
Artificial Intelligence for Robotics: A Brief Summary

This document provides a summary of the course, Artificial
Intelligence for Robotics, and highlights main concepts.

Lesson 1: Localization (using Histogram Filters)

Lesson 2: Kalman Filters

Lesson 3: Particle Filters

Lesson 4: Search

Lesson 5: PID Control

Lesson 6: SLAM (Simultaneous Localization And Mapping)

Lesson 1: Localization (using Histogram Filters)

● Localization refers to the back-and-forth iteration between
sensing and moving that allows us to track and maintain the
position, orientation, and velocity of a target object.

○ Noise in movement will increase the uncertainty we have
about position, while sensory information will tend to
decrease our uncertainty.

● Histogram filters can be used for localization in discretely-
defined spaces, featuring the ability to keep multimodal
estimates of target location with memory requirements that
increase exponentially with the number of dimensions.

● Represent our belief of the current location of the target as
a probability distribution over the environment divided into a
discrete grid.

● Measurement updates (sensing) are evocative of products.
Here, we use Bayes Rule, which tells us the relationship
between the data D we receive and the likelihood of our location
X (the ∝ symbol below reads as “proportional to”; normalize over
all locations to obtain a proper probability distribution):

Copyright © 2014 Udacity, Inc. All Rights Reserved.

The posterior probability assigned to a location xi given
observation D is proportional to the product of the likelihood of
the observation given the location and the prior probability of
being at that location.

● Motion updates (movement) are evocative of convolution. Here,
we use the Theorem of Total Probability, which tells us the
relationship between our previous position Xt at time step t and
our new position Xt+1 at the next time-step t+1:

Lesson 2: Kalman Filters

● Kalman filters can be used for localization in continuously-
defined spaces, retaining a unimodal estimate of target position,
orientation, and velocity with memory requirements that
increase quadratically with the number of dimensions.

● Represent our knowledge of the current state (e.g. position,
orientation, velocity) as vector x and the uncertainty in our state
as covariance matrix P. Assume errors are gaussian in nature.

● During measurement (update step), we record a vector z,
assumed to be the expected measurement Hx (where H is a
vector mapping the truth x to observation z) with measurement
noise R (covariance matrix). We update our estimates of x and
P thusly:

y = z - Hx y: measurement residual, difference between
truth and expectation

S = HPHT+R S: residual covariance, increased by
measurement noise

K = PHTS-1 K: optimal Kalman gain, gives least squared
errors in updates

x’ = x + Ky

P’ = (I-KH)P where I is an identity matrix.

● During movement (prediction step), state transition matrix
F depicts the base change to our state variables x and P.
Changes to the system (such as changes in velocity) are
enacted through control vector u (or Bu, where B is a matrix
depicting a translation from controls to effective change) and

Copyright © 2014 Udacity, Inc. All Rights Reserved.

an overall process noise Q (covariance matrix). We update our
estimates of x and P thusly:
x’ = Fx + Bu

P’ = FPFT + Q

Lesson 3: Particle Filters

● Particle filters can be used for localization in continuously-
defined spaces, featuring the ability to keep multimodal
estimates of target position, orientation, and velocity with
memory requirements variable dependent on applications (can
be close to quadratic or be obviously exponential depending on
environment demands).

● Represent the belief in the state of the target as a population
of particles, where each particle contains a single hypothesis
regarding the target’s true state.

● Measurement updates are enacted by resampling particles from
the population with replacement, obtaining a new population of
particles (of the same size) that is propagated to the next time
step. The probability of a particle to be resampled is proportional
to its importance weight, which in turn is proportional to the
likelihood of making the measurement observation under the
particle’s held state.

● Motion updates are enacted by pushing each particle ahead one
time step according to its own hypothesis. If there are changes
to the system made during motion, they too are made during
this step on each particle.

● It is important that there be noise in particle state, lest the
population become dominated by clones of the same particle,
none of which describes the system well. Noise allows for
diversity in hypothesis, and the particles with the best-fitting
hypotheses will be carried to the next generation and the worst-
fitting particles will die out.

Lesson 4: Search

● Suppose we are posed with a motion planning problem, where
we wish to navigate from an origin location to a goal location,
given a map and cost function for actions and terrain. Here,
we model the map as a grid or connected graph with costs for
traveling between cells or nodes.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

● Dijkstra’s Algorithm guarantees a least-cost path through
tracking of g(x), the minimum cost from the origin to a location
x. The algorithm recursively selects the cell in the “open” (not
yet visited) set with the smallest g(x) and assigns a tentative
g(x) to its neighbors. The searched cell is added to a “closed”
(visited) set and the algorithm continues selecting least-cost
“open” cells until the goal is reached. If we track the actions
taken to move into each node, we can reverse the actions to
get an optimal path. If the weights on actions are flat, then the
algorithm becomes a case of Breadth-first search.

● The A* Algorithm builds on Dijkstra’s algorithm by
supplementing g(x) with a heuristic function h(x) that estimates
the distance from location x to the goal. The algorithm uses the
sum of these functions f(x) = g(x) + h(x) to decide which “open”
cell to expand next in sequence. If h(x) is always less than or
equal to the actual cost to reach the goal from x, then the A*
Algorithm will always find the optimal solution. (If the heuristic
function is h(x) = 0, then we simply have Dijkstra’s algorithm.)

● If we wish to create an optimal policy for all points to move
to the goal, rather than just a single origin point, we can use
dynamic programming. Here, we start at the goal and move
outwards, recursively computing a value function for each cell
until all cells have been filled. As noted before, by tracking
actions and reversing the process, we can obtain the optimal
policy for each cell.

Lesson 5: PID Control

● To translate a path generated in a discrete domain into a
continuous domain, we use smoothing. From an original set of
points X we want to obtain a new set of points Y such that we
minimize (for a smoothing parameter α):

● To solve this using gradient descent (for a non-cyclic path and
no constraints except for endpoint positions), we iterate over
the following update equations until the overall change in Y
positions has converged below a specified tolerance or for a
specified number of iterations (using weights α and β):

;

Copyright © 2014 Udacity, Inc. All Rights Reserved.

● A P-controller allows us to adjust for the difference between
our actual line of movement from the desired line (crosstrack
error) by providing compensatory steering proportional to the
size of the error. The P-controller is, at best, marginally stable,
creating movement that oscillates about the target line.

● The PD-controller adds a component to the P-controller that
takes into account the temporal derivative (approximated by
the difference in errors taken at consecutive timesteps) and
attempts to stabilize the system as it gets close to the target
line.

● The PID-controller further refines our control by adding
an integral component that takes into account the integral
of all previous errors (approximated by the sum) and helps
compensate for systematic bias in the system. A generic
formula for the complete controller is as follows (with gain
parameters τp, τi, τd):

● The twiddle algorithm (coordinate ascent) is used to search
for good gain parameter values. Twiddle is a variation on hill-
climbing which cycles through the parameter values, selecting
locally beneficial values until they converge to a local minimum
or for a specific number of iterations. On each step of the
algorithm, for parameter value pi and change parameter Δpi:

take pi’ as the smallest of: pi - Δpi pi pi + Δpi

then take Δpi’ (for a<1<b): b * Δpi a * Δpi b * Δpi

Lesson 6: SLAM (Simultaneous Localization And Mapping)

● GraphSLAM is based on a matrix Ω and vector ξ that depict
constraints between expected locations x and environmental
landmarks L:

Copyright © 2014 Udacity, Inc. All Rights Reserved.

○ In a movement, the movement from time t-1 to t will
modify the cell values in the intersections of rows
corresponding to locations xt-1 and xt (including cells on
the diagonal) and the values in the vector associated
with the same locations. Similarly, sensing of landmark
Li at time xt modifies the matrix values and vector
values associated with those entities according to the
constraints.

○ Constraints are local and additive, where confidence in
a constraint is depicted with a weight, e.g. 1/σ where σ is
movement or sensory noise.

● Our best estimate of x and L positions is μ = Ω-1ξ. With each
new movement and sense measurement, we update Ω and ξ,
then update our plan of action, map of environment, etc.

● Memory costs in GraphSLAM may become prohibitively
expensive, even with sparse matrices, as time grows long. If our
map does not grow much, Online SLAM can save on space by
only retaining the most recent location. For an Ω and ξ whose
rows and columns are ordered by {xt, xt+1, L0, …, Lm}, update Ω
and ξ by:

Ω ← Ω’ - ATB-1A; ξ ← ξ’ - ATB-1C, where:

Copyright © 2014 Udacity, Inc. All Rights Reserved.

Copyright © 2014 Udacity, Inc. All Rights Reserved.

