Google Maps for Work

Building spatial applications with Google Cloud
SQL and Google Maps API

Last updated: 22 December 2014

Contents

Introduction
What this document covers
Before you begin
Part A: Storing geospatial data in Google Cloud SQL
Create a Cloud Project in the Google Developers Console
Create and configure a Google Cloud SQL instance
Connect to the instance and create a Google Cloud SQL database
Load geospatial data into Google Cloud SQL
Part B: Performing spatial queries with Google Cloud SQL
Determining which area relates to a selected point
Additional spatial queries you can use
Using Google App Engine to bridge Cloud SQL and Maps API
Part C: Visualizing data with Google Maps version 3 JavaScript API
Creating a Google Maps version 3 JavaScript API application
The complete application
Optimizing performance
Enable spatial indexes on MySQL tables
Connection pooling
Memcache
Cloud SQL database replication

Third-party products: This document describes how Google products work with third-party products and
the configurations that Google recommends. Google does not provide technical support for configuring
third-party products. GOOGLE ACCEPTS NO RESPONSIBILITY FOR THIRD-PARTY PRODUCTS.
Please consult the product's Web site for the latest configuration and support information. You may also
contact Google Partners for consulting services.

Google Maps for Work - 1/15

Google Maps for Work

Introduction

This document shows you how to query and visualize geospatial data using Google Cloud
SQL and the Google Maps version 3 JavaScript API. As of December 2014, Google Cloud
SQL supports MySQL version 5.6, which supports a variety of geospatial searches to enable
your web applications, such as:

e Distance: Finds locations near a specific starting point
e Contains: Checks which polygon contains a specific location
e Within: Checks if a location is within a specific polygon

What this document covers

Using this document, you’ll complete the following:

Create a cloud project in the Google Developers Console.

Create and configure a Cloud SQL instance.

Create a Cloud SQL database table and import a geospatial data file.

Develop a Google App Engine service to query Cloud SQL and return GeoJSON.
Perform a geospatial query (such as point-in-polygon) with Cloud SQL.

Create a Google Map web application to visualize the data.

After completing the steps in this document, you’ll have a fully functional spatial application,
hosted completely on Google Cloud Platform (GCP), that can perform an ST_Contains spatial
operation to check if a point is within a polygon. You can view the sample application here:
https://project-wander-1.appspot.com/.

Google Maps for Work - 2/15

https://project-wander-1.appspot.com/

Google Maps for Work

L, RICHMOND'HILL 7

el

CAMBRIA Map | Satellite
HEIGHTS] e

A S
-~ WOODHAVEN T pve o STALBANS &
2% North Valley
Stream
iy Mk, Malve
2 0ZONE PAl o LAURELTON,
= Properties

< > SS HILLS o e
b Vv ST N \SOUTH JAMAICA

Ave
Atlantic AN~ Liberty

<zr‘\“"
3
0 oW

5
LL o
£

$
g? Noi
& Lynbl

@ Valley Stream

borough: 4 HOSEDALE gouth Valley

Stream Lynk

4
OV Ene NEW YORK

‘
ungry et it
ewlett™ East F

Woodmere Bay

Inwood Cedarhurst

BROAD CHANNEL Lawrence
O

— teway National Jamaica Bay:
Recreation Area

Shore Pkwy:

878

BAYSWATER
FAR ROCKAWAY

EDGEMERE
ARVERNE

HAMMELS Atlantic Beach W Park Ave

ROCKAWAY.
PARK.

BELLE HARBOR:
NEPONSIT Map data©2014 Google TermsofUse Reportamap eror

Polygon displayed on a Google Map from the Cloud SQL application

Before you begin
Before following the steps in this document, set up the following:

e Google Account: Consider using a shared Google Account for your organization,
rather than a personal Google Account.

e IDE: If you don’t already have a development environment, consider installing an IDE
such as Eclipse with the Google Plugin for Eclipse to help you deploy your application
to App Engine.

e Geospatial data management tool: You make uploading data to Google Cloud SQL
easier by using open-source tools such as GDAL or commercially available tools such
as Safe Software FME. In this document, we’ll use the GDAL toolset to upload vector
data to Google Cloud SQL. You'll need a GDAL built with the MySQL driver. The
Debian package gdal-bin comes with this driver, so an easy way to configure a
machine for loading spatial data to Google Cloud SQL is to create a Debian Linux
virtual machine with Google Compute Engine, and install the GDAL software package:

1. Create a new Debian 7 virtual machine.
2. Update the software: sudo apt-get update
3. Install GDAL: sudo apt-get install gdal-bin

Visit the Debian website for details about the gdal-bin package

Google Maps for Work - 3/15

https://developers.google.com/eclipse/
http://www.google.com/url?q=http%3A%2F%2Fwww.gdal.org%2F&sa=D&sntz=1&usg=AFQjCNGxaxDvnmfaOClMnyyE1tn6qvdUfg
https://cloud.google.com/compute/docs/signup
https://www.google.com/url?q=https%3A%2F%2Fpackages.debian.org%2Fsid%2Fgdal-bin&sa=D&sntz=1&usg=AFQjCNECtIUUdocfHhlFPOWj3JpFpvLC7g
https://www.google.com/url?q=https%3A%2F%2Fwiki.debian.org%2FDebianGis&sa=D&sntz=1&usg=AFQjCNG46LP2gAMqrA0al1sGQuNjWE6gdg

Google Maps for Work

e Database management tool: You’'ll need a tool such as MySQL Workbench to
connect to your database hosted in Google Cloud SQL.

e Dataset: Download the New York City Hurricane Evacuation Zones vector dataset to
follow along with the examples.

Part A: Storing geospatial data in Google Cloud SQL

We’ll create an online database within Google Cloud SQL that stores the New York City
Hurricane Evacuation data. The finished map will use these data to check which polygon a
specified location is part of.

Create a Cloud Project in the Google Developers Console

The first step is to create a new project in the Cloud Developers Console. Specify a project
name and project ID (the identifier for your App Engine instance, which can’t be changed). For
more information about Google App Engine, see the developer’'s documentation.

If you don'’t already have a development environment, consider installing an IDE such as
Eclipse, with the Google Plugin for Eclipse to help you deploy your application to App Engine.

Create and configure a Google Cloud SQL instance

After you create a project, you need to create the Google Cloud SQL database and configure
the database management tools:

—

. Open the project you just created in the Google Cloud Console.

2. In the left pane, click Storage, and then click Cloud SQL.

3. Select Create an instance.

4. Atthe top, click Show advanced options.

5. Specify a name for the Cloud SQL Instance ID (example: demo-sql).

6. From the Database Version drop-down menu, select MySQL 5.6 (preview).
7. For Authorized Networks, specify your own external IP (v4) address.

Google Maps for Work - 4/15

http://www.google.com/url?q=http%3A%2F%2Fwww.mysql.com%2Fproducts%2Fworkbench%2F&sa=D&sntz=1&usg=AFQjCNFdLqFWZE57RZaPhTpl_ie9tGKQ7A
https://www.google.com/url?q=https%3A%2F%2Fdata.cityofnewyork.us%2FPublic-Safety%2FHurricane-Evacuation-Zones%2F8zwp-5ant&sa=D&sntz=1&usg=AFQjCNE72qsDprQUmI_N2Pun_w2H89jjzg
https://console.developers.google.com/
https://cloud.google.com/appengine/docs
https://developers.google.com/eclipse/

Google Maps for Work

Note: You can also enter 0.0.0.0/0 to allow connections to the database instance from
any IP address for demonstration purposes or to temporarily upload data. However,
we strongly recommend that you restrict access when you're ready to use your Cloud
SQL instance for production.

CLOUD SQL INSTANCE ID

project-wander-1: demo-sql

REGION TIER

United States D1 — 512 MB RAM =

4

DATABASE VERSION

MySQL 5.6 (preview) =

8. Click Save to create the Cloud SQL instance.

Once you create your instance, you'll see it in the Developers Console:

INSTANCE ID TIER IP ADDRESS

project-wander-1:demo-sql D1 =512 MB RAM

9. Click the link for your instance under Instance ID. You'll now see a detailed console
view of the Cloud SQL instance.

10. Click the Access Control tab.

11. Under Set Root Password, enter a password.

Google Maps for Work - 5/15

Google Maps for Work

“ Edit Import... Export... Restart Delete Create read replica

project-wander-1:demo-sql

OVERVIEW OPERATIONS ACCESS CONTROL

IP Address Remove

173.194.84.171

Set Root Password

Set

| Show

You can now connect to the instance using third-party tools, such as MySQL
Workbench.

Note: In this example, the root user is used to connect to the Google Cloud SQL
instance. Typically, you would use a non-root user with appropriate permissions to
connect to the database instance. For information about creating MySQL users, see
Adding Users in the MySQL documentation.

Connect to the instance and create a Google Cloud SQL database

You can use one of many open-source and licensed third-party tools to connect to
your Google Cloud SQL instance, such as MySQL Workbench. You'll need one of
these tools to complete the following steps.

1. Connect to your Cloud SQL instance.
2. Create a new database.

CREATE DATABASE nyc;

MySQL Workbench

& R W

F Query1l x

EBH ¥FFA | e B+ q [{E=
1e BLE nyc;|

3. Click the lightning bolt button to execute the query.

Google Maps for Work - 6/15

http://www.google.com/url?q=http%3A%2F%2Fwww.mysql.com%2Fproducts%2Fworkbench%2F&sa=D&sntz=1&usg=AFQjCNFdLqFWZE57RZaPhTpl_ie9tGKQ7A
http://www.google.com/url?q=http%3A%2F%2Fwww.mysql.com%2Fproducts%2Fworkbench%2F&sa=D&sntz=1&usg=AFQjCNFdLqFWZE57RZaPhTpl_ie9tGKQ7A
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNHVgi4qnn-CR3azUKS108_t6E88eg
https://cloud.google.com/sql/docs/admin-tools#workbench

Google Maps for Work

Once your query runs, you'll have a database called nyc. You can can now close
MySQL Workbench.

Load geospatial data into Google Cloud SQL

1. Now that you’ve created a database, upload the vector data of New York City
Hurricane Evacuation Zones for your application.

QGIS 2.2.0-Valmiera

) Coordinate: | .74.3263,40.8: 350 Scale 7434256 '+ %/ @ Rend

2. Use the GDAL ogr2ogr command to load the Hurricane Evacuation Zones shapefile
to the Cloud SQL instance database. Here’s the example ogr2ogr command to load
the data to your Cloud SQL instance:

ogr2ogr —-F MySQL

MySQL:nyc, user=youruser, password=yourpassword, host=YOUR. IP
.ADD.RESS NYCZones.shp -nln nyczones -update -overwrite
-progress -lco GEOMETRY NAME=geometry -lco engine=MYISAM

Important: You must include the '-1co engine=MYISAM' parameter with this
command. This parameter is typically not included in other online examples, but it's

required in this case.

Here's a description of the actions specified by to the ogr2ogr command:

Google Maps for Work - 7/15

https://www.google.com/url?q=https%3A%2F%2Fdata.cityofnewyork.us%2FPublic-Safety%2FHurricane-Evacuation-Zones%2F8zwp-5ant&sa=D&sntz=1&usg=AFQjCNE72qsDprQUmI_N2Pun_w2H89jjzg

Google Maps for Work

1. Convert the NYCZones . shp shapefile to upload to our nyc Google Cloud SQL
database.

2. Store the converted data in a new table named nyczones.

3. Create a geometry column named geometry.

The set of vector data you'll use with your application is now stored in Google Cloud SQL.
You'll use these polygons later with your web page application, which returns the polygon in
which the user clicks.

Part B: Performing spatial queries with Google Cloud SQL

MySQL version 5.6 supports spatial operations to interact with stored data. For you
application, you’ll use the ST_Contains() function to determine which polygon contains a
specified point. This section also discusses some other frequently used spatial functions that
you can use with your own applications.

Determining which area relates to a selected point

A typical spatial query is to determine if a given point is within a polygon, which is commonly
called a “point-in-polygon” query in Geographic Information Systems (GIS) terms. The Cloud
SQL ST_Contains() function handles this type of query.

For your example application, you want to determine which NYC Hurricane Evacuation Zone
corresponds to the location that a user clicks on a map. Assume a user clicks the John F.
Kennedy airport, which is located at 40.643363 degrees latitude, -73.782065 degrees
longitude. Our corresponding query to determine the correct NYC Hurricane Evacuation Zone
is:

SELECT zone, AsWKT (geometry) AS wktgeom FROM nyc.nyczones WHERE
ST CONTAINS (geometry, GeomFromText ('Point (-73.782065
40.643363) ")) ;

This query’s action is to return columns zone and geometry when one of the available
geometries in the nyc.nyczones table contains the specified point location -73.782065
40.643363.

The result is the row within the nyc.nyczones table that contains the two requested
columns, including the actual geometry shape of the corresponding Hurricane Evacuation
Zone.

Google Maps for Work - 8/15

http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.6%2Fen%2Fspatial-relation-functions-object-shapes.html%23function_st-contains&sa=D&sntz=1&usg=AFQjCNHmz3I7xyzoLDw88ipb2QG8GXYWIg
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.6%2Fen%2Fspatial-relation-functions-object-shapes.html%23function_st-contains&sa=D&sntz=1&usg=AFQjCNHmz3I7xyzoLDw88ipb2QG8GXYWIg

Google Maps for Work

Additional spatial queries you can use

MySQL version 5.6 enables several types of spatial operations, in addition to the Contains()
function, to support your applications. Here are two more commonly used spatial operations
for mapping applications that can might enable your own applications:

ST _Distance()

Description: Find all locations within a specified distance of a location.
Useful for: Selecting all of your stores within 2 miles of an address, or all of your
restaurants within 0.1 kilometers of a user's driving directions.

See the “Optimizing Performance” section below for performance improvement
considerations.

ST_Within()

Description: Check if a specified location is within another geometry.
Useful for: Checking if a vehicle has left a specified geofence.

For a full list of spatial functions supported by MySQL, see the MySQL documentation.

Using Google App Engine to bridge Cloud SQL and Maps API

Next, you need to create a connector to handle incoming location queries from our map
application, as Google Cloud SQL does not have a native RESTful API. You’ll create the
connector to Google App Engine to transact queries with your Google Cloud SQL instance
from your Google Maps API application.

There are a number of methods for developing a Google App Engine application to connect to
Google Cloud SQL. Many libraries, code samples, and documentation for a variety of
languages, such as Java, Python, PHP and Go are available at the Google App Engine
Developer Center.

This document shows you one approach to querying Google Cloud SQL from Google App
Engine using Python.

Google Maps for Work - 9/15

http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.6%2Fen%2Fspatial-relation-functions-object-shapes.html%23function_st-distance&sa=D&sntz=1&usg=AFQjCNFVAykeSpIjg7Aa4FaGvHHY3sHHyQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.6%2Fen%2Fspatial-relation-functions-object-shapes.html%23function_st-within&sa=D&sntz=1&usg=AFQjCNF_liq5Kmw7urPeWxO67Dy0dQYq6g
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.6%2Fen%2Fspatial-function-reference.html&sa=D&sntz=1&usg=AFQjCNHAZ6lSpwMFU4IbpBd43c6SjP2a4g
https://cloud.google.com/sql/docs/dev-access
https://cloud.google.com/sql/docs/dev-access

Google Maps for Work

To get started with Google App Engine, visit the Developer Center.

import geojson
from geomet import wkt

Sends a query to our CloudSQL server
def QueryCloudSQL (query) :
socket name = '/cloudsqgl/%s' % CLOUD SQL INSTANCE
db = MySQLdb.connect (unix socket=socket name,
db= DATABASE, user='root')
cursor = db.cursor ()
#Use the haversine formula in querying. See below.
cursor.execute (query)
cols = [1[0] for i in cursor.description]
rows = cursor.fetchall ()
feature id = 0
for row in rows:
wktgeom = row[-1]
props = dict(zip(cols[:-1], row[:-1]))
wkt.loads returns a dict which corresponds to the geometry
We dump this as a string, and let geojson parse it
geom = geojson.loads (json.dumps (wkt.loads (wktgeom)))
Turn the geojson geometry into a proper GeoJSON feature
feature = geojson.Feature (geometry=geom, properties=props,
id=feature id)
feature id +=1
Add the feature to our list of features.
features.append (feature)
Close the cursor, now that we are done with it.
cursor.close()

This function does a point in polygon query
def GetPolygonForPoint (lat, 1lng):
query parts = [
'SELECT zone, AsSWKT (geometry) AS wktgeom',
'FROM nyc.nyczones',

'WHERE ST CONTAINS (geometry, GeomFromText (\'Point (%f %£f)\'))' % (lng,
lat)]

return QueryCloudSQL (' '.join(query parts))

You now have a way to check your database and determine which polygon contains a
user-specified location, using the MySQL ST_Contains() spatial function. You also have a
connector that you can use with your Google Maps API web application to forward requests to
the NYC Hurricane Evacuation Zone polygons stored in Google Cloud SQL.

In the next section, you’ll bring these lookup pieces together with the map application for user
interaction and displaying the results.

Google Maps for Work - 10/15

https://cloud.google.com/appengine/docs/python/gettingstartedpython27/introduction

Google Maps for Work

Part C: Visualizing data with Google Maps version 3 JavaScript API

In Parts A and B, you stored your vector table in Google Cloud SQL, created a query to check
if a location is within a specific polygon, and a created a connector that can send
user-specified locations to our Cloud SQL instance and return the GeoJSON result to display
on your Google Maps API application. In this section, you'll build a web page that:

1. Loads the Google Maps version 3 JavaScript API and displays a map.
2. Sends user selected locations to your Google App Engine connector.
3. Draws the polygon returned from Google Cloud SQL onto the map.

Creating a Google Maps version 3 JavaScript API application

You'll need a web page to host your Google Maps version 3 JavaScript API application, along
with a web service to host the web page.

Here's a copy of our example web application, below, which you can copy and paste onto
your own web page. To use the example, add your own Google Maps API key. You can also
create a new API key in the Google Cloud Console.

<!DOCTYPE html>
<html>
<head>
<style type="text/css">
html, body, #map-canvas { height: 100%; margin: 0; padding: 0;}
</style>
<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?key=API KEY">
</script>
<script type="text/javascript">
function initialize () {

var mapOptions = {
center: { lat: 40.661407, 1lng: -74.036646},
zoom: 8
bi
var map = new
google.maps.Map (document.getElementById('map-canvas'),
mapOptions) ;
}
google.maps.event.addDomListener (window, 'load', initialize);
</script>
</head>
<body>
<div id="map-canvas"></div>
</body>

Google Maps for Work - 11/15

https://developers.google.com/maps/documentation/javascript/tutorial#api_key

Google Maps for Work

</html>

Next, you'll create a JavaScript prototype function to pass the latitude/longitude values for
where a user clicks on the map to the Google App Engine connector.

CloudSglJdsonApi.prototype.PiP = function (table, select, location,

callback) {
var args = {
lat: location.lat (),
lng: location.lng(),
select: select
}i
var encoded args = $.param(args);
this.pipCallbacks.add(callback) ;
var self = this;
var url = "/pip/"+this.databaset":"+table+"?"+encoded args;
$.getJSON (url, function (response) {
self.pipCallbacks.fire (response);
self.pipCallbacks.remove (callback);
1)
.fail (function (jgXHR, errordson) {
alert (errorJson.error) ;

})

Now, you’ll add your point-in-polygon function to your application, along with event listeners,
to collect the latitude/longitude values for where users click on the map.

var pip = new CloudSglJsonApi ('nyc');
// Get the polygon that contains the clicked point.
pip.PiP ("nyczones", "zone", latlng, function(geojson) {

if (geojson.features.length == 0) {
alert ('Point is not in Polygon in CloudSQL Database');

return;

}
map.data.forEach (function (feature) {

map.data.remove (feature) ;
1)

var features = map.data.addGeoJson (geojson) ;

map.data.setStyle ({
clickable: true

});
map.data.addListener ('click', HandlePolygonClick);

activePolygons = [];
for (i in features) {

|]
Google Maps for Work - 12/15

Google Maps for Work

activePolygons.push (features[i] .getId())
}
map.data.setStyle (function (feature) {
var color = "black";
var clickable = false;
if($.inArray (feature.getId (), activePolygons) > -1) {
color = "blue";
clickable = true;
}
return {
fillColor: color,
strokeColor: color,
fillOpacity: 0.2,
clickable: clickable,

Your application will now send user-selected locations on the map to your Google App Engine
connector, which then queries your Google Cloud SQL instance to find the correct polygon.

You can also use Google App Engine to host your completed web application. For
instructions, see the Google App Engine documentation.

The complete application

You now have a complete example application that supports the Contains() spatial query,
hosts vector data within Google Cloud SQL, and displays the result on Google Maps API.

You can see the completed example at https://project-wander-1.appspot.com/

Google Maps for Work - 13/15

https://cloud.google.com/appengine/docs/python/gettingstartedpython27/staticfiles
https://project-wander-1.appspot.com/

Google Maps for Work

Optimizing performance

Here are some tips to help you optimize performance with Google App Engine and Cloud
SQL.

Enable spatial indexes on MySQL tables

You can improve query response performance by creating a spatial index on MySQL tables
with geospatial datasets. Details about how the spatial index benefits search operations is
available at the MySQL documentation library.

MySQL enables three methods to create a spatial index. For our example with the New York
City Hurricane Evacuation Zones example, you can add a spatial index to table nyc with:

ALTER TABLE <table-name> ADD SPATIAL INDEX (<geometry-column-name>) ;

Connection pooling

If the time to create a new database connection is greater than checking and reusing existing
connections, you might want to use connection pools. Connection pooling allows you to keep
your database connections open for reuse. With App Engine, connection pooling is rarely
necessary, but it might improve performance if your web application is hosted elsewhere. For
more information about connection pooling, see the Google Cloud SQL FAQ.

Memcache

Leveraging Memcache to store frequently accessed queries can be a great way to improve
application performance. Memcache allows you to store key/value pairs of data directly on an
App Engine instance. If your application has a default map view or popular geographic
searches (such as San Francisco, New York, or London), you may decide to store those
values in Memcache to offset some of the load to your Cloud SQL instance. In our testing, we
found that Memcache could return cached GeoJSON data over 10 times faster than
requerying Cloud SQL for that same information. Items in Memcache are flushed periodically;
therefore, check if the item exists in Memcache first and, if not, retrieve from the original data
source (Cloud SQL), return, and store it in Memcache. You can also flush cached data based
on an expiration time or by explicitly removing it via the Memcache API.

Google Maps for Work - 14/15

http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.6%2Fen%2Foptimizing-spatial-analysis.html&sa=D&sntz=1&usg=AFQjCNHbHfNToWEq5byVPLXeLAOpFHD9yw
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.6%2Fen%2Fcreating-spatial-indexes.html&sa=D&sntz=1&usg=AFQjCNG23pom8UR93U4AW2LU0qMXcE9YUw
https://cloud.google.com/sql/faq#connections
https://cloud.google.com/appengine/docs/adminconsole/memcache
http://gmfw-cloud.appspot.com/

Google Maps for Work

Cloud SQL database replication

Cloud SQL supports replication from a master Cloud SQL instance to multiple slave Cloud
SQL instances. Replication provides for additional read capacity for applications dominated by
reads. As of December 2014, Cloud SQL replication is in beta and only supports Cloud SQL
5.5. You can find more information in the Google Cloud SQL documentation.

Google Maps for Work - 15/15

https://cloud.google.com/sql/docs/replication

