcourse%2Fud036&sa=D&sntz=1&usg=AFQjCNF4r5svF6hi_Cu1NLMtJutW0UcD5w
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fcourse%2Fcs101&sa=D&sntz=1&usg=AFQjCNGdmrWTUY5b_qe3xle9-ddkB1YXqA
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fcourse%2Fcs101&sa=D&sntz=1&usg=AFQjCNGdmrWTUY5b_qe3xle9-ddkB1YXqA

