Google Maps for Work

Serving raster layers on Google Cloud Platform

Last updated: 22 December 2014

Contents

Introduction
1. Configure a Cloud Platform project for serving rasters
2. Upload tiles to Google Cloud Storage
Access control decisions
Map tiles
Uploading tiles in bulk for public access
Uploading tiles in bulk for private access
3. Use tiles from Google Cloud Storage with the Google Maps API
Maps API Public tiles example
Maps API Google Cloud Storage cookie auth example
Maps API Google Cloud Storage OAuth 2.0 Example
How this demo works
4. Wrap OGC endpoints around tiles from Google Cloud Storage with Google Compute
Engine
Creating a Google Compute Engine VM
Installing and configuring MapProxy
Load balancing
Create a snapshot of your working MapProxy VM
Create a disk from the snapshot
Create an image from the disk
Create an instance template
Create an Instance Group
Create an HTTP load balancer

Third-party products: This document describes how Google products work with third-party products and
the configurations that Google recommends. Google does not provide technical support for configuring
third-party products. GOOGLE ACCEPTS NO RESPONSIBILITY FOR THIRD-PARTY PRODUCTS. Please
consult the product's web site for the latest configuration and support information. You can also contact
Google Partners for consulting services.

Google Maps for Work - 1/35

Google Maps for Work

Introduction

This document shows you how to serve custom raster layers using Google Cloud Storage,
Google Compute Engine, and the Google Maps API. This approach is useful if you have a
large quantity of satellite or aerial imagery that you need to serve at scale onto a Google map
or other GIS tool.

Using this document, you’ll complete the following steps:

Configure a Google Cloud Platform project.
Upload imagery tiles to Google Cloud Storage.
Display tiles using the Google Maps API.
Serve map tiles using OGC standards.

Load balance your application.

aORrON=

Note: This document does not describe how to create raster tiles and assumes you already
have raster tiles to upload and host in Google Cloud Storage. You can use one of many
third-party tools to create raster tiles.

Before you begin, make sure you have a Google Account. Consider using a shared Google
Account for your organization, rather than a personal Google Account.

1. Configure a Cloud Platform project for serving rasters

1. Signin to the Google Developers Console and click Create Project.

New Project
PROJECT NAME

Cloud Storage Tiles Demo

PROJECT ID

cloud—storage—tiles—demo|

Google Maps for Work - 2/35

https://console.developers.google.com/

Google Maps for Work

2. Enable billing.

Billing & settings

APIs & auth Billing
o Enable billing to access the full set of services and increased usage limits.
Monitoring
Source Code Enable billing
Compute

For details about billing in Google Cloud Platform, see the Google APIs Console Help.

3. Add a credit card or bank account to the project for hosting (storage) and downloading
(egress) the source imagery for the contract term.

Google Cloud Platform provides a calculator for estimating monthly billing charges
based on usage.

4. Create a Google Cloud storage bucket.

Project:
roleets Add bucket C

Cloud Storage Tiles

NAME
APIs & auth

Monitoring usgs-landcover-demo
Source Code

Compute

Networking

Storage
Cloud Storage
Storage browser
Project dashboard
Cloud Datastore

Cloud SQL

Note: Cloud storage buckets are global, so if the name you choose is already in use,
choose a different name.

5. Install and authenticate the Google Cloud SDK to easily conduct bulk downloads.
Follow the installation instructions for your operating system.

Once you install the SDK, you’ll have new system commands like gcloud and
gsutil.

Google Maps for Work - 3/35

https://developers.google.com/console/help/#billing
https://cloud.google.com/products/calculator/
https://cloud.google.com/sdk/

Google Maps for Work

6. Use the following command to authorize the Cloud SDK to your Google Account. Use
the same Google Account you used for the owner of the Cloud Platform Project and

the Imagery Bucket.

$ gcloud auth login --project your-project-name

Details about this command

An OAuth 2 authorization screen will open a browser window, giving the Cloud SDK
access to your project.

@0

~ Google Cloud SDK would like to:
Know who you are on Google
View your email address
Manage your user profile and projects on Project Hosting

View and manage your Google Compute Engine resources

View and manage your Google Cloud Platform
=¥ management resources and deployment status information

View and manage your data in Google BigQuery

Manage your data and permissions in Google Cloud
2 Storage

Manage your data in the Google Prediction AP

Manage your Google SQL Service instances

View and manage your applications deployed on Google
=8 App Engine

View and manage your data across Google Cloud Platform
=¥ services

By clicking Accept, you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can
change this and other Account Permissions at any time.

Google Maps for Work - 4/35

https://cloud.google.com/sdk/gcloud/reference/auth/login

Google Maps for Work

2. Upload tiles to Google Cloud Storage

Access control decisions

You can find a detailed description of how Google Cloud Storage handles Authentication and
Access Control in the Google Cloud Storage documentation. This document focuses on the
use of access control lists (or ACLs) for public or private access.

With public access, the tiles you place on Google Cloud Storage are accessible to anyone on
the Internet. With private access, only those to whom you explicitly grant access can view the
tiles.

Private access is controlled using OAuth 2.0, and requires viewers to present credentials
based one of the following:

A Google Account (such as Gmail or Google Apps)

A Google Account that is a member of an approved Google Group

Access via a third-party service or proxy that handles authentication via server-side
authentication (a web service that accepts a username and password and proxies data
with a server-side access token).

Map tiles

Map tiles can have various naming standards and can vary based on map projection. This
document focuses on map tiles in a z/x/y.png naming standard, where

e Zis the current zoom level, and
e X is the X coordinate and Y is the Y coordinate, measured from the top left of the map
for each zoom level

Google Maps, ESRI, Bing, Open Street Map, and others use this top left “standard.” However,
the OGC standard, called TMS, starts from the bottom left.

You can see the differences in the two examples below, which show a typical tiles file
structure (Z/X/Y .png), where, in the 4th X column of zoom level 4, there are two images for
the Y coordinates. Note that their names are different based on whether counting began at
the top left of bottom left.

Google Maps for Work - 5/35

https://cloud.google.com/storage/docs/authentication
https://cloud.google.com/storage/docs/accesscontrol
http://goo.gl/rZWlMI
http://www.google.com/url?q=http%3A%2F%2Fwiki.osgeo.org%2Fwiki%2FTile_Map_Service_Specification&sa=D&sntz=1&usg=AFQjCNHlUmTMwrOWcPM-8_Cp8D1OVuw5wQ

Google Maps for Work

TMS ZXY

l

l

4 ¥y ¥ ¥vY
41 ¥y ¥y ¥Y¥
Bl R o= O

k4

L R A . O
¥y¥YrY¥yYIYY
[Vl N R IRV |

The file structure in which your software exported the tiles will determine the logic you need to
use in your application when you want to load a specific tile. However, the file structure
doesn’t impact the actual upload process.

For example purposes, this document uses the USGS National Land Cover Database.

Uploading tiles in bulk for public access

To make the tiles publicly accessible to anyone on the Internet, set the default ACL for them
as -public read. In the directory where you have your tiles in a subfolder called zxy, run:

$ gsutil -m cp -a public-read -R zxy/ gs://usgs-landcover-demo/

Details about this command

The -m parameter will make the cp process run in parallel threads, which will greatly speed
up your upload.

Uploading tiles in bulk for private access

To manage access to private tiles, you can use Google Groups. With Groups, it's easy to
grant read permission to a Google Cloud Storage bucket to members of a group, and then
manage write access for individual users using the standard Google Groups administration
tools. For this example, we’ll use a group named Cloud-Storage-Tiles-Private. To join this
group, click Join on this page:

Google Maps for Work - 6/35

https://cloud.google.com/storage/docs/gsutil/commands/cp

Google Maps for Work

https://groups.google.com/forum/#!forum/cloud-storage-tiles-private

$ gsutil mb -p cloud-storage-tiles-demo gs://usgs-landcover-demo-private/
$ gsutil defacl ch -g cloud-storage-tiles-private@Rgooglegroups.com:R
gs://usgs-landcover-demo-private/

3. Use tiles from Google Cloud Storage with the Google Maps API

Maps API Public tiles example

L [Map | Satelite
~ Hadson Bay | Sttt
2.2 Gulfof Alaska
Canada
B - . e i
N
{

+

L
.

See the demo

The following code snippet shows the Google Maps API JavaScript you need to call the tiles
as a Google Maps API ImageMapType. These files reside in the /z/x/y.png structure in the
same bucket in which the HTML that loads the Maps API resides.

Google Maps for Work - 7/35

https://groups.google.com/forum/#!forum/cloud-storage-tiles-private
http://storage.googleapis.com/usgs-landcover-demo/zxy/public-zxy.html
https://developers.google.com/maps/documentation/javascript/maptypes#ImageMapTypes
http://storage.googleapis.com/usgs-landcover-demo/zxy/public-zxy.html

Google Maps for Work

var imageMapType = new google.maps.ImageMapType ({
getTileUrl: function (coord, zoom) ({
var proj = map.getProjection();
var z2 = Math.pow (2, zoom);
var tileXSize = 256 / z2;
var tileYSize = 256 / z2;
var tileBounds = new google.maps.LatLngBounds (
proj.fromPointToLatLng (new google.maps.Point (coord.x * tileXSize,
(coord.y + 1) * tileYSize)),
proj.fromPointToLatLng (new google.maps.Point ((coord.x + 1) *
tileXSize, coord.y * tileYSize))
)i
return
"{z}/{x}/{y}.png" .replace('{z}',zoom) .replace('{x}', coord.x) .replace('{y}"', coord.y)
}y
tileSize: new google.maps.Size (256, 256),
minZoom: mapMinZoom,
maxzoom: mapMaxzoom,
name: 'Tiles'

You can also host the HTML page on Google App Engine, Google Compute Engine, or your
own web server and still point to tiles in a Google Cloud storage bucket. To do this, just
modify the URL from a local reference to a remote reference, as follows:

return
"{z}/{x}/{y}.png".replace('{z}', zoom) .replace ('{x}"',coord.x) .replace (
'{y}',coord.y); to

return
"http://storage.googleapis.com/usgs-landcover—-demo/zxy/{z}/{x}/{y}.pn
g".replace('{z}',zoom) .replace('{x}"',coord.x) .replace('{y}',coord.y);

For TMS tiles, you need to flip the Y coordinate, as shown in the following code sample:

var imageMapType = new google.maps.ImageMapType ({
getTileUrl: function (coord, zoom) ({
var proj = map.getProjection();
var z2 = Math.pow (2, zoom);
var tileXSize = 256 / z2;
var tileYSize = 256 / z2;
var tileBounds = new google.maps.LatLngBounds (
proj.fromPointToLatlng (new google.maps.Point (coord.x * tileXSize,
(coord.y + 1) * tile¥YSize)),
proj.fromPointToLatLng (new google.maps.Point ((coord.x + 1) *
tileXSize, coord.y * tileYSize))
) i
// Flip the Y value
var ymax = 1 << zoom;
var Y = ymax - coord.y - 1;
return
"{z}/{x}/{y}.png" .replace('{z}"',zoom) .replace('{x}',6 coord.x).replace('{y}"',Y);

Google Maps for Work - 8/35

Google Maps for Work

b

tileSize: new google.maps.Size (256, 256),
minZoom: mapMinZoom,

maxzoom: mapMaxzZoom,

name: 'Tiles'

See a demo

Maps API Google Cloud Storage cookie auth example

For this example, we’ll use the Google group named Cloud-Storage-Tiles-Private. To join this
group, click Join on this page:

https://groups.google.com/forum/#!forum/cloud-storage-tiles-private

You must be a member of this group to view the tiles in the following demo:

https://storage.cloud.google.com/usgs-landcover-demo/zxy/cookie-zxy.html

From the Google Cloud Storage Documentation:

Google Cloud Storage lets you provide browser-based authenticated downloads to
users who do not have Google Cloud Storage accounts. To do this, apply Google
Account-based ACLs to the object and then provide users with a URL that is scoped to
the object. The URL for browser-based authenticated downloads is:

https://storage.cloud.google.com/bucket/object
Note: This URL base is slightly different than the
http://storage.googleapis.com/ base this document uses for the public map

examples.

Once you've uploaded your HTML file, you can add or modify the permissions. Make sure
you’ve applied the group you’re using for the bucket’s default reader ACL.

Group v cloud-storage-tiles-private@gc Reader ~

Add new

Google Maps for Work - 9/35

http://storage.googleapis.com/usgs-landcover-demo/tms/public-tms.html
https://groups.google.com/forum/#!forum/cloud-storage-tiles-private
https://storage.cloud.google.com/usgs-landcover-demo/zxy/cookie-zxy.html
https://cloud.google.com/storage/docs/authentication#cookieauth

Google Maps for Work

When a user visits the private web page URL in their browser, the user is automatically
prompted to sign in to their Google Account (if not already signed in). After the user is
authenticated and the browser has acquired a cookie with an encapsulated identity token, the
user is redirected to the page in the Google Cloud Storage repository. Google Cloud Storage
then verifies that the user is allowed to read the page, and then loads the page into the
browser.

In the code sample below, note that it is a requirement that the absolute, and not localized
URL pattern, be given for the tiles:

var imageMapType = new google.maps.ImageMapType ({
getTileUrl: function (coord, zoom) ({
var proj = map.getProjection();
var z2 = Math.pow (2, zoom);
var tileXSize 256 / z2;
var tileYSize 256 / z2;
var tileBounds = new google.maps.LatLngBounds (
proj.fromPointToLatlLng (new google.maps.Point (coord.x * tileXSize,
(coord.y + 1) * tileYSize)),
proj.fromPointToLatLng (new google.maps.Point ((coord.x + 1) *
tileXSize, coord.y * tileYSize))
) i
return
"https://storage.cloud.google.com/usgs-landcover-demo/zxy/{z}/{x}/{y}.png".replace ('
{z}',zoom) .replace('{x}"',coord.x) .replace('{y}"',coord.vy);
by
tileSize: new google.maps.Size (256, 256),
minZoom: mapMinZoom,
maxzoom: mapMaxzZoom,
name: 'Tiles'

Maps API Google Cloud Storage OAuth 2.0 Example

OAuth 2.0 is an open authentication protocol used frequently in Google projects. It offers
authentication for both client- and server-based applications. It's useful for managing quota
usage for APIs that have daily limits or costs associated with them, and for restricting quota
usage and data consumption to specific domains.

For this example, we’ll again use the Google group named Cloud-Storage-Tiles-Private. To
join this group, click Join on this page:

https://aroups.goodle.com/forum/#!forum/cloud-storage-tiles-private

You must be a member of this group to view the tiles in the following demo:

Google Maps for Work - 10/35

https://groups.google.com/forum/#!forum/cloud-storage-tiles-private

Google Maps for Work

http://storage.googleapis.com/usgs-landcover-demo-private/zxy/private-zxy.html

As a member of the group, you'll first see a page that asks you to authorize. Click the
Authorize button to provide the required client-side OAuth 2.0 credentials to access the tiles.

Next, you'll see a screen that asks you to grant the application permission to access files in
Google Cloud Storage on your behalf.

® 006 Request for Permission 2

) https://accounts.google.com/o/oauth2/auth?client_id=237898814327-hacml4d6iil6e...

GO gle seanwohltman@google.com ~

~ Google Cloud Storage Private Raster Tiles would
like to:

View your data in Google Cloud Storage @‘

By clicking Accept, you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can
change this and other Account Permissions at any time.

Click Accept. A map will appear and load the privately ACL'd tiles.

Google Maps for Work - 11/35

http://storage.googleapis.com/usgs-landcover-demo-private/zxy/private-zxy.html

Google Maps for Work

r—
['wop | Seaite

7~ Gulf of Alaska
< > Canada

>
ALBENTS MANITOBA

+]

North
Atlantic
Ocean

WAIL

Guatemala

o Honduras—
Guatemala)
Nicaragua

| 5
Costa Rica £ o
¢ Aasarsaft. Goale INFGl Inav/Geosisiomas SA1_ORION-MF | Terma flisn

How this demo works

The top of the source code for the demo above is a block of JavaScript:

<script>
// The Client ID for your application, as configured on the Google APIs

console.
var clientld =
'237898814327-hacml4d6iil6ekeopho52vepp5cg6e50. apps.googleusercontent.com' ;

// The oauth scope for displaying Google Cloud Storage data.
var scopes = 'https://www.googleapis.com/auth/devstorage.read only';

var access_token = ;

function initialize() {
authorizationFlow (authorizationComplete, refreshComplete) ;

}

function authorizationComplete (authResult) {
access_ token = authResult.access token;

initMap () ;
}

This code configures the OAuth 2.0 Workflow parameters. The first defined variable is an
OAuth 2.0 ClientID.

To create a Client ID:

1. From the API's & Auth list in the Developers Console project, click Credentials.

Google Maps for Work - 12/35

Google Maps for Work

2. Click Create new Client ID:

Projects OAuth
OAuth 2.0 allows users to share specific data
Cloud Storage Tiles with you (for example, contact lists) while
keeping their usernames, passwords, and other
APIs & auth information private.
APls Learn more
Credentials
Consent screen Create new Client ID
Push

3. On the “Create Client ID” screen, select Web application (default) for the Application
Type. (This application is accessed by a web browser over a network, and is not a
server-side or installed application.)

Create Client ID

APPLICATION TYPE

® Web application
Accessed by web browsers over a network.

Service account

Calls Google APIs on behalf of your application instead of an end-user.
Learn more

Installed application
Runs on a desktop computer or handheld device (like Android or iPhone).

To create a Web Client ID or an Installed Application Client, you
need to set a product name in the consent screen.

Configure consent screen Cancel

4. Click Configure consent screen.

Google Maps for Work - 13/35

Google Maps for Work

Consent screen

The consent screen will be shown to users whenever you request access to their private data using your client ID.
Note: This screen will be shown for all of your applications registered in this project

EMAIL ADDRESS

seanwohltman@google.com

PRODUCT NAME

Google Cloud Storage Private Raster Ti\es\

Project Name would like to
HOMEPAGE URL

PRODUCT LOGO

This is how your logo will look to end users.

Max size: 120x120 px

PRIVACY POLICY URL
TERMS OF SERVICE URL

GOOGLE+ PAGE

plus.google.com/

m Cancel

The user sees the consent screen after invoking the function to authorize the
application. We recommend that you provide logos and links for your application, to
encourage users to trust the application to which they are granting permissions to
access their data.

5. At a minimum, enter your contact email address and a project name. Then click Save.

6. On the “Create Client ID” screen, provide the Authorized JavaScript Origins and the
Authorized Redirect URIs.

Google Maps for Work - 14/35

Google Maps for Work

Create Client ID

APPLICATION TYPE

® Web application
Accessed by web browsers over a network.

Service account

Calls Google APIs on behalf of your application instead of an end-user.
Learn more

Installed application

Runs on a desktop computer or handheld device (like Android or iPhone).

AUTHORIZED JAVASCRIPT ORIGINS
Cannot contain a wildcard (http://*.example.com) or a path
(http://example.com/subdir).

http://storage.googleapis.com

AUTHORIZED REDIRECT URIS
One URI per line. Needs to have a protocol, no URL fragments, and no relative
paths. Can't be a non-private IP Address.

http://storage.googleapis.com/usgs-landcover-demo-
private/zxy/ privatel-zxy.html

N

Create Client ID Cancel

This information prevents someone from copying your HTML/JavaScript and hosting it
on an insecure or third-party server, to intercept user data or use your project’s quotas.

In this example, we want to host a private map on Google Cloud Storage, so we need
to set the Authorized JavaScript Origins to http://storage.gooogleapis.com.
We also need to set the Authorized Redirect URIs to the final URL at which the
HTML page will be hosted. Once the user is authorized, the OAuth worfklow redirects
the user back to the original page, this time with a URL parameter that is their access
token. When the application sees that there’s an access token, it will then replace the
blank page with the Authorize button by initializing the Google Maps API.

Finally, a unique Client ID entry will be created. You’ll add this Client ID to the
JavaScript for the variable c1ientID in the example.

Google Maps for Work - 15/35

Google Maps for Work

Client ID for web application

CLIENT ID 237898814327-hacml4d6ii1 6ekeopho52vepp5cg6e50.apps.googleusercontent.com
EMAIL ADDRESS 237898814327-hacml4d6ii1 6ekeopho52vepp5cqbeSo@developer.gserviceaccount.com
CLIENT SECRET _

REDIRECT URIS http://storage.googleapis.com/usgs-landcover-demo-private/zxy/private-zxy.html

JAVASCRIPT ORIGINS http://storage.googleapis.com

Edit settings Reset secret Download JSON Delete

The following line defines the OAuth 2.0 Scope, which provides the data access rights that the
application needs the user to grant to the application:

var scopes = 'https://www.googleapis.com/auth/devstorage.read only';

At Google, these scopes are tied to individual services. In this case, we are calling the
devstorage scope (Google Cloud Storage), and because the user just needs to access (not
write) tiles, the application only needs read only access. It's best to keep scopes as narrow
and conservative as possible, both for security and user trust. For example, you wouldn’t want
to grant a web page that is supposed to show your map tiles the ability to post to your
Google+ profile or read your Gmail contacts list.

Because we want to allow users to access the web page before the users provide their
credentials to initiate the OAuth 2.0 workflow, we need to make the actual web page publically
accessible. Don’t worry, users will not be able to access the privately ACL’d tiles in the
bucket, because we are not going to modify their ACLs; however, we’ll make the HTML page
in the bucket publically accessible.

Google Maps for Work - 16/35

Google Maps for Work

Buckets / usgs-landcover-demo-private / zxy

m Upload folder New folder C

NAME SIZE TYPE LAST UPLOADED SHARED PUBLICLY
5/ - Folder -
o/ - Folder -
2/ - Folder -
3/ - Folder -
4/ - Folder -
17 - Folder -
6/ - Folder -
7/ - Folder =
8/ - Folder -
9/ = Folder =

private-zxy.html 513 KB text/html 1 minute ago +/ Public link

Note that OAuth 2.0 credentials expire after a given amount of time. At Google, the default
timeout is 60 minutes. The timeout is a security feature that prevents someone who may have
nefariously intercepted an access token from using that token for a prolonged period of time.

This application refreshes every hour to retrieve a fresh access token:

function handleAuthResult (authResult) {
var authorizeButton = document.getElementById('authorize button');

// Has the user authorized this application?

if (authResult && 'authResult.error) {
// The application is authorized. Hide the 'Authorization' button.
authorizeButton.style.display = 'none';
authorization complete (authResult);

// We must refresh the token after it expires.
window.setTimeout (refreshToken, authResult.expires_in * 1000) ;

Finally, unlike the public examples, the private examples append a query parameter to the tile
URL, ?access token={access_ token}. When requesting data that’s protected by private
ACLs from Google Cloud Storage, you must pass the access token query parameter with a
valid and properly scoped access token.

return
"{z}/{x}/{y}.png?access_token={access_token}".replace('{z}',zoom).replace('{x}',coor
d.x) .replace('{y}',coord.y) .replace('{access _token}',6 access_token);

Google Maps for Work - 17/35

Google Maps for Work

4. Wrap OGC endpoints around tiles from Google Cloud Storage
with Google Compute Engine

Creating a Google Compute Engine VM

To enable OGC-compliant endpoints, you can host access to the imagery tiles from the
open-source application MapProxy. In this section, you'll create a Linux virtual machine within
Google Compute Engine to host MapProxy, and also create a custom firewall configuration to
permit incoming traffic to MapProxy.

The Google Compute Engine Developers Center has several resources to help you get
started running virtual machines, and in-depth information for configuring firewall rules.

1. From the Compute Engine list in the Developers Console project, click Networks.

2. Under All networks, click default to add a new firewall rule. This rule lets you test the
development server on port 8080.

All networks
NAME

default

3. Create a firewall rule.

Google Maps for Work - 18/35

https://cloud.google.com/compute/docs/quickstart
https://cloud.google.com/compute/docs/quickstart
https://cloud.google.com/compute/docs/networking#addingafirewall

Google Maps for Work

Create a new firewall rule

NAME mapproxy
DESCRIPTION
Optiona
SOURCE IP RANGES 0.0.0.0/0
PROTOCOLS & ‘ tcp:8080)|

SOURCE TAGS

TARGET TAGS

PORTS
Optional

Optional

4. Enable port 80 by clicking on Allow HTTP traffic.

Network

default

/" Allow HTTP traffic Allow HTTPS traffic

Installing and configuring MapProxy

1. Create a new Ubuntu 14.04 Compute Engine instance in your project:

gcloud compute instances create mapproxy —--image
ubuntu-1404-trusty-v2014103la --image-project ubuntu-os-cloud --zone
us—-centrall-a

2. Connect via SSH, using a terminal or the Developers Console browser terminal.

sudo
sudo
sudo
sudo

sudo

w U

sudo

apt-get update

apt-get install python-virtualenv
mkdir /mapproxy

chmod 777 /mapproxy

cd /mapproxy
virtualenv --system-site-packages mapproxy

apt-get install python-imaging python-yaml libproj0
apt-get install libgeos-dev python-1lxml libgdal-dev python-shapely

Google Maps for Work - 19/35

Google Maps for Work

S sudo apt-get install build-essential python-dev libjpeg-dev zliblg-dev
libfreetypeb6b-dev

$ source mapproxy/bin/activate

$ pip install MapProxy

$ nano gcs.yaml

Copy and paste the following MapProxy configuration file into the nano editor. Note
that you’ll need to change the URL parameter to match your GCS bucket.

services:
demo:
tms:
use grid names: true

origin for /tiles service
)

origin: 'nw
kml :
use grid names: true
wmts:
WIS :
md:

title: MapProxy Google Cloud Storage
abstract: This is a minimal MapProxy example.
layers:
- name: gcs
title: Google Cloud Storage
sources: [gcs_ cache]
caches:
gcs_cache:
grids: [webmercator]

sources: [gcs]
sources:
gcs:

type: tile

grid: webmercator

url:
http://storage.googleapis.com/usgs-landcover-demo/zxy/% (z)s/%(x)s/%(y)s
.png

coverage:

srs: 'EPSG:4326'
bbox: [-125.850,24.530,-66.800,50.289]
grids:
webmercator:
base: GLOBAL WEBMERCATOR

Save the file (Ctrl+0) and exit (Ctrl+X) You can now test the configuration.

$ mapproxy-util serve-develop -b 0.0.0.0:8080 gcs.yaml

Google Maps for Work - 20/35

Google Maps for Work

5. Visit the development server at:

http://YourIP:8080/demo/

El] MapProxy
I

About

MapProxy Version 1.7.1

WMS

Capabilities Document ~ (download as xml) (view as html)

Layer Coordinate-System I -Format
| EPSG:3857* & png

gcs ————— i
| EPSG:3857* * ipegq

Coordinate systems marked with * are supported without reprojection.

WMS-C

Capabilities Document (download as xml) (view as html)

WMTS
Capabilities Document ~ (download as xml) (view as html)
Layer Coordi Sy Image-Format
gcs EPSG:3857 png

TMS

Capabilities Document ~ (download as xml) (view as html)

Layer Coordi Syst I -Format Layer Capabilities

gcs EPSG:3857 png click here

There will be several different services, based on the configuration file that you
used.

6. Click any of the PNG or JPEG links to try out the OGC services.

Google Maps for Work - 21/35

Google Maps for Work

[l= MapProxy

Openlayers Client - Layer gcs

Coordinate System Image format

EPSG:3857 ¢ png

7. Once everything appears to be working, configure MapProxy to work with
Apache via WSGI.

$ Ctrl+C to kill the development server
$ rm -rf cache data
$ mapproxy-util create -t wsgi-app -f gcs.yaml config.py

$ deactivate

$ sudo apt-get install apache2 apache2-mpm-prefork apache2-utils
libexpatl ssl-cert

$ sudo aptitude install libapache2-mod-wsgi

$ sudo nano /etc/apache2/apache2.conf

8. Scroll down to the end of the file and add the following code block. Then save
the file and exit.

WSGIScriptAlias /mapproxy /mapproxy/config.py
WSGIDaemonProcess mapproxy-wsgi-daemon processes=4 threads=8
WSGIProcessGroup mapproxy-wsgi-daemon
WSGIPythonHome /mapproxy/mapproxy
WSGIApplicationGroup %${GLOBAL}
<Directory /mapproxy>

Options All

AllowOverride All

Google Maps for Work - 22/35

Google Maps for Work

Require all granted
</Directory>

$ sudo service apache2 restart

9. Access MapProxy via the Apache webserver listening on port 80:

http://YourIP/mapproxy/demo

El] MapProxy

About
MapProxy Version 1.7.1

WMS

Capabilities Document ~ (download as xml) (view as html)

Layer Coordinate-System Image-Format
EPSG:3857* 4 png

gacs -
EPSG:3857* % peq

Coordinate systems marked with * are supported without reprojection.

WMsS-C

Capabilities Document (download as xml) (view as html)

WMTS

Capabilities Document (download as xml) (view as html)

Layer Coordinate-System Image-Format
gcs EPSG:3857 png

TMS

Capabilities Document (download as xml) (view as html)

Layer Coordinate-System Image-Format Layer Capabilities
gcs. EPSG:3857 png click here

Load balancing

Wrapping services such as WMS and WMTS to tiles stored on Google Cloud storage
introduces overhead. When a WMS request comes in, MapProxy has to download the tiles
from Cloud Storage that intersect with the requested bounding box, composite them, and then
cut them into a single new image. Unlike Cloud Storage, MapProxy running on a Compute
Engine VM is, by default, not designed to handle very high QPS or support numerous users
simultaneously. For this reason, we recommend that you incorporate load balancing.

Google Maps for Work - 23/35

Google Maps for Work

For a few users who occasionally use your OGC services, you might be able to have just one
VM running; however, you’ll need the ability to scale to handle higher demand. Compute
Engine offers many ways to configure load balancing; this document shows a network load
balanced approach with autoscaling.

Create a snapshot of your working MapProxy VM
1. From the Compute Engine list in the Developers Console project, click Snapshots.

2. Click New snapshot.

New snapshot

All snapshots

3. Give the snapshot a name, and chose your working VM as the source disk. Then click
Create.

Create anew snapshot
NAME

mapproxy-snapshot

DESCRIPTION

SOURCE DISK

I mapproxy $

Create a disk from the snapshot
1. From the Compute Engine list in the Developers Console project, click Disks.

2. Click New disk.

Google Maps for Work - 24/35

Google Maps for Work

3. Give the new disk a name, and chose the zone in which you’d like the disk to reside.
This should be the same as the zone where you’d like to run your VMs.

For the Source Type, chose Snapshot, and then chose the snapshot you created in

the previous step as the source. Then click Create.

Create a new disk
NAME

mapproxy-disk

DESCRIPTION

ZONE

us-centrall-a

DISK TYPE

Standard Persistent Disk

SOURCETYPE

Snapshot

SOURCE SNAPSHOT

™

mapproxy-snapshot

SIZE (GB)
10

ESTIMATED PERFORMANCE

OPERATION TYPE
Sustained random IOPs limit

Sustained throughput limit (MB/s)

Create an image from the disk

READ

1.2

WRITE

0.9

1. From the Compute Engine list in the Developers Console project, click Images.

2. Click New image.

Google Maps for Work - 25/35

Google Maps for Work

New image

3. Give the image a name, and chose Disk as the Source Type. Select the disk you
created in the previous step as the source disk. Then click Create.

Create a new image
NAME

mapproxy-image

DESCRIPTION

SOURCE TYPE

Disk s

© You can't create an image from a disk that's attached to a VM instance.

SOURCE DISK

‘ mapproxy—disk|

Image size: 10 GB

Create an instance template

1. From the Compute Engine list in the Developers Console project, click Instance
templates.

2. Click Create an instance template.

Instance templates

Create identical VM instances

Use an instance template to describe a VM instance once and
then create groups of identical instances. Learn more

Create an instance template

Google Maps for Work - 26/35

Google Maps for Work

3. Give the instance template a name, and set the firewall to allow HTTP traffic.

4. Chose the machine type. A 2 CPU machine is a good balance between price and
performance. It should allow your load balanced VMs to handle several simultaneous
connections per machine, while also being less expensive than a high CPU machine.

5. For Image for the template, choose the image you created in the previous step. For
the Disk type, chose a standard persistent disk.
Create a new instance template Show advanced options

Use an instance template to describe a VM instance once and then create
groups of identical instances. Learn more

NAME

mapproxy-template

METADATA
You can use metadata to specify startup scripts. Learn more

Add metadata

FIREWALL
/" Allow HTTP traffic
Allow HTTPS traffic

Resources
MACHINE TYPE

n1-standard-2 (2 vCPUs, 7.5 GB memory)

4

Boot disk
IMAGE

ar

mapproxy-image

BOOT DISK TYPE

Standard Persistent Disk

ar

/ Delete boot disk when instance is deleted

To add storage, click "Show advanced options” and then enter additional disks
below.

Networking
EXTERNAL IP

>

Ephemeral

Google Maps for Work - 27/35

Google Maps for Work

Create an Instance Group
1. From the Compute Engine list in the Developers Console, click Instance groups.
2. Click Create a new instance group.

Instance groups

Create instance groups

Use an instance group when configuring a load-balancing
backend service or to group VM instances. Learn more

Create an instance group

3. Give the instance group a name, and chose the instance group template you
previously configured.

4. Turn on Autoscaling, and chose to autoscale based on HTTP load balancing usage.
Accept the default value of 80%.

Later, we'll configure the Rate of Requests per second (RPS/QPS), which says,
“When my load balancer is receiving 80% of the RPS that the current number of
instances can support, spin up a new instance.”

5. Configure a minimum of 1 instance, and set a limit for the maximum amount of
instances you’re willing to allow to be created. For most cases, 10 to 20 is sufficient.

Google Maps for Work - 28/35

Google Maps for Work

Create a new instance group

Use an instance group when configuring a load-balancing backend
service or to group VM instances. Learn more

NAME

mapproxy-group

DESCRIPTION (Optional)

ZONE

a

europe-westl-b

Use instance template = Select existing instances

INSTANCE TEMPLATE

mapproxy-template =

AUTOSCALING
On

ar

AUTOSCALE BASED ON
For best results read Configuring autoscaling instance groups

a

HTTP load balancing usage

TARGET LOAD BALANCING USAGE
Scaling dynamically creates or deletes VMs to meet the group target.
Learn more

80 %

MINIMUM NUMBER OF INSTANCES
1

MAXIMUM NUMBER OF INSTANCES
10

COOL-DOWN PERIOD

60 seconds

Google Maps for Work - 29/35

Google Maps for Work

Create an HTTP load balancer

1. From the Compute Engine list in the Developers Console project, click HTTP load
balancing.

2. Click Create an HTTP load balancer.

HTTP load balancers

This project has no HTTP load balancers

Create an HTTP load balancer, or learn about
HTTP load balancing.

Create an HTTP load balancer

3. Give the load balancer a name. Then click Create.

New load balancer

NAME

Equivalent REST or command line

4. Once the load balancer is created, click the default backend service to edit it.

Backend services

mapproxy-load-balance-backend-service (default)

+Add a backend service

Google Maps for Work - 30/35

Google Maps for Work

5. For the backend service, chose the instance group you previously created. For the
balancing mode, chose Rate, and for MapProxy, 5 RPS is appropriate for each of our
n1-standard-2 virtual machines. Because you previously selected 80% as our HTTP
Load Balancing Utilization threshold, once your first instance starts receiving a
sustained 4 RPS, a new instance will be created. Once the two instances reach 8
RPS, a third instance will be created, and so on, until the upper limit of the number of
instances you’ve configured.

Add an instance group

na

Create a new instance group ~ Choose existing instance group

ZONE

<

us-centrall-a

INSTANCE GROUP

L1

mapproxy-group

BALANCING MODE
Utilization

® Rate

MAXIMUM RATE

RPS .
5 per instance

“

CAPACITY

[] scale capacity (drain or overdrive) |

O
Draintrafficto 100 % (Reduce to 0% to drain traffic completely)

Allow overdrive

6. Once the backend service is configured, click the default-health-check link.

Google Maps for Work - 31/35

Google Maps for Work

mapproxy-load-balance-backend-service

General properties
IN USE BY TIMEOUT

mapproxy-load-balance 30 seconds

Instance groups

mapproxy-group Port: 80 Instances: 1 Zone: us-centrall-a

Health check

default-health-check

The HTTP Load Balancer will run a health check to make sure that all your instance
groups are healthy and responding to requests. By default, it will just load the root of
your web servers.

7. To make sure that the health check is actually invoking the WSGI application of
MapProxy, change the Path to /mapproxy/demo/ Also, change the Interval to 20
seconds.

Google Maps for Work - 32/35

Google Maps for Work

“ Delete

default-health-check

In useby

mapproxy-load-balance-backend-service

Description
%

Host
Path

/mapproxy/demo/
Port

80
Interval

20 seconds
Timeout

5 seconds
Unhealthy threshold

2 consecutive failures
Healthy threshold

2 consecutive successes

8. Click Save and return to the HTTP Load Balancer Ul. Then click Add a global
forwarding rule.

Incoming traffic
GLOBAL FORWARDING RULES
+Add a global forwarding rule

A global forwarding rule provides an entry point for the load balancer so it can forward traffic to the
best location, wherever your users are.

Google Maps for Work - 33/35

Google Maps for Work

9. Give the rule a name, and chose either an Ephemeral or Static IP. We recommend
choosing Static IP, because you'll share this IP address with users or map it to a
custom URL.

Create new global forwarding rule
NAME

mapproxy-global-forward

DESCRIPTION
i
GLOBAL EXTERNAL IP
Ephemeral s
PORT TARGET
80 s mapproxy-load-balance-default-target-http s

10. Click Create.
Your HTTP load balancer and instance groups will be pushed to production.

As the service is being turned on, you’ll see a 404 error at your ephemeral or static IP
address /mapproxy/demo/.

Google
404. That's an error.

The requested URL /mapproxy/demo/ was not found on
this server. That's all we know.

Shortly after, you’ll start to see 500 errors during the DNS propagation phase.

Google Maps for Work - 34/35

Google Maps for Work

Error: Server Error

The server encountered a temporary error and could not complete your request.

Please try again in 30 seconds.

After about 5 minutes, the service and DNS propagation should be complete, and
you’ll see your live Google Compute Engine MapProxy Service. Your service ready to
serve at Google scale, with HTTP load balancing, autoscaling, and the ability to create
OGC endpoints around tiles served from Google Cloud Storage.

El] MapProxy

Demos A WMTS ges EPSG:3857

Openlayers Client - Layer gcs
Coordinate System Image format

See the demo

Google Maps for Work - 35/35

http://www.google.com/url?q=http%3A%2F%2F107.178.251.105%2Fmapproxy%2Fdemo%2F&sa=D&sntz=1&usg=AFQjCNGUburr_9zqScftLX5jeU0ULOOacQ

