
Getting started with the
Chrome Browser Cloud
Management Postman
API Integration
Last updated Feb 2022

Decide on which Authorization method to use 2

Decide which APIs scopes (functionality) you want to use 2

Creating the API account in the Admin Console 3

Creating your project in console.cloud.google.com 4

Option 1: Authorize with Consent method 5

Option 2: Authorize with impersonation (service account) 8

Setting up Postman Integration 11

Verifying the connection to Chrome Browser Cloud Management 18

This document will guide you through the process of setting up the API integration with the Postman
API Platform. By using Postman you can accelerate the design, mocking, and testing of your scripts to
make the process easier than ever to use Chrome Browser Cloud Management APIs. By using Cloud
management APIs, you can push and pull data into the console at scale and enhance the level of
reporting that you can gather from your enrolled browsers. This document assumes the following:

● Have access to the Google admin console
● A super admin account for the setup
● At least one (or more) device(s) enrolled into Chrome Browser Cloud Management for testing

Here are some useful links:

Chrome Browser Enterprise Github
Readme file for the API
Google Cloud Platform Console
Postman API Platform

https://www.postman.com/
https://www.postman.com/
https://support.google.com/chrome/a/answer/9116814?hl=en
https://github.com/google/ChromeBrowserEnterprise
https://github.com/google/ChromeBrowserEnterprise/blob/main/README.md
https://console.developers.google.com/project
https://www.postman.com/

Decide on which Authorization method to use

Google provides two different methods to authorize the connection between Chrome Browser Cloud
Management, the API and Postman. Depending on how you are going to be using the API would point
to which method to use.

Authorize with consent
Each time you request a token, the admin will be prompted to authorize the request via the API.

● Postman scripts are developed using this authorization method. For validating API calls, this is
the recommended method for your integration development work

Authorize with impersonation or a service account
Authorize with the service account once and then will not be prompted when the request is made

● Supports server-to-server interactions such as those between a web application and a Google
service. Ideal for production server-to-server interactions.

Decide which APIs scopes (functionality) you want to use

The API provides four different APIs that you can enable. Depending on what requests or actions you
want to take via API could determine which scopes you enable. You can also enable them with read or
write access (or both).

Complete descriptions of what each can do is located in the Github documentation.

Here is a brief overview of each one:

Scope Description

Write scopes

https://www.googleapis.com/auth/admin.director
y.device.chromebrowsers

Chrome Browser Cloud Management
Lets you view and modify enrolled browsers and
enrollment tokens

https://www.googleapis.com/auth/admin.director
y.orgunit

Org Units - lets you view and modify
organizational units

https://github.com/google/ChromeBrowserEnterprise/blob/main/docs/postmanColl.md

https://www.googleapis.com/auth/chrome.mana
gement.policy

Chrome Policy - lets you view and modify
Chrome policies for devices and users

Read only scopes

https://www.googleapis.com/auth/admin.director
y.device.chromebrowsers.readonly

Chrome Browser Cloud Management
Get detailed information on enrolled browsers
and enrollment tokens (read-only)

https://www.googleapis.com/auth/chrome.mana
gement.reports.readonly

Reports - Chrome versions and installed apps
(read-only)

https://www.googleapis.com/auth/chrome.mana
gement.appdetails.readonly

App Details - get detailed information about
requested or specified apps
(read-only)

https://www.googleapis.com/auth/chrome.mana
gement.policy.readonly

Chrome Policy - lets you view Chrome policies
for devices and users
(read-only)

https://www.googleapis.com/auth/admin.director
y.orgunit.readonly

Org Units - lets you view organizational units
(read-only)

https://www.googleapis.com/auth/admin.reports
.audit.readonly

Admin Console Reports - lets you view activities
done by administrators using the Admin console
and oAuth token activities
(read-only)

Creating the API account in the Admin Console
In order to make API calls into the admin console, an API user account needs to be created. This account
requires all of the specific API privileges in order to push and pull data from the Admin console.

1. Go to the admin console and sign in with an admin account with the necessary privileges to enable
API access and create new user accounts (usually this is a super admin account).

2. Go to Admin Roles -> Create Role

3. Create a name for your API role and select desired privileges under “Organizational Units”, "Chrome
Management" and then hit the Create Role button.

4. Create a user account that you will assign the API role to under Directory>Users>add new user

5. Give the API account a name and create an email address and click the add new user button.

6. Go to the user account that you created in the previous step and go to -> Admin roles and Privileges
-> and select the role that you created in Step 3.

a. Please note that propagation of this new permission may take a few minutes

Creating your project in console.cloud.google.com

1. Open console.cloud.google.com

Make sure that you are signed into the cloud console with the new API role account that you created
in the previous section.

2. Press the create project button.

3. Enter in the Project name
(can be whatever you choose) and the location should match the domain of your admin console.
Hit create.

4. Once created make sure that you have that project selected.

https://console.developers.google.com/project

Option 1: Authorize with Consent method

1. Open console.cloud.google.com, select the project that you created in the previous steps and
browse to APIs and Services> Credentials>and hit the Create Credentials button and select OAuth
client ID

2. Select web application for Application type web application and provide a name.
3. For authorized redirect URI enter in the following:

a. https://www.getpostman.com/oauth2/callback
b. https://oauth.pstmn.io/v1/browser-callback

4. Hit the create button.

https://www.getpostman.com/oauth2/callback
https://oauth.pstmn.io/v1/browser-callback

5. On the OAuth client created window, click the download JSON button.

6. Click on the OAuth consent screenConfigure consent screen
When you use OAuth 2.0 for authorization, your app requests authorizations for one or more scopes
of access from a Google Account. Google displays a consent screen to the user including a
summary of your project and its policies and the requested scopes of access.
There are two types:

a. Internal is just for users within your Google Workspace users. Requires Google Workspace or
Google Identity to function.

b. External is available to any test user with a Google Account. Your app will start in testing mode
and will only be available to users you add to the list of test users. Once your app is ready to
push to production, you may need to verify your app.

7. Enter in the App name, the user support email (this is your admin account email in the admin
console) and you can also choose to display a custom logo.

8. Under Authorized domains enter in getpostman.com

9. Enter in an email address that you want Google to notify you about changes in your project and hit
save and continue.

10. Click the Add or Remove Scopes button to add the specific scopes manually. They are all listed in
this list of scopes in the Chrome Browser Enterprise Github. Hit save and continue.

Note that the list contains both read only and full access. Pick and choose which scopes you need
for your specific use case.

11. Optional - Add a user(s) that can access while the publishing status is listed as “Testing”. Enter in
the account that you used to create the project and any others that you want to provide access to by
hitting the add users button.

12. Hit save and continue, review the summary screen and hit the back to dashboard button.

13. If you choose at this time you can publish your App.

a. Once you set your app status as "In production," your app will be available to anyone with a
Google Account. Depending on how you configure your OAuth screen, you may have to submit
your app for verification

https://github.com/google/ChromeBrowserEnterprise/blob/main/docs/auth.md#scopes

Option 2: Authorize with impersonation (service account)
Creating a service account (authorize with impersonation)

1. Open the Service accounts page under IAM & Admin. If prompted, select a project.

2. Click + Create Service Account, enter a name and description for the service account

3. You can use the default service account ID, or choose a different, unique one.
When done click Create.

https://console.cloud.google.com/projectselector2/iam-admin/serviceaccounts?supportedpurview=project

4. In the Service account permissions make sure to grant the service account the "Service Account
User" role. Hit continue.

5. On the Grant users access to this service account screen, optionally add users that you want to
grant access and hit the done button.

6. Select the service account that you just created in the next screen

7. Select the Keys tab at the top and select Create new key from the dropdown menu and select JSON
as the key type.

8. Your new public/private key pair is generated and downloaded to your machine; it serves as the only
copy of this key. It provides access to your cloud console, so store it securely.

9. Click on the Details tab of your selected service account and copy the email address which is in the
form <project-name>-<id>@<project-name>.iam.gserviceaccount.com.

10. Navigate to the APIs & Services page under the project you created earlier in GCP. Click on the +
Enable APIs and Services

11. Do a search for the following APIs, select them one by one and hit the Manage button

a. Chrome Management API =
https://console.developers.google.com/apis/api/chromemanagement.googleapis.com/overvie
w

b. Chrome Policy API =
https://console.developers.google.com/apis/api/chromepolicy.googleapis.com/overview

c. Admin SDK API =
https://console.developers.google.com/apis/api/admin.googleapis.com/overview

https://console.developers.google.com/apis/api/chromemanagement.googleapis.com/overview
https://console.developers.google.com/apis/api/chromemanagement.googleapis.com/overview
https://console.developers.google.com/apis/api/chromepolicy.googleapis.com/overview
https://console.developers.google.com/apis/api/admin.googleapis.com/overview

12. Log back into the Google admin console with your super admin account.

13. Browse to Account>Admin roles> and select the service account role that you created in Creating
your API account section.

14. Click on the Admins card at the top of the page.

15. Click the assign service account.

16. Enter in the email address that you copied from step 9 and click the add button.

Setting up Postman integration

Setting up an account

1. Go to Postman.com and set up a new account or use an existing one.

2. Once your account is setup, go to Workspaces>Create Workspace and give it a name and select the
level of visibility you want and hit the Create Workspace button

https://admin.google.com/
https://admin.google.com/ac/roles
https://www.postman.com/

Importing a collection from the Chrome Enterprise Github
It is recommended to import the collections that are provided in the Chrome Enterprise Github. The
provided collections provide sample scripting for common use cases for calls to Chrome Browser
Cloud Management. You can import them via the file method or link to your Github repository.

Importing via Code repository
1. Log into your Github account.

2. Go to https://github.com/google/Chrome BrowserEnterprise and hit the fork button to add it to
your repository.

3. In Postman with your Workspace selected, click on the import button.

https://github.com/google/ChromeBrowserEnterprise/tree/main/postman
https://github.com/google/ChromeBrowserEnterprise

4. Click on Code repository> Github

5. Log into your Github account and click on the authorize postmanlabs button and confirm your
password.

6. Once this is complete in the import section you should see the ChromeBrowserEnterprise selectable
in the dropdown menu under Select repository. Hit the continue button.

7. Select which collections you want to import and hit the import button.

8. Once complete you should see all of the collections included in your Postman workspace

Importing via Upload files

1. Browse to the Chrome Enterprise Github and select the collection that you want to import.

2. Click on the raw button

3. Right click and save as .json.

https://github.com/google/ChromeBrowserEnterprise/tree/main/postman

4. In Postman with your Workspace selected, click on the import button.

5. Hit the Upload Files button and select the JSON that you downloaded in the previous step and hit
the import button

The following steps are only needed for the Authorize with Consent method only:

6. Once the Collection shows up, you will need
to fill in the sections highlighted in red.

7. For Auth URL enter in the following:
https://accounts.google.com/o/oauth2/auth

8. For Access Token URL enter in the following:
https://oauth2.googleapis.com/token

https://oauth2.googleapis.com/token

9. Get the client id and client secret from the API and services section of
https://console.cloud.google.com/(direct link) and enter them into Postman.

a. Note that it is recommended to add in these values as variables to keep sensitive data secure
and make it easier to add the data to multiple collections as you import them.

b. If you want to use the same variables in multiple collections you need to declare them as
global variables.

More information about Postman variables is located here.

10. Get the client id and client secret from the API and services section of
https://console.cloud.google.com/(direct link) and enter them into Postman.

11. If you are using the browser version of Postman, the callback URL this is prefilled in, on the
desktop version you might need to input to put the following:
https://www.getpostman.com/oauth2/callback

12. Hit the Get New Access Token button.

13. When you hit the get new access token button, you will be prompted to authenticate using your
admin credentials for Chrome Browser Cloud Management.

Make sure that this account has API privileges granted for the scopes that you have added.

https://console.cloud.google.com/
https://console.cloud.google.com/apis/credentials
https://go.pstmn.io/docs-variables
https://console.cloud.google.com/
https://console.cloud.google.com/apis/credentials
https://www.getpostman.com/oauth2/callback

14. Once completed you will be presented with your new token that you will be using to authenticate
requests to the APIs.

Hit the use token button and the token information will be prefilled into the collection for you.

Tokens are valid for one hour by default.

Creating a new collection

1. Under the Collections tab hit the plus mark to create a new collection

The following steps are only needed for the Authorize with Consent method only:

2. Select Oauth2 for the type of Authorization

3. For the callback URL enter in the following:

a. If using the browser version of Postman this is prefilled in, on the desktop version you need to
put the following: https://www.getpostman.com/oauth2/callback

4. For Auth URL enter in the following: https://accounts.google.com/o/oauth2/auth

5. For Access Token URL enter in the following: https://oauth2.googleapis.com/token

6. Get the client id and client secret from the API and services section of
https://console.cloud.google.com/(direct link) and enter them into Postman.

Note that it is recommended to add in these values as variables to keep sensitive data secure and
make it easier to add the data to multiple collections as you import them.

More information about Postman variables is located here.

7. Add in the Cloud management API specific scope(s) that you want
(reference this section for more information), each scope needs to be separated by a space.

8. Hit the Get New Access Token button.

https://www.getpostman.com/oauth2/callback
https://oauth2.googleapis.com/token
https://console.cloud.google.com/
https://console.cloud.google.com/apis/credentials
https://go.pstmn.io/docs-variables

Verifying the connection to Chrome Browser
Cloud Management

Each collection that is present in the Chrome browser Enterprise Github have some example scripts to
get you started, with examples for GET, PUT, POST and DEL requests. Once you have imported the
collection, you can run one of these to make sure that the Postman is able to make requests to Cloud
management.

1. Click on the collection that you imported.
The following steps (2-6) are only needed for the Authorize with Consent method only:

2. Confirm that the Auth URL, Access Token URL, Client ID and Client Secret and scope sections are
filled in either with the values or with a variable.

3. Click on the Get New Access Token button

4. Choose the account that you want to auth to

5. You will receive the authorization complete dialog if all is correct

6. Click on the Use Token button.

7. Select the request that you want to make and click on the send button

8. The response will show down below and you can change from JSON to other formats if you wish via
the dropdown menu.

