(1) Which of the following are true?

(A)
$$\chi_{|x| \le 1}(x) |x|^a (1-|x|)^b \in L^1(\mathbb{R}^n) \text{ iff } a > -n \text{ and } b > -1$$

(B) $\chi_{|x| \le 1}(x) |x|^a (1-|x|)^b \in L^1(\mathbb{R}^n) \text{ iff } a > -n \text{ and } b > 0$

Solutions: A

$$\int_{\mathbb{R}^n} \chi_{|x| \le 1}(x) |x|^a (1 - |x|)^b = \int_0^1 r^a (1 - r)^b r^{n-1} dr$$

$$= \int_0^1 r^{a+n-1} (1-r)^b dr = \int_0^{\frac{1}{2}} r^{a+n-1} (1-r)^b dr + \int_{\frac{1}{2}}^1 r^{a+n-1} (1-r)^b dr$$

$$= \int_0^{\frac{1}{2}} r^{a+n-1} (1-r)^b dr + \int_0^{\frac{1}{2}} r^b (1-r)^{a+n-1} dr$$

$$< \infty \text{ iff } a+n-1, b > -1 \text{ iff } a > -n \text{ and } b > -1$$

(2) Which of the following are correct?

(A)
$$\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^2)$$

(B)
$$\mathcal{L}(\mathbb{R}) \times \mathcal{L}(\mathbb{R}) = \mathcal{L}(\mathbb{R}^2)$$

Solutions: A

A is mentioned in Lectures.

 $N \times \{0\}$ is a counter example for B where N is a non-measurable subset of \mathbb{R}

(3) Which of the following are correct?

(A) The sigma algebra generated by $\{[a_1, b_1] \times \cdots \times [a_n, b_n] : a_i, b_i \in \mathbb{Q}\}$ is $\mathcal{B}(\mathbb{R}^n)$

(B) The sigma algebra generated by $\{[a_1, b_1] \times \cdots \times [a_n, b_n] : a_j, b_j \in \mathbb{Q}\}$ is $\mathcal{L}(\mathbb{R}^n)$

(C) If $E \in \mathcal{L}(\mathbb{R}^2)$ then $E_x \in \mathcal{L}(\mathbb{R})$ for all $x \in \mathbb{R}$

Solutions: A A we have discussed already. Hence B is not true.

C is true for x ae only. Not for all x.

(4) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be Lebesgue measurable. Which of the following are correct?

(A) For each $x \in \mathbb{R}$, $f_x : \mathbb{R} \to \mathbb{R}$ (defined by $f_x(y) = f(x, y)$ is Lebesgue measurable

(B) If f is Borel measurable, then for each $x \in \mathbb{R}f_x$ is Borel measurable

Solutions: B

A)Consider $f = \chi_{\{0\} \times N}$ is Lebesgue Measurable, but $f_0 = \chi_N$

is not measurable where $N \subset \mathbb{R}$ is non-measurable. B)Since $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^2)$, it follows by theorem 8.2 of Real and Complex analysis by Rudin.

- (5) Consider the measure spaces $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ where m is the Lebesgue measure on \mathbb{R} and $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ where μ is the measure defined by $\mu(A) =$ number of rationals in $A \cap [0, 1]$. Let $m \times \mu$ be the corresponding product measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$. Let $D = \{(x, x) : 0 \le x \le 1\} \subset \mathbb{R}^2$, which of the following is correct?
 - (A) $m \times \mu(D) = 0$
 - (B) $m \times \mu(D) = \infty$
 - (C) $m \times \mu(D) = 1$

Solution: A

Follows from the definition of product measures

- (6) Consider the measure space $(\mathbb{R}, 2^{\mathbb{R}}, \mu)$ where μ is the measure defined by $\mu(A) =$ number of rationals in A. Let $\mu \times \mu$ be the corresponding product measure on \mathbb{R}^2 . Let $D = \{(x, x) : 0 \le x \le 1\}$. Which of the following is correct?
 - (A) $\mu \times \mu(D) = 0$
 - (B) $\mu \times \mu(D) = \infty$
 - (C) $\mu \times \mu(D) = 1$

Solution: B

Follows from the definition of product measures

- (7) Let X = Y = [0, 1], m Lebesgue measure on [0, 1], μ counting measure on Y. Put f(x, y) = 1 if x = y and zero otherwise. Which of the following are correct?
 - (A) $\int_X f(x,y) dm(x) = 0$ for all $y \in Y$
 - (B) $\int_{Y} f(x, y) d\mu(y) = 1$ for all $x \in X$
 - (C) $\int_X \int_Y f(x,y) \ d\mu(y) \ dm(x) = \int_Y \int_X f(x,y) \ dm(x) \ d\mu(y)$
 - (D) μ is not σ -finite so the iterated integrals are not same

Solutions: A,B,D

A and B follows by direct computations.

C)LHS=1 and RHS=0 D)Counting measure is not $\sigma - finite$ and fubini theorem is valid for $\sigma - finite$ spaces only.

- (8) Let $f: \mathbb{R} \to \mathbb{R}$ be a Borel measurable non-negative function. Let $A(f) = \{(x, y) : 0 < y < f(x)\}$. Which of the following are correct?
 - (A) $A(f) \in \mathcal{B}(\mathbb{R}^2)$
 - (B) Lebesgue measure of A(f) equals $\int_{\mathbb{R}} f(x) dx$

Solutions: A,B

Proved Theorem in Real Analysis by Stein and Sackarchi (Refer applications of Fubini theoem)

- (9) $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Which of the following are correct?
 - (A) The graph of f, $G(f) = \{(x, f(x)) : x \in \mathbb{R}\}$ is a Borel set in \mathbb{R}^2
 - (B) Lebesgue measure of G(f) is zero
 - (C) Lebesgue measure of G(f) is infinity

A,B

- A) It is the zero set of the continuous function F(x,y) = y f(x)B) By Fubini's theorem $m(G(f)) = \int_{\mathbb{R}} m(G(f)_x) dx = 0$
- (10) Let (X, \mathcal{F}, μ) be a $\sigma finite$ measure space and f a positive measurable function on X. For $t \geq 0$ define $F_f(t) = \mu\{x \in$ X: f(x) > t. Which of the following are correct?
 - (A) F_f is non-increasing and hence Borel measurable (B) $\int_X~f~d\mu=\int_0^\infty F_f(t)~dt$

Solutions: A,B

Refer Distribution functions form chapter 8 of Real and Complex analysis by Rudin