
Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:07:51 PM]

HTML
 CSS
 JavaScript

Udacity Frontend Nanodegree Style Guide

Introduction
This style guide acts as the official guide to follow in your projects. Udacity evaluators
 will use this guide to grade your projects. There are many opinions on the "ideal" style
 in the world of Front-End Web Development. Therefore, in order to reduce the
 confusion on what style students should follow during the course of their projects, we
 urge all students to refer to this style guide for their projects.

General Formatting Rules

Capitalization
Use only lowercase.

All code has to be lowercase. This applies to HTML element names, attributes,
 attribute values (unless text/CDATA).

Not Recommended:

Home

Recommended:

Home

Trailing Whitespace
Remove trailing white spaces.

file:///Users/annie/Desktop/Udacity Nanodegree Style Guide_files/Udacity Nanodegree Style Guide.html
file:///Users/annie/Desktop/Udacity Nanodegree Style Guide_files/Udacity Nanodegree Style Guide.html
http://udacity.github.io/frontend-nanodegree-styleguide/css.html
http://udacity.github.io/frontend-nanodegree-styleguide/javascript.html

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:07:51 PM]

Trailing white spaces are unnecessary and can complicate diffs.

Not Recommended:

<p>What?</p>__

Recommended:

<p>What?</p>

If using Sublime Text, this can be done automatically each time you save a file by
 adding the following to your User Settings JSON file (you should be able to find this
 within Sublime Text's menu):

"trim_trailing_white_space_on_save": true

Indentation
Indentation should be consistent throughout the entire file. Whether you choose to use
 tabs or spaces, or 2-spaces vs. 4-spaces - just be consistent!

General Meta Rules

Encoding
Use UTF-8 (no BOM).

Make sure your editor uses UTF-8 as character encoding, without a byte order mark.
 Specify the encoding in HTML templates and documents with <meta
 charset="utf-8"> .

Comments
Explain code as needed, where possible.

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:07:51 PM]

Use comments to explain code: What does it cover, what purpose does it serve, and
 why is the respective solution used or preferred?

Action Items
Mark todos and action items with TODO: .

Highlight todos by using the keyword TODO only, not other formats like @@ . Append
 action items after a colon like this: TODO: action item .

Recommended:

<!-- TODO: add other fruits -->

 Apples

 Oranges

HTML Style Rules

Document Type
Use HTML5.

HTML5 (HTML syntax) is preferred for all HTML documents: <!DOCTYPE html> .

Do not close self-closing elements, ie. write
 , not
 .

HTML Validity
Use valid HTML.

Using valid HTML is a measurable baseline quality that ensures proper HTML usage
 and contributes to learning about technical requirements and constraints.

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:07:51 PM]

Not Recommended:

<title>Page Title</title>

<article>This is an article.

Recommended:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>Page Title</title>

 </head>

 <body>

 <article>This is an article.</article>

 </body>

</html>

Semantics
Use HTML according to its purpose.

Use elements for what they have been created for. For example, use heading elements
 for headings, p elements for paragraphs, a elements for anchor, etc. Using HTML
 according to its purpose is important for accessibility, reuse and code efficiency
 reasons.

Not Recommended:

<div onclick="goToRecommendations();">All

recommendations</div>

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:07:51 PM]

Recommended:

All recommendations

Multimedia Fallback
Provide alternative contents for multimedia.

For multimedia, such as images, video, or animated objects via canvas, make sure to
 offer alternative access. For images that means use of meaningful alternative text and
 for video and audio transcripts and captions, if available.

Providing alternative contents is important for accessibility reasons. A blind user has
 few cues to tell what an image is about without the alt attributes, and other users
 may have no way of understanding what video or audio contents are about either.

For images whose alt attributes would introduce redundancy and for images whose
 purpose is purely decorative which you cannot immediately use CSS for, use no
 alternative text, as in alt="" .

Not Recommended:

Recommended:

Separation of Concerns
Separate structure from presentation from behavior.

Strictly keep structure (markup), presentation (styling), and behavior (scripting) apart,
 and try to keep the interaction between the three to an absolute minimum.

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:07:51 PM]

That is, make sure documents and templates contain only HTML and HTML that is
 solely serving structural purposes. Move everything presentational into style sheets,
 and everything behavioral into scripts. In addition, keep the contact area as small as
 possible by linking as few style sheets and scripts as possible from documents and
 templates.

Separating structure from presentation from behavior is important for maintenance
 reasons. It is almost always more expensive to change HTML documents and
 templates than it is to update style sheets and scripts.

Entity References
Do not use entity references.

There is no need to use entity references like —, ”, or ☺,
 assuming the same encoding (UTF-8) is used for files and editors as well as among
 teams.

The only exceptions apply to characters with special meaning in HTML (like < and &)
 as well as control or “invisible” characters (like no-break spaces).

Not Recommended:

The currency symbol for the Euro is “&eur;”.

Recommended:

The currency symbol for the Euro is “€”.

type Attributes
Omit type attributes for style sheets and scripts.

Do not use type attributes for style sheets and scripts. Specifying type attributes in

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:07:51 PM]

 these contexts is not necessary as HTML implies text/css and
 text/javascript as defaults. This can be safely done even for older browsers

Not Recommended:

<link rel="stylesheet" href="css/style.css" type="text/css">

Recommended:

<link rel="stylesheet" href="css/style.css">

Not Recommended:

<script src="js/app.js" type="text/javascript"></script>

Recommended:

<script src="js/app.js"></script>

HTML Formatting Rules

General Formatting
Use a new line for every block, list or table element and indent every such child
 element.

Independent of the styling of an element (as CSS allows elements to assume a
 different role per display property), put every block, list or table element on a new line.

Also, indent them if they are child elements of a block, list or table element (if you run
 into issues around whitespace between list items it's acceptable to put all li

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:07:51 PM]

 elements in one line).

Recommended:

<blockquote>

 <p>Space, the final frontier.</p>

</blockquote>

 Moe

 Curry

 Larry

<table>

 <thead>

 <tr>

 <th scope="col">Income</th>

 <th scope="col">Taxes</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>$5.00</td>

 <td>$4.50</td>

 </tr>

 </tbody>

</table>

HTML Quotation Marks
When quoting attribute values, use double quotation marks.

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:07:51 PM]

Not Recommended:

Login

Recommended:

Login

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

HTML
 CSS
 JavaScript

Udacity Frontend Nanodegree Style Guide

Introduction
This style guide acts as the official guide to follow in your projects. Udacity evaluators
 will use this guide to grade your projects. There are many opinions on the "ideal" style
 in the world of Front-End Web Development. Therefore, in order to reduce the
 confusion on what style students should follow during the course of their projects, we
 urge all students to refer to this style guide for their projects.

General Formatting Rules

Capitalization
Use only lowercase.

All code has to be lowercase. This applies to CSS selectors, properties and property
 values (with the exception of strings).

Not Recommended:

color: #E5E5E5;

Recommended:

color: #e5e5e5;

Trailing Whitespace
Remove trailing white spaces.

http://udacity.github.io/frontend-nanodegree-styleguide/index.html
file:///Users/annie/Desktop/Udacity Nanodegree Style Guide_files/Udacity Nanodegree Style Guide.html
file:///Users/annie/Desktop/Udacity Nanodegree Style Guide_files/Udacity Nanodegree Style Guide.html
http://udacity.github.io/frontend-nanodegree-styleguide/javascript.html

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

Trailing white spaces are unnecessary and can complicate diffs.

Not Recommended:

border: 0;__

Recommended:

border: 0;

If using Sublime Text, this can be done automatically each time you save a file by
 adding the following to your User Settings JSON file (you should be able to find this
 within Sublime Text's menu):

"trim_trailing_white_space_on_save": true

Indentation
Indentation should be consistent throughout the entire file. Whether you choose to use
 tabs or spaces, or 2-spaces vs. 4-spaces - just be consistent!

General Meta Rules

Encoding
Use UTF-8 (no BOM).

Make sure your editor uses UTF-8 as character encoding, without a byte order mark.
 Do not specify the encoding of style sheets as these assume UTF-8.

Comments
Explain code as needed, where possible.

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

Use comments to explain code: What does it cover, what purpose does it serve, and
 why is the respective solution used or preferred?

Action Items
Mark todos and action items with TODO: .

Highlight todos by using the keyword TODO only, not other formats like @@ . Append
 action items after a colon like this: TODO: action item .

Recommended:

/* TODO: add button elements */

CSS Style Rules

CSS Validity
Use valid CSS.

Using valid CSS is a measurable baseline quality that ensures proper CSS usage and
 allows you to spot CSS code that may not have any effect and can be removed.

ID and Class Naming
Use meaningful or generic ID and class names.

Instead of presentational of cryptic names, always use ID and class names that reflect
 the purpose of the element in question or that are otherwise generic.

Names that are specific and reflect the purpose of the element should be preferred as
 these are most understandable and the least likely to change.

Generic names are simply a fallback for elements that have no particular meaning
 different from their siblings. They are typically needed as helpers.

Not Recommended:

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

.p-998 { … }

.btn-green { … }

Recommended:

.gallery { … }

.btn-default { … }

Type Selectors
Avoid qualifying ID and class names with type selectors.

Unless necessary (for example, with helper classes), do not use element names in
 conjunction with IDs or classes. Avoiding unnecessary ancestor selectors is useful for
 performance reasons.

It is also considered bad practice to use IDs in your CSS files. There are no situations
 where IDs provide a benefit over classes. If you need to use a unique name for an
 element, use a class. (The only benefit IDs provide is speed, and is only beneficial on
 pages with thousands of similar elements.)

Not Recommended:

ul#example { … }

div.error { … }

Recommended:

.example { … }

.error { … }

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

Shorthand Properties
Use shorthand properties where possible.

CSS offers a variety of shorthand properties (like padding rather than explicitly
 setting padding-top , padding-bottom , etc.) that should be used whenever
 possible, even in cases where only one value is explicitly set.

Using shorthand properties is useful for code efficiency and understandability. The
 font shorthand property is recommended when setting all font related properties but
 is not required when making minor modifications. When using the font shorthand
 property, keep in mind that if font size and family are not included browsers will ignore
 entire font statement.

Not Recommended:

border-top-style: none;

font-family: palatino, georgia, serif;

font-size: 100%;

line-height: 1.6;

padding-bottom: 2em;

padding-left: 1em;

padding-right: 1em;

padding-top: 0;

Recommended:

border-top: 0;

font: 100%/1.6 palatino, georgia, serif;

padding: 0 1em 2em;

0 and Units

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

Omit unit specification after 0 values.

Not Recommended:

margin: 0em;

padding: 0px;

Recommended:

margin: 0;

padding: 0;

Leading 0s
Include leading 0 s in decimal values for readability.

Not Recommended:

font-size: .8em;

Recommended:

font-size: 0.8em;

Hexadecimal Notation
Use 3-character hexadecimal notation where possible.

Not Recommended:

color: #eebbcc;

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

Recommended:

color: #ebc;

ID and Class Name Delimiters
Separate words in ID and class names by a hyphen.

Do not concatenate words and abbreviations in selectors by any characters (including
 none at all) other than hyphens in order to improve understanding and scannability.

Not Recommended:

.demoimage { … }

.error_status { … }

Recommended:

.demo-image { … }

.error-status { … }

Hacks
Avoid user agent detection as well as CSS "hacks"—try a different approach first.

It's tempting to address styling difference over user agent detection or special CSS
 filters, workaround and hacks. Both approaches should be considered an absolute last
 resort in order to achieve and maintain an efficient and manageable code base.
 Consider if the intended style is absolutely critical to the functionality of your
 application or can the "offending" user agent "live without it".

CSS Formatting Rules

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

Block Content Indentation
Indent all block content, that is rules within rules as well as declarations to reflect
 hierarchy and improve understanding.

Recommended:

@media screen, projection {

 html {

 background: #fff;

 color: #444;

 }

}

Declaration Stops
Use a semicolon after every declaration for consistency and extensibility reasons.

Not Recommended:

.test {

 display: block;

 height: 100px

}

Recommended:

.test {

 display: block;

 height: 100px;

}

Property Name Stops

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

Always use a space after a property name's colon, but no space between property and
 colon, for consistency reasons.

Not Recommended:

font-weight:bold;

padding : 0;

margin :0;

Recommended:

font-weight: bold;

padding: 0;

margin: 0;

Declaration Block Separation
Always use a single space between the last selector and the opening brace that begins
 the declaration block.

Not Recommended:

.video-block{

 margin: 0;

}

.audio-block

{

 margin: 0;

}

Recommended:

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

.video-block {

 margin: 0;

}

.audio-block {

 margin: 0;

}

Selector and Declaration Separation
Always start a new line for each selector and declaration.

Not Recommended:

h1, h2, h3 {

 font-weight: normal; line-height: 1.2;

}

Recommended:

h1,

h2,

h3 {

 font-weight: normal;

 line-height: 1.2;

}

Rule Separations
Always put a blank line (two line breaks) between rules.

Recommended:

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

html {

 background: #fff;

}

body {

 margin: auto;

 width: 50%;

}

CSS Quotation Marks
Use double quotation marks for attribute selectors or property values. Do not use
 quotation marks in URI values (url()).

Not Recommended:

@import url("css/links.css");

html {

 font-family: 'Open Sans', arial, sans-serif;

}

Recommended:

@import url(css/links.css);

html {

 font-family: "Open Sans", arial, sans-serif;

}

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

CSS Meta Rules

Section Comments
If possible, group style sheet sections together by using comments. Separate sections
 with new lines.

Recommended:

/* Header */

.header {

 …

}

.header-nav {

 …

}

/* Content */

.gallery {

 …

}

.gallery-img {

 …

}

/* Footer */

.footer {

 …

}

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:09:54 PM]

.footer-nav {

 …

}

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

HTML
 CSS
 JavaScript

Udacity Frontend Nanodegree Style Guide

Introduction
This style guide acts as the official guide to follow in your projects. Udacity evaluators
 will use this guide to grade your projects. There are many opinions on the "ideal" style
 in the world of Front-End Web Development. Therefore, in order to reduce the
 confusion on what style students should follow during the course of their projects, we
 urge all students to refer to this style guide for their projects.

General Formatting Rules

Trailing Whitespace
Remove trailing white spaces.

Trailing white spaces are unnecessary and can complicate diffs.

Not Recommended:

var name = "John Smith";__

Recommended:

var name = "John Smith";

If using Sublime Text, this can be done automatically each time you save a file by
 adding the following to your User Settings JSON file (you should be able to find this
 within Sublime Text's menu):

http://udacity.github.io/frontend-nanodegree-styleguide/index.html
http://udacity.github.io/frontend-nanodegree-styleguide/css.html
file:///Users/annie/Desktop/Udacity Nanodegree Style Guide_files/Udacity Nanodegree Style Guide.html
file:///Users/annie/Desktop/Udacity Nanodegree Style Guide_files/Udacity Nanodegree Style Guide.html

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

"trim_trailing_white_space_on_save": true

Indentation
Indentation should be consistent throughout the entire file. Whether you choose to use
 tabs or spaces, or 2-spaces vs. 4-spaces - just be consistent!

General Meta Rules

Encoding
Use UTF-8 (no BOM).

Make sure your editor uses UTF-8 as character encoding, without a byte order mark.

Comments
Explain code as needed, where possible.

Use comments to explain code: What does it cover, what purpose does it serve, and
 why is the respective solution used or preferred?

Action Items
Mark todos and action items with TODO: .

Highlight todos by using the keyword TODO only, not other formats like @@ . Append
 action items after a colon like this: TODO: action item .

Recommended:

// TODO: add other fruits

JavaScript Language Rules

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

var
Always declare variables with var .

When you fail to specify var , the variable gets placed in the global context, potentially
 clobbering existing values. Also, if there's no declaration, it's hard to tell in what scope
 a variable lives.

Constants
If a value is intended to be constant and immutable, it should be given a name in all
 capital letters, like CONSTANT_VALUE . Never use the const keyword as it's not
 supported by all browsers at this time.

Semicolons
Always use semicolons.

Relying on implicit insertion can cause subtle, hard to debug problems. Semicolons
 should be included at the end of function expressions, but not at the end of function
 declarations.

Not Recommended:

var foo = function() {

 return true // Missing semicolon

} // Missing semicolon

function foo() {

 return true;

}; // Extra semicolon

Recommended:

var foo = function() {

 return true;

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

};

function foo() {

 return true;

}

Wrapper Objects for Primitive Types
There's no reason to use wrapper objects for primitive types, plus they're dangerous.
 However, type casting is okay.

Not Recommended:

var x = new Boolean(0);

if (x) {

 alert('hi'); // Shows 'hi' because typeof x is truthy

object

}

Recommended:

var x = Boolean(false);

if (x) {

 alert('hi'); // Show 'hi' because typeof x is a falsey

boolean

}

Closures
Yes, but be careful.

The ability to create closures is perhaps the most useful and often overlooked feature
 in JavaScript. One thing to keep in mind, however, is that a closure keeps a pointer to

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

 its enclosing scope. As a result, attaching a closure to a DOM element can create a
 circular reference and thus, a memory leak.

Not Recommended:

function foo(element, a, b) {

 element.onclick = function() { /* uses a and b */ }

 }

Recommended:

function foo(element, a, b) {

 element.onclick = bar(a, b);

}

function bar(a, b) {

 return function() { /* uses a nd b */ }

}

for-in loop
Only for iterating over keys in an object/map/hash.

for-in loops are often incorrectly used to loop over the elements in an array. This is
 however very error prone because it does not loop from 0 to length - 1 but over
 all the present keys in the object and its prototype chain.

Not Recommended:

for (var key in arr) {

console.log(arr[key]);

}

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

Recommended:

var len = array.length;

for (var i = 0; i < len; i++) {

 console.log(array[i]);

}

// or...

array.forEach(function(val) {

 console.log(val);

});

Multiline String Literals
Do not use.

The whitespace at the beginning of each line can't be safely stripped at compile time;
 whitespace after the slash will result in tricky errors; and while most script engines
 support this, it is not part of the specification.

Not Recommended:

var myString = 'A rather long string of English text, an error

 message \

 actually that just keeps going and going -- an error \

 message that is really really long.';

Recommended:

var myString = 'A rather long string of English text, an error

 message' +

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

 'actually that just keeps going and going -- an error' +

 'message that is really really long.';

Array and Object Literals
Use Array and Object literals instead of Array and Object constructors.

Not Recommended:

var myArray = new Array(x1, x2, x3);

var myObject = new Object();

myObject.a = 0;

Recommended:

var myArray = [x1, x2, x3];

var myObject = {

 a: 0

};

JavaScript Style Rules

Naming
In general, functionNamesLikeThis , variableNamesLikeThis ,
 ClassNamesLikeThis , methodNamesLikeThis ,
 CONSTANT_VALUES_LIKE_THIS and filenameslikethis.js .

Code Formatting
Because of implicit semicolon insertion, always start your curly braces on the same line

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

 as whatever they're opening.

Recommended:

if (something) {

 // Do something

} else {

 // Do something else

}

Single-line array and object initializers are allowed when they fit on one line. There
 should be no spaces after the opening bracket or before the closing bracket:

Recommended:

var array = [1, 2, 3];

var object = {a: 1, b: 2, c: 3};

Multiline array and object initializers are indented one-level, with the braces on their
 own line, just like blocks:

Recommended:

var array = [

 'Joe <joe@email.com>',

 'Sal <sal@email.com>',

 'Murr <murr@email.com>',

 'Q <q@email.com>'

];

var object = {

 id: 'foo',

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

 class: 'foo-important',

 name: 'notification'

};

Parentheses
Only where required.

Use sparingly and in general only where required by the syntax and semantics.

Strings
For consistency single-quotes (') are preferred over double-quotes ("). This is
 helpful when creating strings that include HTML:

Recommended:

var element = '<button class="btn">Click Me</button>';

Tips and Tricks

True and False Boolean Expressions
The following are all false in boolean expressions:

null

undefined

'' the empty string
0 the number

But be careful, because these are all true:

'0' the string
[] the empty array
{} the empty object

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

Conditional Ternary Operator
The conditional ternary operator is recommended, although not required, for writing
 concise code. Instead of this:

Not Recommended:

if (val) {

 return foo();

} else {

 return bar();

}

You can write this:

Recommended:

return val ? foo() : bar();

&& and ||
These binary boolean operators are short-circuited and evaluate to the last evaluated
 term. || has been called the default operator because instead of writing this:

Not Recommended:

function foo(name) {

 var theName;

 if (name) {

 theName = name;

 } else {

 theName = 'John';

 }

Udacity Nanodegree Style Guide

Udacity Nanodegree Style Guide.html[2/3/15, 5:13:15 PM]

}

You can write this:

Recommended:

function foo(name) {

 var theName = name || 'John';

}

&& is also used for shortening code. For instance, instead of this:

Not Recommended:

if (node) {

 if (node.kids) {

 console.log(node.kids);

 }

}

You can do this:

Recommended:

if (node && node.kids) {

 console.log(node.kids);

}

	HTML
	Local€Disk
	Udacity Nanodegree Style Guide

	CSS
	Local€Disk
	Udacity Nanodegree Style Guide

	JS
	Local€Disk
	Udacity Nanodegree Style Guide

