- (1) Let A be a subset of [0,1] and m denote the Lebesgue measure on \mathbb{R} . Then which of the following are true?
 - (a) If A is closed then m(A) > 0
 - (b) If A is open then $m(A) = m(\bar{A})$, where \bar{A} is the closure of A
 - (c) If $m(int(A)) = m(\bar{A})$ then A is (Lebesgue) measurable, where int(A) is the interior of A.
 - (d) If $m(int(A)) = m(\bar{A})$ then A need not be measurable.

Solution: (c)

- (a) is false because of singleton sets.
- (b) is false because of we have a dense open set in [0,1] with measure 1/2. You can construct it by making small modification in cantor set and then take the complement.
- (c) is true because Lebesgue measure is complete.
- (2) Define an equivalence relation in [1,2] by $x \sim y$ if x y is rational. Consider the set N consisting of precisely one element from each equivalence class. Then
 - (a) N is uncountable
 - (b) $[1,2] \setminus N$ is uncountable
 - (c) $m_*(N) = 0$
 - (d) $E \subset N$ measurable implies $m_*(E) = 0$

Solution: (a),(b),(d)

Here N is the non measurable set. So both N and $[1,2]\backslash N$ are uncountable and m*(N)>0. (d) can be proved using the same arguments used to prove non measurability of N.

- (3) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Then which of the following are necessarily true?
 - (a) If f is measurable, then $\phi \circ f$ is measurable, for any continuous real valued function ϕ
 - (b) If f^2 is measurable, then f is measurable
 - (c) If f is differentiable, then f' is measurable
 - (d) If $g: \mathbb{R} \to \mathbb{R}$ be a measurable function such that f = g a.e, then f is measurable

Solution: (a),(c),(d)

- (a) and (d) are trivial.
- (b) take $f = \chi_N \chi_{[0,1]\setminus N}$ where N is a non measurable set. Then f is not measurable but f^2 is measurable.
- (c) Since f' is a limit of measurable functions it is also measurable.
- (4) Let $\{f_n\}$ be a sequence of real valued functions defined on [0,1] which converges pointwise to a **continuous** real valued function f on \mathbb{R} . Then which of the following are necessarily true?

(a)
$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$$

(b) If
$$0 \le f_n(x) \le f(x) \ \forall n \in \mathbb{N} \ and \ x \in [0, 1]$$

then $\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$

(c) If
$$|f_n(x)| \le \frac{1}{\sqrt{x}} \, \forall n \in \mathbb{N} \text{ and } x \in [0, 1]$$

then $\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$

(d) If
$$|f_n(x)| \le 1 \ \forall n \in \mathbb{N} \ and \ x \in [0,1]$$

then $\lim_{n \to \infty} \int_K f_n(x) dx = \int_K f(x) dx$ for all measurable $K \subset [0,1]$

Solution: (b),(c),(d)

By Dominated convergence theorem (DCT).

(5) Assume $\{f_n\}, \{g_n\}, f, g \in L^1(\mathbb{R}^n)$ be such that $f_n \longrightarrow f$ and $g_n \longrightarrow g$ pointwise a.e., then which of the following are true?

(a)
$$\int_{\mathbb{R}^n} (f_n + g_n) dm \longrightarrow \int_{\mathbb{R}^n} (f + g) dm$$

(b)
$$|f_n| \leq |f|$$
 a.e., $|g_n| \leq |g|$ a.e. implies $\int_{\mathbb{R}^n} (f_n + g_n) dm \longrightarrow \int_{\mathbb{R}^n} (f + g) dm$

(c)
$$|f_n| \leq |g|$$
 a.e. implies $\int_{\mathbb{R}^n} f_n \ dm \longrightarrow \int_{\mathbb{R}^n} f \ dm$

(d)
$$|f_n| \leq |g_n|$$
 a.e. and $\int_{\mathbb{R}^n} g_n \ dm \longrightarrow \int_{\mathbb{R}^n} g \ dm$ implies $\int_{\mathbb{R}^n} f_n \ dm \longrightarrow \int_{\mathbb{R}^n} f \ dm$

Solution: (b),(c),(d)

- (b) and (c) due to DCT
- (d) from generalized DCT
- (6) Consider the sequence of functions $f_n(x) = e^{-nx^2}$ on $[1, \infty)$. Which of the following are true?
 - (a) $\int_1^\infty f_n(x)dx \to 0$
 - (b) $\sup_{n} ||f_{n}||_{1} < \infty$
 - (c) f_n converges in $L^1[1,\infty)$
 - (d) f_n does not converge in $L^p[1,\infty)$ for any $1 \leq p \leq \infty$

Solution: (a),(b),(c)

Here f_n decreases to 0 and f_1 is integrable. Then use DCT.

- (7) Let $\{E_n\}$ be a sequence of measurable sets in \mathbb{R} such that $m(E_n) \to 0$ as $n \to \infty$ and $f \ge 0$ be measurable. Which of the following are true?
 - (a) $\int_{E_n} f(x)dx \to 0 \text{ as } n \to \infty$
 - (b) If $E_{n+1} \subset E_n$, $\forall n$ then $\int_{E_n} f(x)dx \to 0$ as $n \to \infty$
 - (c) If f is bounded, then $\int_{E_n} f(x)dx \to 0$ as $n \to \infty$
 - (d) If f is integrable and $E_{n+1} \subset E_n$, $\forall n$ then $\int_{E_n} f(x)dx \to 0$ as $n \to \infty$

Solution: (c),(d)

 $E_n = (0, 1/n)$ and f(x) = 1/x is a counter example for (a) and (b)

- (c) is trivial
- (d) follows from DCT.
- (8) Let $f, f_n : (X, \mathcal{F}, \mu) \to \mathbb{R}$ be measurable functions. Then which of the following are true?

- (a) If $0 \le f_n$ converges to f uniformly, then $\lim_{n \to \infty} \int_{\mathcal{V}} f_n d\mu = \int_{\mathcal{V}} f d\mu$
- (b) If $\mu(X)$ is finite and $|f_n(x)| \leq 1$, $\forall x \in X$, and f_n converges to f are then $\lim_{n\to\infty}\int_V g\circ f_n d\mu = \int_V g\circ f d\mu, \ \forall \ \text{continuous function } g \text{ on } \mathbb{R}$
- (c) If $\mu(X) < \infty$ and if f_n are bounded by one, f_n converges to f a.e. (μ) , then $\lim_{n\to\infty} \int_{\mathcal{V}} f_n d\mu = \int_{\mathcal{V}} f d\mu$
- (d) If $f_1 \leq f_2 \leq \dots \leq f_n \leq f_{n+1} \leq \dots$, and f_n converges to f ae then $\lim_{n \to \infty} \int_{\mathcal{X}} f_n d\mu = \int_{\mathcal{X}} f d\mu$

Solutions: (b),(c)

- (a) $f_n = \frac{1}{n}\chi_{[0,n]}$ converges to 0 uniformly but integrals converges to 1 (b) Since g is continuous on \mathbb{R} , g takes bounded sets to bounded sets. Hence we can apply DCT to the sequence $g \circ f_n$
- (c) By DCT
- (d) Following f_n gives a counter example

$$f_n(x) = \begin{cases} x + n & if \ x \le -n \\ 0 & otherwise \end{cases}$$

(9) Let $\{f_n\}$ be a sequence of real valued measurable functions defined on \mathbb{R} which converges uniformly to a real valued function f on \mathbb{R} . Then which of

the following are necessarily true? (a)
$$\lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} f(x) dx$$

(b)
$$\lim_{n\to\infty} \int_1^\infty f_n(x)dx = \int_1^\infty f(x)dx$$

(c)
$$\lim_{n \to \infty} \int_{1}^{2} f_n(x) dx = \int_{1}^{2} f(x) dx$$

(d)
$$\lim_{n\to\infty} \int_K f_n(x)dx = \int_K f(x)dx$$
 for any compact set $K \subset \mathbb{R}$

Solutions : (c),(d)

 $f_n(x) = \frac{1}{n}\chi_{[0,n]}$ is a counter example for (a) and (b).

(c) and (d) follows trivially.

(10) Let $A \in \mathcal{L}(\mathbb{R}^n)$. Then which of the following are correct?

(a)
$$\delta A \in \mathcal{L}(\mathbb{R}^n)$$
 for all $\delta > 0$

(b)
$$A + x \in \mathcal{L}(\mathbb{R}^n)$$
 for all $x \in \mathbb{R}^n$

Solution: (a),(b)

Trivially follows from the properties of Lebesgue integration.