
Update Cookie Matching
If the cookie matching table is currently hosted by Google:

● Google will no longer send the google_gid parameter in the cookie matching request for users
in a�ected US States.

● Review your service to make appropriate changes.
If the cookie matching table is hosted on the pa�ner’s side:

● Cookie matching must be updated to a Google hosted match table. Please follow the cookie
matching migration guidance below to update the cookie matching pixel.

● If you use Bulk Upload, provide user id in your namespace following the Bulk Upload migration
guidance below.

Changes to Google Initiated Cookie Matching
Current (Older) Work�ow

1. In Google initiated cookie matching, also called pixel matching, Google serves a Cookie
Matching pixel, pointing to pa�ner’s Cookie Matching Service. Note that the current request will
contain Google’s user ID. For example:

a. https://ad.network.com/pixel?google_gid=dGhpcyBpcyBhbiBleGFtGxl&goo
gle_cver=1

2. User’s browser requests a pixel from Pa�ner’s Cookie Matching Service.
3. Pa�ner redirects the request to Google. Note that this redirect contains the Pa�ner's user ID in

the query parameter. For example:
a. https://cm.g.doubleclick.net/pixel?google_nid=<my_nid>

&google_hm=<partner_user_id_base64_encoded>
4. Browser requests pixel from Google. Note that this request contains the Pa�ner's user ID in the

query parameter. It also contains Google’s cookie in the HTTP header. Google will store the
mapping.

5. Google serves 1x1 pixel to the browser.

New Work�ow
The new work�ow is largely the same. The di�erence is that Step 1 and Step 2 will no longer contain
Google User ID.

Changes required
Pa�ner may need to update pa�ner-owned Cookie Matcher to return a 302 redirect even when there is
no Google User ID.

Changes to Pa�ner Initiated Cookie Matching
The cookie matching pixel must be updated so Google can map the user id in the Google namespace to
the user id in the pa�ner’s namespace.

New Work�ow

0. (Optional) Pa�ner provides cookie_matching_report_url to Google.
1. Pa�ner serves a 1x1 pixel pointing to Pa�ner. For example:

a.
2. Browser requests pixel from Pa�ner. Note that this request contains the Pa�ner’s cookie in the

HTTP header.
3. Pa�ner redirects the request to Google. Note that this redirect contains the Pa�ner's user ID in

the query parameter. For example:
a. https://cm.g.doubleclick.net/pixel?google_nid=<my_nid>

&google_hm=<partner_user_id_base64_encoded>
b. Note! Google expects URL safe base64 encoding (RFC 4648). This means we expect 62

and 63 to be ‘-’ and ‘_’, respectively.

https://tools.ietf.org/html/rfc4648

4. Browser requests a pixel from Google. Note that this request contains the Pa�ner's user ID in
the query parameter. It also contains Google’s cookie in the HTTP header. Google will store the
mapping.

5. Google will respond in one of the following ways:
a. If the pa�ner did not provide a cookie_matching_report_url, Google will serve a

pixel.
b. If the pa�ner provided cookie_matching_report_url, Google will redirect the

request to cookie_matching_report_url only when there is an error. If the pa�ner
would like Google to redirect when there is no error, we can enable it per account. The
error is indicated in google_error query parameter. See Cookie Matching
documentation on the explanation of each google_error value.

6. If step 5b is pe�ormed, the browser requests a pixel from the Pa�ner. This request contains
status.

7. If step 5b is pe�ormed, the pa�ner serves a pixel.
8. The pair of Google's user ID and Pa�ner's user ID is stored at Google's cookie matching table.

Current (Older) Work�ow

This �ow is explained in the Cookie Matching Documentation. To reiterate:
0. Pa�ner provides cookie_matching_url to Google. cookie_matching_url points to

pa�ner’s Cookie Matching Service. For example:
a. https://ad.network.com/pixel

1. Pa�ner serves a 1x1 pixel pointing to Google. For example:
a. <img

src="https://cm.g.doubleclick.net/pixel?google_nid=1234&google_cm"
/>

2. Browser requests a pixel from Google. Note that this request contains Google’s cookie in HTTP
header.

https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://developers.google.com/authorized-buyers/rtb/cookie-guide

3. Google redirects the request back to the pa�ner at cookie_matching_url. In the redirect,
google_gid will contain Google user ID for this user. For example:

a. https://ad.network.com/pixel?google_gid=dGhpcyBpcyBhbiBleGFtGxl&goo
gle_cver=1

b. Note! We will no longer a�ach google_gid for the requests in the a�ected region.
Instead, we will a�ach google_error=15.See Cookie Matching documentation

4. Browser requests a pixel from the pa�ner. Note that this request contains the pa�ner’s cookie in
the HTTP header and Google user ID on the query parameter.

5. Pa�ner serves 1x1 pixel to the browser.
6. The pair of Google's user ID and Pa�ner's user ID is stored at Pa�ner’s cookie matching table

See additional details (e.g. valid parameters, error codes) in the Cookie Matching Documentation.

Suppo�ed parameters
For the redirect request described in step 3 above, we suppo� the following query parameters, see API
spec. for more detailed information.

● (Required) google_cm
○ Pe�orm cookie matching. The value of the parameter is ignored and may be omi�ed.

● (Required) google_nid
○ This ID can be retrieved through the Buyer REST API Accounts resource's

cookieMatchingNid �eld.
● (Required) google_hm

○ URL-safe base64 string. This is o�en a user ID.
● (Optional) google_redir

○ The encoded URL of where the partner wants Google to send a 302 redirect.
● (Optional) google_ula

○ Adds to the user list. The value is in the format userlistid[,timestamp]
● (Optional, Deprecated) google_sc

○ Sets the cookie if one is not present.
● (Optional, Deprecated) google_no_sc

○ Do not set the cookie if one is not present.

Changes required
To transition to the new �ow, we recommend two methods:

Method 1: Use two pixels
Pa�ners will leave the current pixel as-is and add an additional new pixel that will trigger the New
Work�ow. Google will continue to return Google user ID on the older �ow until the deadline. Google will
expect the Pa�ner user ID on the new �ow. During the transition period, both the Google Hosted Match
Table and Pa�ner Hosted Table can be used. A�er the pa�ner has veri�ed the new �ow is working, the
pa�ner should remove the current pixel.

The current pixel is expected to contain only google_cm (if the current pixel contains both google_cm
and google_hm see Method 2). The parameter indicates to Google that the pa�ner is requesting a
Google User ID, and Google will redirect to the cookie_matching_url. A�er the deadline,
google_cm will no longer return Google user ID for the requests coming from the a�ected region.

https://ad.network.com/pixel?google_gid=dGhpcyBpcyBhbiBleGFtGxl&google_cver=1
https://ad.network.com/pixel?google_gid=dGhpcyBpcyBhbiBleGFtGxl&google_cver=1
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://developers.google.com/authorized-buyers/rtb/cookie-guide#api-specifications
https://developers.google.com/authorized-buyers/rtb/cookie-guide#api-specifications
https://developers.google.com/authorized-buyers/apis/latest/accounts#cookieMatchingNid

Example current pixel:
<img src="https://cm.g.doubleclick.net/pixel?google_nid=<my_nid>&google_cm" />

The new pixel is expected to contain only google_hm (its value is the pa�ner user ID). Google will
redirect to cookie_matching_report_url if one is provided. Note that
cookie_matching_report_url redirects only when there is error unless the pa�ner stated
otherwise.

Example new pixel:
<img src="https://cm.g.doubleclick.net/pixel?google_nid=<my_nid>
&google_hm=<partner_user_id_base64_encoded>" />

The transition timeline would be:
1. Add the new pixel with new �ow. Keep the current pixel as is.
2. Wait for the Google Hosted Match Table to be populated.
3. Remove the old pixel. Keep the new pixel.

The old pixel e�ectively be no-op a�er the deadline. Instead of returning Google user ID, it will contain a
google_error. It will be draining resources for the user, the pa�ner, and Google. We recommend
removing it a�er the transition.

Method 2: Use one pixel
Method 2 requires the pa�ner to change the current pixel so that Google can receive the Pa�ner user
ID and send the Google user ID using the same pixel. Pa�ners using Google hosted match tables with
pa�ner-initiated cookie matching may already be using pixels with this structure. For example,

<img src="https://cm.g.doubleclick.net/pixel?google_nid=<my_nid>
&google_cm&google_hm=<partner_user_id_base64_encoded>" />

When the pixel contains both google_cm and google_hm, Google will treat the request as pa� of the
old Work�ow. It means that Google will use cookie_matching_url as the base redirect URL. If a
request is from the a�ected region, Google User ID is not a�ached. If it is not, then Google User ID is still
a�ached. Google will still record the Pa�ner User ID (i.e. google_hm).

The transition timeline would be:
1. Update the current pixel to include google_hm.
2. Wait for the Google Hosted Match Table to be populated.
3. (Optional) Remove google_cm.

Single Table for Multiple NIDs
Some pa�ners may currently use multiple network IDs (i.e. google_nid) to do Cookie Matching and
host a single table. We also suppo� sharing a single Google Hosted Match Table for multiple network
IDs.

If you have multiple network IDs (google_nid), and would like them to share a single Hosted Match table,
please share the set of google_nid with your account team or use the suppo� contact form at
h�ps://suppo�.google.com/authorizedbuyers/gethelp.

https://support.google.com/authorizedbuyers/gethelp

Bulk Upload Changes
Note! Please let Google know whether you would like to use the User List upload functionality. This
functionality needs to be enabled per account.

Currently, pa�ners follow the guide here to upload user lists in Google’s namespace (i.e. UserIdType =
GOOGLE_USER_ID). A�er this change, the pa�ner can upload in the pa�ner's namespace. (i.e.
UserIdType = PARTNER_PROVIDED_ID). Note that Google will continue to accept uploading user ids in
Google’s namespace (i.e. UserIdType = GOOGLE_USER_ID). The user list can be a mix of
PARTNER_PROVIDED_ID and GOOGLE_USER_ID.

Note that the PARTNER_PROVIDED_IDs during Bulk Upload are not base64 encoded.

enum UserIdType {
...
MSAI = 7;
PARTNER_PROVIDED_ID = 4;

}

message UserDataOperation {
optional string user_id = 1 [default = ""];
optional UserIdType user_id_type = 14 [default = GOOGLE_USER_ID];
...

}

message UpdateUsersDataRequest {
repeated UserDataOperation ops = 1;
...

}

The response will have a new error code to indicate when Google doesn’t have a mapping:

enum ErrorCode {
...
// Cannot decode provided cookie.
BAD_COOKIE = 4;

UNKNOWN_ID
...

}

https://developers.google.com/authorized-buyers/rtb/bulk-uploader

