Google Maps for Work

Building a store locator application with the
Google Maps APl and Google Cloud SQL

Last updated: 22 December 2014
Contents

Introduction
1. Create a Cloud project in the Google Developers Console
2. Create and configure a Cloud SQL instance
3. Create a Cloud SQL database table and populate with data
Using third-party tools
4. Develop an App Engine service to query Cloud SQL and return GeoJSON
5. Perform a geospatial query (Distance Search) with Cloud SQL
Using the haversine formula
Using ST_DISTANCE
6. Create a Google map to visualize the data
Optimizing performance
Connection pooling
Memcache
Cloud SQL database replication
Alternative solutions

Third-party products: This document describes how Google products work with third-party products and
the configurations that Google recommends. Google does not provide technical support for configuring
third-party products. GOOGLE ACCEPTS NO RESPONSIBILITY FOR THIRD-PARTY PRODUCTS.
Please consult the product's web site for the latest configuration and support information. You may also
contact Google Partners for consulting services.

Google Maps for Work - 1/10

Google Maps for Work

Introduction

This document shows you how to build a simple store locator using the Google Maps API,
App Engine, and Google Cloud SQL. By following the steps in this document, you'll have a
fully functional web application hosted completely on Google Cloud Platform (GCP).

The following diagram shows a basic Google Cloud SQL application architecture.

CloudSQL Web Application Architecture

Master

Web request AppEngine
.‘
]
Conneclion VN

,_
—
B—4—

Maps API Web/Application Google
Web Client Server Cloud SQL

Because Cloud SQL does not have a RESTful endpoint that you can call client-side, you must
create a server-side connection to Google Cloud SQL. One approach is to expose an
endpoint on your application server (App Engine) to proxy these calls from your client.

Using this document, you’ll complete the following steps:

Create a cloud project in the Google Developers Console.

Create and configure a Cloud SQL instance.

Create a Cloud SQL database table and populate with data.

Develop an App Engine service to query Cloud SQL and return GeoJSON.
Perform a geospatial query (distance search) with Cloud SQL.

Create a Google Map to visualize the data.

o0k wN =~

1. Create a Cloud project in the Google Developers Console

The first step is to create a new project in the Cloud Developers Console. Specify a project
name and project ID (the identifier for your App Engine instance, which can’t be changed). For
more information about Google App Engine, see the developer’s documentation.

If you don'’t already have a development environment, consider installing an IDE such as
Eclipse with the Google Plugin for Eclipse to help you deploy your application to App Engine.

Google Maps for Work - 2/10

https://console.developers.google.com/
https://cloud.google.com/appengine/docs
https://developers.google.com/eclipse/

Google Maps for Work

2. Create and configure a Cloud SQL instance

After you create a project, you need to create the Google Cloud SQL database and configure
the database management tools:

1. Open the project you just created in the Google Cloud Console.

2. Inthe left pane, click Storage, and then click Cloud SQL.

3. Select Create an instance.

4. Atthe top, click Show advanced options.

5. Specify a name for the Cloud SQL Instance ID (example: demo-sql).

6. From the Database Version drop-down menu, select MySQL 5.6 (preview).

7. For Authorized Networks, specify your own external IP (v4) address.
Note: You can also enter 0.0.0.0/0 to allow connections to the database instance from
any IP address for demonstration purposes or to temporarily upload data. However,

we strongly recommend that you restrict access when you're ready to use your Cloud
SQL instance for production.

CLOUD SQL INSTANCE ID

project-wander-1: demo-sql

REGION TIER

4

United States = D1 — 512 MB RAM

DATABASE VERSION

“»

MySQL 5.6 (preview)

8. Click Save to create the Cloud SQL instance.

Once you create your instance, you'll see it in the Developers Console:

Google Maps for Work - 3/10

Google Maps for Work

INSTANCE ID TIER

project-wander-1:demo-sql D1 - 512 MB RAM

IP ADDRESS

9. Click the link for your instance under Instance ID. You'll now see a detailed console
view of the Cloud SQL instance.

10. Click the Access Control tab.

11. Under Set Root Password, enter a password.

“ Edit Import... Export... Restart

project-wander-1:demo-sq|

OVERVIEW OPERATIONS ACCESS CONTROL

IP Address

173.194.84.171

Set Root Password

Set

Show

Delete

Remove

Create read replica

You can now connect to the instance using third-party tools, such as MySQL
Workbench.

Note: In this example, the root user is used to connect to the Google Cloud SQL
instance. Typically, you would use a non-root user with appropriate permissions to
connect to the database instance. For information about creating MySQL users, see
Adding Users in the MySQL documentation.

Other settings to consider:

Tier: Select the tier appropriate for the level of usage you anticipate for your store

locator.

Activation Policy: To ensure the best performance, select Always On to prevent

your instance from going to sleep. Note, however, that this option will result in higher
uptime charges.
IPv4 address: Assign an address for your instance, to allow third-party tools to access

it.

Google Maps for Work - 4/10

http://www.google.com/url?q=http%3A%2F%2Fwww.mysql.com%2Fproducts%2Fworkbench%2F&sa=D&sntz=1&usg=AFQjCNFdLqFWZE57RZaPhTpl_ie9tGKQ7A
http://www.google.com/url?q=http%3A%2F%2Fwww.mysql.com%2Fproducts%2Fworkbench%2F&sa=D&sntz=1&usg=AFQjCNFdLqFWZE57RZaPhTpl_ie9tGKQ7A
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNHVgi4qnn-CR3azUKS108_t6E88eg
https://cloud.google.com/sql/pricing

Google Maps for Work

e Authorized Networks: To connect to the database from your local machine, authorize
the IP address of your machine.
e Access Control: Set a root password for your instance.

For more detailed information on setting up a Cloud SQL instance, see the developer’s
documentation, or watch this YouTube tutorial video.

3. Create a Cloud SQL database table and populate with data

The next step is to create a database table and load it with data. There are multiple
approaches for loading data into Cloud SQL, which you'll find in the developer’s
documentation.

Using third-party tools

You can use third-party tools to make it easier to load data into Cloud SQL. Please
remember, though, that Google does not endorse or support third-party tools.

Safe Software for synchronizing data

Safe Software provides the FME suite of tools, which can synchronize data between a
number of different sources and destinations. As of December 2014, the Windows and Linux
versions of FME support both GME and Cloud SQL and can be used to transfer data between
the two environments. For more information about FME, see the Safe Software site. Also see
our step-by-step guide on using FME to translate data from GME to Cloud SQL.

Tools for importing data from a CSV file

You can use a third-party tool, such as the MySQL command-line tool, MySQL Workbench, or
ogr2ogr to make it easier to load data into Cloud SQL. For more details about this approach,
see our step-by-step guide on building spatial applications with Google Cloud SQL and
Google Maps API.

Connect to your database using your database administration tool. First create a new
database, then create a table with fields for your stores, such as id, name, address, lat,
and 1ng.

Here is a sample SQL statement to create this table:

Google Maps for Work - 5/10

https://cloud.google.com/sql/docs/getting-started
https://cloud.google.com/sql/docs/getting-started
https://www.youtube.com/watch?v=_kQXgjIfLgo
https://cloud.google.com/sql/docs/import-export
https://cloud.google.com/sql/docs/import-export
http://www.google.com/url?q=http%3A%2F%2Fwww.safe.com%2Ffme%2F&sa=D&sntz=1&usg=AFQjCNF5SpevcbwTsJTga8BWsCCZzV3CBg
https://support.google.com/mapsengine/answer/6147668
https://cloud.google.com/sql/docs/mysql-client
http://www.google.com/url?q=http%3A%2F%2Fwww.mysql.com%2Fproducts%2Fworkbench%2F&sa=D&sntz=1&usg=AFQjCNFdLqFWZE57RZaPhTpl_ie9tGKQ7A
http://www.google.com/url?q=http%3A%2F%2Fwww.gdal.org%2Fogr2ogr.html&sa=D&sntz=1&usg=AFQjCNF3LJUu6KFGqxbJ5TjKoHWxvtfASQ
https://support.google.com/mapsengine/answer/6147674

Google Maps for Work

CREATE TABLE "store locator . stores (
"id® INT NOT NULL AUTO_ INCREMENT PRIMARY KEY ,
‘name’ VARCHAR(60) NOT NULL ,
‘address® VARCHAR(80) NOT NULL ,
"lat® FLOAT(10, 6) NOT NULL ,
"lng® FLOAT(10, 6) NOT NULL
) ENGINE = MYISAM ;

Alternatively, in MySQL 5.6, you can use the geometry type for for lat/lng data (rather than
float) to store the position of this marker. This will enable the use of spatial indices that can
improve performance. Creating a table with the geometry type looks like this:

CREATE TABLE "store locator . stores (
"id® INT NOT NULL AUTO_ INCREMENT PRIMARY KEY ,
‘name’~ VARCHAR(60) NOT NULL ,
‘address® VARCHAR(80) NOT NULL ,
geometry GEOMETRY NOT NULL, SPATIAL INDEX (geometry)
) ENGINE = MYISAM ;

I's now time to import your list of stores. You can do this using a tool such as MySQL
Workbench or the INSERT INTO command. To import data using MySQL Workbench, open
your table using Edit Table Data. Then select the option to Import Records from an
External File, and select a CSV file with your stores information.

To test data import, you can use this sample data from a Google Maps API tutorial.

Frankie Johnnie & Luigo Too,"939 W E1 Camino Real, Mountain View, CA",37.386339,-122.085823
Amici's East Coast Pizzeria,"790 Castro St, Mountain View, CA",37.38714,-122.083235

Kapp's Pizza Bar & Grill,"191 Castro St, Mountain View, CA",37.393885,-122.078916

Round Table Pizza: Mountain View,"570 N Shoreline Blvd, Mountain View,
CA",37.402653,-122.079354

Tony & Alba's Pizza & Pasta,"619 Escuela Ave, Mountain View, CA"™,37.394011,-122.095528
Oregano's Wood-Fired Pizza,"4546 El Camino Real, Los Altos, CA",37.401724,-122.114646

If you're using the geometry type for your lat/ng data, the geometry field should contain
WKT— for example, “POINT (1ng lat)”. Format the row entry as follows:

Frankie Johnnie & Luigo Too,"939 W El Camino Real, Mountain View, CA",
“POINT (-122.085823 37.386339)”

Google Maps for Work - 6/10

http://gmaps-samples-v3.googlecode.com/svn/trunk/articles/phpsqlsearch/phpsqlsearch_data.csv
https://developers.google.com/maps/articles/phpsqlsearch_v3
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWell-known_text&sa=D&sntz=1&usg=AFQjCNFajPXGuaL1cIw4X6g3XqScF1Bejw

Google Maps for Work

4. Develop an App Engine service to query Cloud SQL and return
GeoJSON

There are a number of ways for your App Engine application to connect to Google Cloud
SQL. Libraries, code samples, and documentation for a variety of languages, such as Java,
Python, PHP and Go are available on the developer’s site.

Here’s a sample servlet that demonstrates how to query Cloud SQL from App Engine using
Python:

import geojson
from geomet import wkt
socket name = '/cloudsgl/%s' % CLOUD SQL INSTANCE
db = MySQLdb.connect(unix_socket=socket_name,
db= DATABASE, user='root')
cursor = db.cursor ()
cursor.execute (query) #Use the haversine formula in querying. See below.
cols = [i[0] for i in cursor.description]
rows = cursor.fetchall ()
feature id = 0
for row in rows:
wktgeom = row[-1]
props = dict(zip(cols[:-1], row[:-11]))
wkt.loads returns a dict which corresponds to the geometry
We dump this as a string, and let geojson parse it
geom = geojson.loads (json.dumps (wkt.loads (wktgeom)))
Turn the geojson geometry into a proper GeoJSON feature
feature = geojson.Feature (geometry=geom, properties=props,
id=feature id)
feature id += 1
Add the feature to our list of features.
features.append (feature)
Close the cursor, now that we are done with it.
cursor.close ()

The example above connects to the Google Cloud SQL instance as the root user, but you can
connect to the instance as a specific database user with the following parameters:

db = MySQLdb.connect (unix_socket='/cloudsgl/' + CLOUD_SQL INSTANCE, db= DATABASE,
user='user', passwd='password')

For information about creating MySQL users, see Adding Users in the MySQL documentation.

You can expose the App Engine service to your web application in the form of a RESTful web
service so it can be called from JavaScript or a mobile device. Additionally, you can use
Google Cloud Endpoints to expose the function as an API call for your clients.

Google Maps for Work - 7/10

https://cloud.google.com/sql/docs/dev-access
https://cs.corp.google.com/#search&q=package:%5Epiper$%20file:(/%7C%5E//depot/google3/)geojson(%5C.(swig%7Cpy%7Cspt)$%7C/(__init__%5C.(swig%7Cpy%7Cspt))%3F$)&is_navigation=1
https://cs.corp.google.com/#search&q=package:%5Epiper$%20file:(/%7C%5E//depot/google3/)geojson(%5C.(swig%7Cpy%7Cspt)$%7C/(__init__%5C.(swig%7Cpy%7Cspt))%3F$)&is_navigation=1
https://cs.corp.google.com/#search&q=package:%5Epiper$%20file:(/%7C%5E//depot/google3/)geomet(%5C.(swig%7Cpy%7Cspt)$%7C/(__init__%5C.(swig%7Cpy%7Cspt))%3F$)&is_navigation=1
https://cs.corp.google.com/#search&q=package:%5Epiper$%20file:(/%7C%5E//depot/google3/)geomet(%5C.(swig%7Cpy%7Cspt)$%7C/(__init__%5C.(swig%7Cpy%7Cspt))%3F$)&is_navigation=1
https://cs.corp.google.com/#search&q=package:%5Epiper$%20file:(/%7C%5E//depot/google3/)geomet/wkt(%5C.(swig%7Cpy%7Cspt)$%7C/(__init__%5C.(swig%7Cpy%7Cspt))%3F$)&is_navigation=1
https://cs.corp.google.com/#search&q=package:%5Epiper$%20file:(/%7C%5E//depot/google3/)geomet/wkt(%5C.(swig%7Cpy%7Cspt)$%7C/(__init__%5C.(swig%7Cpy%7Cspt))%3F$)&is_navigation=1
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNHVgi4qnn-CR3azUKS108_t6E88eg
https://cloud.google.com/endpoints/

Google Maps for Work

We recommend returning GeoJSON for easy integration into the Google Maps API using the
DatalLayer class. DatalLayer provides an easy way to render styled geospatial data (points,
polygons, polylines, etc.) on your Google Maps APl implementation with minimal coding.

5. Perform a geospatial query (Distance Search) with Cloud SQL

To find locations in your stores table that are within a certain radius distance of a given
latitude/longitude, you can use either of the following:

e A SELECT statement based on the haversine formula (recommended)
e The ST_DISTANCE function in Cloud SQL

Using the haversine formula

The haversine formula is used generally for computing great-circle distances between two
pairs of coordinates on a sphere. An in-depth mathematical explanation is given by Wikipedia,
and a good discussion of the formula as it relates to programming is on Movable Type's site.

The following SQL statement will find the closest 50 locations to the (36, -78) coordinate. It
calculates the distance based on the latitude/longitude of that row and the target
latitude/longitude, and then asks for only rows where the distance value is less than 25,
orders the whole query by distance, and limits it to 20 results. To search by kilometers instead
of miles, replace 3959 with 6371.

SELECT *, (3959 * acos(cos(radians(36)) * cos(radians(lat)) * cos(
radians(lon) - radians(-78)) + sin(radians(36)) * sin(radians(lat))))
AS distance

FROM store locator.store

ORDER BY distance

LIMIT 50;

You can include the haversine formula as a stored procedure or function in Cloud SQL to
reduce query size and improve performance.

You can also improve performance by using a spatial index and a bounding box (with
st_contains) to restrict the search space to a smaller area. For example:

SELECT *, astext(geometry), (3959 * acos(cos(radians(40.741)) * cos(
radians (Y (geometry))) * cos(radians(X(geometry)) - radians(-74.0001)) +
sin(radians (40.741)) * sin(radians(Y (geometry)))))

AS distance
FROM store_locator.store
where st contains (GeomFromText ('POLYGON ((-74.09363384329599

Google Maps for Work - 8/10

http://www.google.com/url?q=http%3A%2F%2Fgeojson.org%2F&sa=D&sntz=1&usg=AFQjCNGBI2jicTWOrQKvPDu1hP2UWmbKyA
https://developers.google.com/maps/documentation/javascript/datalayer
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHaversine_formula&sa=D&sntz=1&usg=AFQjCNGMUyLJfSZRX_fwGy1Ol-t20SIMGA
http://www.google.com/url?q=http%3A%2F%2Fwww.movable-type.co.uk%2Fscripts%2Flatlong.html&sa=D&sntz=1&usg=AFQjCNEfJaSjzcQv7VDAO_TVEYoWlHY2Rw

Google Maps for Work

36.205953339157645,-74.09363384329599 45.276046660842354,-73.90656615670402
45.276046660842354,-73.90656615670402 36.205953339157645,-74.09363384329599
36.205953339157645)) '), geometry)

ORDER BY distance

LIMIT 50;

Using ST_DISTANCE

The following is an alternative approach using the ST_DISTANCE function in Cloud SQL.
Note that this technique may be inaccurate over larger distances, as it’s using a planar
coordinate system, as opposed to spherical. Also note that ST_DISTANCE does not use
spatial indexing, so it might be slower than haversine.

SELECT *, st distance (POINT (lon,lat),POINT(-78, 36)) as distance FROM
store locator.store ORDER BY distance LIMIT 50;

6. Create a Google map to visualize the data

The final step is to visualize the results using the Google Maps API. Take a look at the
developer documentation on how to get started and putting markers on a map.

See the entire demo in action, and download both the sample connector source code and the
store locator Ul source code.

Optimizing performance

Here are some tips to help optimize the performance of your store locator.

Connection pooling

In some instances, if the time to create a new database connection is greater than checking
and reusing existing connections, it might make sense to use connection pools. Connection
pooling allows you to keep open your database connections for reuse. With App Engine, this
is rarely necessary, but it may improve performance if your web application is hosted
elsewhere. For more information about connection pooling, see the Cloud SQL FAQ.

Google Maps for Work - 9/10

https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/markers
https://project-wander-1.appspot.com/store-locator/index.html
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgoogle%2Fmaps-for-work-samples%2Ftree%2Fmaster%2Fdemos%2FCloudSQL%2Fcloudsql-geojson-api&sa=D&sntz=1&usg=AFQjCNF_P6Tdn8J4_WReNGIpliRKGtGq4Q
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgooglemaps%2Fjs-store-locator&sa=D&sntz=1&usg=AFQjCNFlnRRO0W6OpGOOPn0u2Xs5zeCG_A
https://cloud.google.com/sql/faq#connections

Google Maps for Work

Memcache

Leveraging Memcache to store frequently accessed queries can be a great way to improve
application performance. Memcache allows you to store key/value pairs of data directly on an
App Engine instance. If your application has a default map view or popular geographic
searches (such as San Francisco, New York, or London), you may decide to store those
values in Memcache to offset some of the load to your Cloud SQL instance. In our testing, we
found that Memcache could return cached GeoJSON data over 10 times faster than
requerying Cloud SQL for that same information. Items in Memcache are flushed periodically;
therefore, check if the item exists in Memcache first and, if not, retrieve from the original data
source (Cloud SQL), return, and store it in Memcache. You can also flush cached data based
on an expiration time or by explicitly removing it via the Memcache API.

Cloud SQL database replication

Cloud SQL supports replication from a master Cloud SQL instance to multiple slave Cloud
SQL instances. Replication provides for additional read capacity for applications dominated by
reads. As of December 2014, Cloud SQL replication is in beta and supports only Cloud SQL
5.5. For more information, see the article on configuring replication in the Cloud SQL
documentation.

Alternative solutions

While this document describes one solution for developing a store locator using Cloud SQL,
there are other approaches you can take. The right technical solution is driven by
considerations such as data size (number of locations) and performance requirements. Other
solutions may include:

e Hosting a JSON file on your server and searching client-side, as shown in this
example

Using Google App Engine Search API

Using Google Cloud Datastore

Standing up your own database cluster on Google Compute Engine

Using a locally-hosted database on your web server

Google Maps for Work - 10/10

https://cloud.google.com/appengine/docs/adminconsole/memcache
http://gmfw-cloud.appspot.com/
https://cloud.google.com/sql/docs/replication
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgooglemaps%2Fjs-store-locator&sa=D&sntz=1&usg=AFQjCNFlnRRO0W6OpGOOPn0u2Xs5zeCG_A
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgooglemaps%2Fjs-store-locator&sa=D&sntz=1&usg=AFQjCNFlnRRO0W6OpGOOPn0u2Xs5zeCG_A
https://cloud.google.com/appengine/docs/python/search/
https://cloud.google.com/datastore/
https://cloud.google.com/compute/

